
 exemple of web
application with

Python’s Flask web
framework

 using Docker and
docker-compose

The main goal of this project is to demonstrate how to build, test, and deploy
microservices-based web applications using containerization tools like Docker and Docker
Compose.

The project consists of two microservices: news and weather. The news service provides an
API endpoint to fetch the latest news headlines from various news sources using the
NewsAPI. The weather service provides an API endpoint to fetch the current weather
information for a given city using the OpenWeatherMap API. + image

what is this project

about ?

Tools used

is a lightweight and flexible web framework for Python that is used to build web applications.
It provides a simple and easy-to-use interface for handling web requests and generating
responses. Flask is often used to build RESTful APIs and web services.

Flask

is a containerization platform that allows developers to package their applications and
dependencies into portable containers. Containers provide a way to run applications
consistently across different environments, which helps to ensure that the application
behaves the same way in development, testing, and production. Docker containers can be
easily deployed to cloud platforms like AWS, Azure, and Google Cloud.

Docker

is used to define and run multi-container Docker applications. The docker-compose.yml file
defines the services that make up the application, including the News and Weather
services, their respective databases, and the NGINX reverse proxy.

Docker-compose

is a popular API development tool that allows developers to create, test, and document
APIs easily.

Postman

Steps followed

The "/weather" route expects a query parameter called "city", retrieves it from the request
object using request.args.get('city'), and sends a GET request to a separate service (which
must be running on the network at address "weather:3002") to retrieve the current weather
for the specified city. The response from the weather service is returned to the client in
JSON format.
The "/news" route expects a query parameter called "country", retrieves it from the request
object using request.args.get('country'), and sends a GET request to another separate
service (which must be running on the network at address "news:3003") to retrieve the
latest news headlines for the specified country. The response from the news service is also
returned to the client in JSON format.
If the "city" or "country" query parameters are not in the expected format (either an invalid
string or a number), an error message is returned to the client.

1)Creating flask services

master_assistant.py

The code creates an instance of the Flask application and an instance of the API using the
Flask instance. It then defines a route '/news' that accepts GET requests.

Inside the news function, the code gets the country name from the query string using the
request.args.get() method. It then constructs a URL to request news articles from the
NewsAPI service using the country name and the NewsAPI API key.

After that, it sends an HTTP GET request to the constructed URL using the requests
module, and returns the JSON response from the NewsAPI service using response.json().

1)Creating flask services

news.py

single route '/weather' that retrieves the current weather data for a specified city using the
OpenWeatherMap API. It uses the request module to get the city name from the query
parameters of the request URL. The OpenWeatherMap API key is stored in a variable
called api_key and the base URL for the API is stored in base_url. These values are used to
construct a complete URL for the API request which is then made using the requests.get()
method. The JSON response from the API is returned as the response from the route.
Finally, the __name__ variable is used to check if the script is being run directly and the
Flask app is run on the local host at port 3002 with debug mode enabled.

1)Creating flask services

 weather.py

RESTful API (Representational State Transfer) is a popular architectural style used for
designing web services that communicate over HTTP. It defines a set of constraints and
principles that developers should follow when creating APIs to enable client-server
communication. RESTful APIs use HTTP methods like GET, POST, PUT, and DELETE to
perform CRUD (Create, Read, Update, Delete) operations on resources, which can be
represented in various formats such as JSON, XML, or plain text.

what is RESTful API?

setting up a load-balanced web server to handle incoming traffic and distribute it to multiple
Python services running on different servers.

2)Building Nginx server

2)Dockerize everything

We will create the Dockerfiles for our services.
create Docker images for the News and Weather services as well as an Nginx reverse
proxy.

Dockerfile.news:

It starts with a Python 3.8 slim-buster base image.
Copies the requirements.txt file to install the necessary dependencies for the News service.
Installs the dependencies using pip.
Exposes port 3003.
Copies the news.py file.
Sets the command to run the news.py file.

Dockerfile.weather:

It starts with a Python 3.8 slim-buster base image.
Copies the requirements.txt file to install the necessary dependencies for the Weather
service.
Installs the dependencies using pip.
Exposes port 3002.
Copies the weather.py file.
Sets the command to run the weather.py file.

Dockerfile.nginx:

It starts with an Nginx base image.
Deletes the default Nginx configuration file.
Copies the custom Nginx configuration file named "nginx.conf" to the image.

what is image?

In Docker, an image is a lightweight, standalone, and executable package that includes
everything needed to run a piece of software, including the code, runtime, libraries,
environment variables, and system tools.
Docker images are built from a set of instructions called a Dockerfile, which specifies the
application's dependencies, configuration, and other details.

4)Docker-compose

Docker-compose creates a container with our Nginx server, a container for each of the
news and weather services and two instances of our main Api master(server).

what does that json file mean?
"base": "stations" - This specifies the source of the weather data.
"clouds": {"all": 20} - This gives information about the cloud cover. In this case, there are "few
clouds" with a coverage of 20%.
"cod": 200 - This is the HTTP status code returned by the API, indicating a successful response.
"coord": {"lat": 52.374, "lon": 4.8897} - This provides the latitude and longitude of Amsterdam.
"dt": 1682782385 - This is the time of data calculation in Unix timestamp format.
"id": 2759794 - This is the ID of the city in OpenWeatherMap's database.
"main": {...} - This contains various temperature and pressure data. The "temp" field gives the
current temperature in Kelvin, which is approximately 15 degrees Celsius.
"name": "Amsterdam" - This is the name of the city.
"sys": {...} - This contains various information about the location and time zone of Amsterdam.
"timezone": 7200 - This is the time zone offset in seconds from UTC.
"visibility": 10000 - This gives the visibility distance in meters.
"weather": [{...}] - This gives a description of the weather conditions in Amsterdam. In this case,
there are "few clouds".
"wind": {...} - This gives information about the wind speed and direction in Amsterdam.

