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4 Dimensionnement des sections en flexion simple

4.1 Généralités
4.1.1 Domaine d’application

Un élément est soumis a de la flexion simple si les sollicitations se réduisent
a un moment fléchissant M, et un effort tranchant V,,. Si I'effort normal N,
n'est pas nul, alors on parle de flexion composée (voir la partie 11). En béton
armé on distingue I'action du moment fléchissant qui conduit au dimensionne-
ment des aciers longitudinaux de I'action de I'effort tranchant qui concerne le
dimensionnement des aciers transversaux (cadres, épingles ou étriers). Ces deux
calculs sont menés séparément, et dans cette partie on se limitera aux calculs
relatifs au moment fléchissant. La partie 5 traitera des calculs relatifs a I'effort
tranchant.

Les éléments d'une structure soumis a de la flexion simple sont principalement
les poutres, qu'elles soient isostatiques ou continues. Pour une poutre iso-
statique, le calcul des sollicitations M, et V, est simple et il est conduit en
utilisant les méthodes de la résistance de matériaux (RdM). Pour une poutre
continue, I'hyperstaticité rend les calculs plus compliqués et le BAEL propose
deux méthodes qui permettent d'évaluer les sollicitations dans les poutres conti-
nues en béton armé. Ces deux méthodes sont présentées dans la partie 7 ainsi
que la construction de I'épure d'arrét de barres a partir de la connaissance de
la courbe enveloppe du moment fléchissant.

Ce qui suit est limité au calcul des sections rectangulaires et en T sans acier
comprimé. Pour ce qui est des sections en T on se reportera au paragraphe 4.4.
S'il apparait nécessaire de placer des aciers comprimés dans une section de
béton, c'est que son coffrage est mal dimensionné et il est préférable pour des
raisons économiques, mais aussi de fonctionnement, de le modifier.

4.1.2 Portées des poutres

En béton armé, la portée des poutres a prendre en compte est (voir Figure 24) :
- la portée entr’axe d’'appuis lorsqu’il y a des appareils d'appui ou que la poutre
repose sur des voiles en magonnerie,

- la portée entre nus d'appuis lorsque les appuis sont en béton armé (poutre
principale, poteau ou voile).

4.2 Flexion simple a 'ELU
4.2.1 Hypotheses

Les principales hypothéses du calcul des sections en BA soumises a de la flexion
simple aux ELU sont les suivantes :

v les sections planes restent planes,

v il n'y a pas de glissement a |'interface béton-armatures,

v’ le béton tendu est négligé,

v’ I'aire des aciers n'est pas déduite de celle du béton,

v’ I'aire des aciers est concentrée en son centre de gravité,

v’ le comportement de |'acier est défini par le diagramme contrainte-déformation
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Appareils d'appuis
m Magonerie

T

Fig. 24 : Définition de la portée d’une poutre selon qu’elle repose sur des
appareils d'appuis, des éléments en magonnerie ou en béton armé.

de calcul de la Figure 12.

v' pour le comportement du béton, on adoptera le diagramme rectangulaire sim-
plifié (car la section n'est que partiellement comprimée) , défini sur la Figure 25,
ol la contrainte de calcul a I'ELU du béton est donnée par :

avec
- fej la résistance caractéristique requise en compression a j jours du béton,
- 0 un coefficient qui tient compte de la durée d’application des charges.

- v = 1.5 dans les cas courants.

y /’\

fbu
=
=,
oo
S

Op

DEFORMATIONS CONTRAINTES CONTRAINTES
PARABOLE - RECTANGULAIRE

RECTANGLE SIMPLIFIE

Fig. 25 : Définition des diagrammes contrainte-déformation parabole-rectangle
Figure (8) et rectangulaire simplifi€ dans la section de béton comprimé

4.2.2 Notations

Pour les calculs aux ELU, on utilise les notations de la Figure 26, ou:
v' b et h sont la largeur et la hauteur de la section de béton.
v' A est la section d’acier, dont le centre de gravité est positionné a d de la
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fibre la plus comprimée du coffrage.

v’ Yy, est la position de |'axe neutre par rapport a la fibre la plus comprimée du
coffrage.

v 04 est la valeur de la contrainte de calcul des aciers, limitée a f,.

o L
R R d 0.8byufs
@a
-
i a IA.N. $
. , . g
= 3
| ;
A
v e @ e —
b

Fig. 26: Notations utilisées pour les calculs de flexion simple a I'ELU.

4.2.3 Droites de déformation - Pivots

Pour les calculs a I'ELU, on suppose qu'un point de la droite de déformation
dans la section est fixé. Ce point s’appelle le pivot. Soit il correspond a la
déformation limite de traction dans les aciers €5, = 10 °/o, : C'est le Pivot A, soit
il correspond a la déformation limite en compression du béton €. .. = 3.5 %0 :
c'est le Pivot B. Toutes les droites de déformation comprises entre la droite
(Pivot A, €pe,e = 0) et (est = 0% , Pivot B) sont possibles, comme le
montre la Figure 27. Le bon fonctionnement de la section de Béton Armé se
situe aux alentours de la droite AB, car les deux matériaux - acier et béton -
travaillent au mieux.

Yu=0 yu=0.259d yu=0.617d
o= o=0.259 a=0.617
W=0 Yy B wp=0.186 7V Hutin=0-372 Y 15 5 140

7

A/ 10107
|
Pivot A Pivot B Pivot B
g =10107 ex>ee= 217107 eu<ee= 217107
=>6y=/fsu => Gy =fsu =>0yu=Esty

Fig. 27 : Définitions des différentes droites de déformation possibles en flexion
simple a I'ELU et des Pivots.
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4.2.4 Equations de I'équilibre

L'équilibre de la section vis a vis de |'effort normal et du moment fléchissant
conduit aux deux équations suivantes :

selon N : N, = 0.8byyfru — Asost =0

selon M : M, = 0.8byy, fou(d — 0.4y,,) eny = —(d—yy)
= Asost(d — 0.4y.) en y = 0.6y,
= 0.8byu f5u0.6yy + Asose(d — yu) eny =0

4.2.5 Compatibilité des déformations

L’hypothése de continuité des déformations dans la section (pas de glissement
des armatures par rapport au béton) conduit a I'équation suivante :

ebcmax €st

Yu d— 1y,

d'ou si la droite de déformation passe par le pivot A, la déformation maximale
du béton comprimé vaut :

Pivot A:  €pe,. = AT /oo

d_yu

et si la droite de déformation passe par le pivot B, la déformation des aciers
vaut :
d— Yu

Pivot B: €y = 3.5 %/oo-

Yu

4.2.6 Adimensionnement :

P . . . , . Y Lqs
On définit les quantités adimensionnées suivantes : o, = = la hauteur réduite

d

v
bdebu
Il vient d'apres les équations de I'équilibre :

ety = le moment ultime réduit.

ftw = 0.8 (1 — 0.40vy,).

La hauteur réduite est solution de I'équation du second degrés précédente :
ay, = 1.25(1 — /1 —2p,,).

4.2.7 Calcul des sections d’acier

Dans la phase de calcul des aciers, les inconnues sont : Ag, o4, d et y,.

Afin d'éliminer une inconnue, on fait I'"hypothése complémentaire d = 0.95.
On calcule le moment ultime réduit p,, puis a,,. Le Pivot et la contrainte dans
les aciers o sont déterminés a partir de |'abaque de la Figure 28, en fonction
de la valeur de ay,.
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0 Ha=0.186 i =0.372 iy =0.480 Hu
| I I |

o,=0 (XABZO.259 au]im:O.6 17 (X,szl Olu
oo ] Pivot A \ | | Pivot B |1 section de béton |
} 58 N : } insuffisante :

RS X - PN O

} é % ?l ‘ Aciers plastiques ‘ ‘ Aciers élastiques ‘ } mettre d:s aciers :
E37 ! comprimés !
= oo =f || 05 = By (10)3.5/ 0 %eo | mawai) |
o st su St s . u /o0 ‘mauvais) N

Fig. 28 : Valeurs de o, du pivot et des la contrainte dans les aciers tendus o 4
en fonction de la valeur du moment ultime réduit pi,, .

La section d'acier est ensuite obtenue par :

M,
Ay = .
O'Std(l — O40éu)
Apres ce calcul, il est bon de calculer la valeur exacte de d en fonction du

ferraillage mis en place et de vérifier qu’elle est supérieure a 0.9h, ce qui va
dans le sens de la sécurité. On peut éventuellement itérer afin d’optimiser le
ferraillage.

4.2.8 Pré-dimensionnement

Pour un pré-dimensionnement rapide de la hauteur du coffrage, on se place sur
la droite de déformation AB (u, =~ 0.2), d’ou

bd? ~ My ,
Oszu

avec d ~ 0.9h et b =~ 0.3h.

4.3 Flexion simple a I'ELS

Ce qui suit est limité au calcul des sections rectangulaires sans acier comprimé.
L'ELS est dimensionnant par rapport a I'ELU lorsque la fissuration est considérée
comme trés préjudiciable a la tenue de I'ouvrage dans le temps (FTP) et parfois
lorsqu'elle est préjudiciable (FP). Dans ce dernier cas, on dimensionnera a I'ELU
et on vérifiera que la section d’acier est suffisante pour I'ELS. En FTP, il faut
faire le calcul de la section d’acier directement a I'ELS.

4.3.1 Hypotheses

Les principales hypothéses du calcul des sections en BA soumises a de la flexion
simple aux ELS sont les suivantes :

v les sections planes restent planes,

v il n'y a pas de glissement a I'interface béton-armatures,

v’ le béton et I'acier sont considérés comme des matériaux élastiques,

v' le béton tendu est négligé,

v’ I'aire des aciers n'est pas déduite de celle du béton,
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v’ |'aire des aciers est concentrée en son centre de gravité,
v’ le coefficient d'équivalence n = ES/EZ,]. est fixé forfaitairement a n = 15.

4.3.2 Notations

Pour les calculs aux ELS, on utilise les notations définies sur la Figure 29, ou:
v b et h sont la largeur et la hauteur de la section de béton.

v' A est la section d'acier, dont le centre de gravité est positionné a d de la
fibre la plus comprimée du coffrage.

v 11 est la position de I'axe neutre par rapport a la fibre la plus comprimée du
coffrage.

v 05t = Eseg est la contrainte de calcul des aciers, définie a partir du module
d'Young de I'acier E; et de la déformation dans les aciers €.

V' Oberax = Eb€bena, €St 1a contrainte de calcul du béton comprimé, définie a
partir du module d'Young du béton Fj et de la déformation maximale du béton
comprimé e, . .

y y
|
. I
. 1

Vi

N

(d-y,/3)

-
NI
. |AN. _
I
=7

1

|
As!
e ¢ o
1

—t

Fig. 29: Notations utilisées pour les calculs en flexion simple a I'ELS.

4.3.3 Equations de I'équilibre

L'équilibre de la section vis a vis de I'effort normal et du moment fléchissant
conduit aux deux équations suivantes :

selon N : Noer = Ebyl(jbcmax — Agoe =0
1 Y1
selon M : Moo, = 5by10—bcmax(d — 3) eny=—(d—1yi)
Y1 2
= Asoq(d — = eny=—
¢ ( 3 ) Y 3y1

1
= Ui+ Asow(d = 31)  eny=0

Notons que les trois expressions du moment fléchissant en trois points différents
de la section sont rigoureusement identiques puisque I'effort normal est nul
(sollicitation de flexion simple).
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4.3.4 Compatibilité des déformations

L'hypothése de continuité des déformations dans la section (pas de glissement
des armatures par rapport au béton) conduit a I'équation suivante entre les
déformations :

€bemax _ Cst

vy d—y

L'acier et le béton ayant un comportement élastique, on en déduit une relation
entre les contraintes :
Obemax Ost

Y1 n(d —y1)

4.3.5 Contraintes limites dans les matériaux

L'ELS consiste a vérifier que les contraintes maximales dans la section la plus
sollicitée restent inférieures a des valeurs limites fixées réglementairement. On
distingue :

v' 'ELS de compression du béton :

Obemax < Ope = 0'6ij
v 'ELS d’ouverture de fissures :
Ost < Ost

ou

Gst = fe si la fissuration est considérée peu préjudiciable (FPP) a la tenue de
I'ouvrage dans le temps,

ost = Min{2f./3; Max{0.5f.;110,/nf;,}} si la fissuration est préjudiciable
(FP),

ost = 0.8 Min{2f/3; Max{0.5fe; 110, /nf, } } si la fissuration est tres préjudiciable
(FTP).

Dans ces formules 7 est un coefficient qui dépend du type d'acier : n = 1.6
pour des HA > 6 mm, n = 1.0 pour des ronds lisses et n = 1.3 pour des HA

< 6mm.

4.3.6 Dimensionnement et vérification

Pour le calcul de la section d'acier (dimensionnement) ou de calcul des contraintes
maximales (vérification), on adoptera la démarche présentée dans le tableau de
la Figure 30. Pour un calcul rapide, on pourra utiliser I'abaques de la Figure 31.

4.4 Sectionen T

4.4.1 Pourquoi des sectionsen T ?

Les poutres en béton armé d'un batiment supportent souvent des dalles. Il est
alors loisible de considérer que la dalle supportée par la poutre reprend une partie
des contraintes de compression induites par la flexion de la poutre. Attention,
ceci n'est vrai que si la dalle est comprimée, c'est-a-dire si la poutre subit un
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Dimensionnement Vérification
Données Mser, b, h, fc]: fe Mser, As, b, R, d, ijY fe
Inconnues | As, Y1, Obeyays Ostr d Y1, Obegyayr Ost
Equations | d = 0.9h
comp. Ost = Ost

/ 1 .
Résolution | M,,, = Qbylhmﬁbc(d — Y1,/ 3) y1 solution de

NOpe 1 9
avec yy, = d———— —byy — nA(d — =0
ylllm na’bc + a-,gt 2 y]_ S( yl)
V' si Mger < M;er continuer calcul de :

/ 1
v si Mger > Mg, augmenter b | I} = gby% +nAs(d —1y1)?
et/ou h ou placer des aciers com-

primés (mauvais)

on pose o = % Vérifier :
nMser Mer _
calcul de = — V Ope. = <7
Hser bdzﬁ'st bemax I, Y1 = Opc
. nM
« solution de V 0g = Iser (d—y1) <o
1

a® =302 — 6piger(a—1) =0
section d'acier :
M,
A = ~ser
® ostd(1 — a/3)

Fig. 30 : Etapes du dimensionnement des sections d’acier et de la vérification
des contraintes en flexion simple a I'ELS.

moment positif. Donc, pour une poutre continue, seule la partie en travée est
concernée et sur appui il faudra considérer une poutre rectangulaire de largeur
la largeur de I'ame.

Le BAEL (A.4.1,3) définit la largeur du débord a prendre en compte de fagon
forfaitaire (voir la Figure 32), comme au plus égale a :

- le dixieme de la portée de la poutre,

- les deux tiers de la distance de la section considérée a |'axe de I'appui le plus
proche,

- la moitié de la distance entre deux poutres supportant la méme dalle.

On peut aussi rencontrer des poutres en béton armé de sections en T (ou en
[) sur des charpentes industrielles. Dans ce cas, la largeur du débord est donné
par la géométrie de la section de béton.

4.4.2 Fonctionnement des sections en T

On utilise les notations définies sur la Figure 33. Que I'on soit a I'ELU ou a I'ELS,
la fagon de traiter le calcul est identique (en gardant bien siir les hypothéses de
I'état limite considéré). On traitera donc ici les deux états limites en parallele.
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4.4 Sectionen T

Dimensionnement section d'acier

FLEXION SIMPLE ELS

.

0.35

M ser/ S bd?

lecture de o, calcul de As = Mser/ Gy d(1-0/3)

Vérification des contraintes

lecture de o, calcul de /;, puis vérification G et Gy ax

v

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.00

0.10

0.20 0.30 0.40

0.50

0G2002

0.60

Fig. 31 : Abaques de Dimensionnement et de vérification en flexion simple a

I'ELS.
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=z,
(o)

Lo

.
o,

A,

min (1,710 ; 1.,/2) i /'//

min (1,/10; 1, /2)—[7

1x1

Fig. 32 : Dimensions des débords a prendre en compte pour le calcul d'une

poutre en T.

On distinguera deux cas, selon que I'axe neutre est compris dans la table de
compression ou non :

v’ L’axe neutre est dans la table de compression. On a donc y, < h; (ou
y1 < hy a I'ELS). Le béton tendu étant négligé, la poutre en T se calcule
exactement comme une poutre rectangulaire de largeur b, a I'ELU ou a I'ELS.
v’ L'axe neutre est sous la table de compression. On a donc y, > hy (ou
y1 > hy a 'ELS). Une partie de la contrainte normale est reprise par la table
de compression de largeur b, I'autre par une partie de I'ame de largeur by et de

hauteur 0.8y, — hy a 'ELU (y; — hy a I'ELS).

y

| o

|
As
€% o —
- I

by

Fig. 33: Notations utilisées pour le calcul d'une poutre en T.

Détermination a posteriori C'est le calcul recommandé. En effet dans 99%
des cas, une poutre en T se calcule comme une poutre rectangulaire. On fera
donc le calcul de la poutre en T comme si c'était une poutre rectangulaire de
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largeur b. On vérifiera a posteriori que y, < h; (ou y; < hy a I'ELS). Si cette
condition n'est pas vérifiée, il faut refaire le calcul avec les hypotheéses d'une
poutre en T (voir plus loin).

Détermination a priori Ce n’est pas le calcul recommandé, pour les raisons
données plus haut. On calculera en préambule le moment résistant de la table
défini comme le moment que peut reprendre la table si elle est entierement
comprimée (0.8y,, = h1 a I'ELU ou y; = hy a I'ELS). Ce moment vaut :

h
My, = bhy fou(d — ?1) A VELU

h h
Miser = 6315-b0(d - ?1) a 'ELS

4.4.3 Calcul des vrais sections en T

Avant d'entamer ce calcul on regardera s'il n'est pas possible de modifier le
coffrage de la poutre (h et/ou h;) de telle sorte que I'axe neutre se retrouve
dans la table de compression. C'est de loin la meilleure solution, car si |I'axe
neutre est en dessous de la table, cela veut dire que la poutre risque de ne pas
vérifier les conditions de fleches maximales.

ATELU Lescalculs a I'ELU sont conduits en soustrayant au moment fléchissant
a reprendre M, le moment fléchissant repris par les débords du hourdis M iaple,
comme indiqué sur la Figure 34. On se rameéne donc au calcul de deux sections
rectangulaires, I'une de largeur b — by et |'autre de largeur by.

(b-by) /2 "T (b-by) /2
| f | f |

- P e 1 . - D - <I

'+

d
|
|
d-hy2?

Fig. 34 : Principe du calcul de la section d’acier pour une poutre en T a I'ELU :
le moment ultime est repris d'une part par les débords de la table et d’autre
part par la partie de I'dme au dessus de I'axe neutre.

Les étapes du calcul sont les suivantes :

1. calcul de la part de moment repris par les débords de la table :
Mutable = (b — bo)h1 fou(d — h1/2).

2. calcul de la part de moment que doit reprendre I'ame :
A'{uame = Mu - A'{utable-

3. calcul classique de la section d'acier a prévoir pour reprendre M ame (cal-
cul du moment ultime réduit i, de a,, et de og).
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4. calcul de la section d’'acier a mettre en place A; = Aame + Atable, avec

M utable M u M utable

Aa e = 3 1 I~ t Am =
tble = A —h1/2) T G d(1 = 0.4aw)

A I'ELS A I'ELS le probléme est un peu plus complexe puisque les contraintes
dans le béton varient linéairement. Ainsi, on ne peut pas connaitre a priori
la valeur de la résultante du béton comprimé qui dépend de la position de
I'axe neutre y;. Pour résoudre ce probleme, on décompose la résultante des
contraintes de compression du béton en deux résultantes fictives : Np.1 et Npeo
comme indiqué sur la Figure 35. Np. est la résultante de la poutre fictive
rectangulaire équivalente et Np.o est la partie reprise par le béton fictif sous la
table de compression. En notant K la pente de la droite des contraintes dans
la section o(y) = Ky, on a:

1 2
Nper = §K by? s’appliquant en 3

1 . 2
Npeo = §K(b —bo)(y1 — hl)2 s’appliquant en §(y1 — hy)

Les équations de I'équilibre s'écrivent alors :

Nper — Npeo — Ago5¢ =0 selon N
2 2
glebd - g(yl — h1)Npea + (d — y1)Asosg = Mg selon M sur AN

De plus, comme pour le calcul d’un section rectangulaire, on adoptera oy = Gt
pour minimiser la section d'acier. Comme pour les sections rectangulaires,
I"équation de compatibilité des déformations fournit une équation supplémentaire
reliant les contrainte via la pente K de la droite des contraintes oy = nK (d—y;)
et Ope,.. = Kyi. On a donc trois inconnues yi, oy, et As pour trois
équations, et on peut résoudre ce systtme. On prendra garde de vérifier en fin
de calcul que o, < Gpe = 0.6f¢;.

g

.I : T T T T
| o I | N ©
* R =Tk
—_— I I N
N I 3
ése —t L | J N
A A
|N be = Niper - N bv.2|

Fig. 35 : Principe du calcul de la section d’acier pour une poutre en T 3 I'ELS :
la résultante des contraintes de compression est calculée comme la différence des
contraintes s'appliquant sur une surface b x y; en 2y, /3 et celles s'appliquant
sur une surface (b —bg) X (y1 — h1) en 2(yy — h1)/3.
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4.5 Condition de non fragilité

La condition de non fragilité conduit a placer une section minimum d’armatures
tendues pour une dimension de coffrage donnée. Une section de béton armé est
considérée comme non fragile si le moment fléchissant entrainant la fissuration
de la section de béton conduit a une contrainte dans les aciers au plus égale a
leur limite d'élasticité garantie (A.4.2). On évalue la sollicitation de fissuration
en considérant la section de béton seul soumise a une contrainte normal variant
de facon linéaire sur toute la section et en limitant les contraintes de traction
a fij.

En flexion simple, pour une poutre rectangulaire de dimension bx h, la contrainte
maximale de traction vaut :

h Mfiss h
=L f
I, 2

Obtmaz —

oli I, = bh3/12 est le moment quadratique de la section de béton non armé
non fissuré. On en déduit :

La condition de non fragilité suppose que lorsque la section de béton armé est
soumise a My, alors la contrainte dans les aciers vaut au plus fe, soit comme
le moment dans la section est égale a :

M = Agfezp,

on obtient |a relation suivante donnant la section minimale d'acier vérifiant la
condition de non fragilité :

f+;bh?

6 = Aminfezs.
Si, de plus, on suppose que z, ~ 0.9d ~ 0.92h, la condition de non fragilité
s'écrit (A.4.2,2) :

Amm ftj

=0.23=2.
bd fe

4.6 Choix du dimensionnement

Le choix entre ELU et ELS pour dimensionner la section d’acier dépend du type
de fissuration, comme indiqué sur la Figure 36.

Type de fissuration

Fissuration Peu
Préjudiciable

Fissuration
Préjudiciable

Fissuration Tres
Préjudiciable

Dimensionnement

ELU

ELU (ou ELS)

ELS

Vérification

ELS

ELS (ou ELU)

inutile

Fig. 36: Choix de I’état limite dimensionnant.
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5 Sollicitation d’effort tranchant

5.1 Dimensionnement des sections sous sollicitation d’effort tran-
chant (A.5.1,2)

Tous les calculs sont menés a I'ELU.

5.1.1 Contrainte tangente conventionnelle (A.5.1,1)

La contrainte tangente conventionnelle utilisée pour les calculs relatifs a I'effort
tranchant est définie par :

ou V,, est I'effort tranchant a I'ELU dans la section, by la largeur de I'ame et
d = 0.9h la position des aciers tendus.

5.1.2 ELU des armatures d’ame (A.5.1,23)

Le rapport de la section A; sur I'espacement s; des armatures transversales doit
vérifier I'inégalité suivante:

Ay > Vs (Tu — 0-3ftjk)
bos;  0.9f.(cosa +sina)’

ou

v’ bg est la largeur de |'ame,

v fe est la limite d’élasticité garantie des armatures transversales,

v’ s le coefficient de sécurité partiel sur les armatures (en général v = 1.15),
v« est I'angle d'inclinaison des armatures transversales (o« = 90° si elles sont
droites),

v' fi; est la résistance caractéristique du béton a la traction a j jours,

v k est un coefficient qui vaut: - £ = 1 en flexion simple,

-k =14 30cm/fej en flexion composée avec compression (0., contrainte
moyenne),

-k =1-1004y,/ f.; en flexion composée avec traction (o4, contrainte moyenne),
- k =0 si la fissuration est considérée tres préjudiciable ou si il y a une reprise
de bétonnage non traités,

- k < 1 si la reprise de bétonnage est munie d’'indentations dont la saillie atteint
au moins 5 mm.

En flexion simple, on utilise souvent la formule simplifiée (armatures droites,
participation du béton en traction négligée) :

A %% Vi

- Z - 1
St 0.9df sy 2y fsu

5.1.3 ELU du béton de I'ame (A.5.1,21)

La contrainte tangente conventionnelle 7, doit vérifier :
- dans le cas ou les armatures sont droites :
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en FPP : 7, < l\/Iin{%;E)M’Pa}

o
A5 1.5
en FP et FTP : 7, < Min{0 5ei

.4 M Pa}

- dans le cas ou les armatures sont inclinées a 45° :
0.27f.;
7o < Min{ Jes ;7 M Pa}

Si les armatures sont disposées de fagon intermédiaire (45° < a < 90°), il est
loisible de procéder a une interpolation linéaire pour fixer la valeur de 7.

5.1.4 Dispositions constructives

Pourcentage minimal d’armatures transversales (A.5.1,22)

Il faut vérifier : s, < Min{0.9d;40 cm} et btf € > 0.4 MPa.
Diametre des aciers transversaux (A.7.2,2)
g bo
<
Il faut vérifier : ¢ Mm{qzbl, 35’ 10}

5.1.5 Justification des sections d’appuis (A.5.1,3)

Appui de rive

Effort de traction dans I'armature inférieure :

On doit prolonger les armatures inférieures au dela du bord de I'appui et y
ancrer une sections d'armatures longitudinales suffisantes pour équilibrer I'effort
tranchant sur I'appui Vg, soit :

Ast ancrée > VuO/fsu

Ancrage des armatures inférieures :
On doit déterminer le type d'ancrage des armatures inférieures (droit ou par
crochet). Pour cela, on calcule la longueur de I'ancrage droit nécessaire

[ = VuO/(nsﬂ-QSTsu)

ol ng est le nombre de barres ancrées. Sil < a alors un ancrage droit est suffi-
sant, sinon il faut prévoir des crochets (voir la Figure 37 pour la définition de a).

Dimension de I'appui :
La contrainte de compression dans |a bielle doit vérifier :

2V, -
0<08fj

abg Vb

Obc =

ou la grandeur a est définie sur la Figure ?7.
Appui intermédiaire
Ancrage et bielle d'appui :

1o
—)/ fsu (2 vérifier de chaque

Il convient d'ancrer une section Ag > (V, + 0.9d

coté de I'appui ; M, en valeur algébrique)
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a |[2em7 a |[2cm

Fig. 37 : Définition de la largeur a de la bielle de compression au niveau d'un
appui.

Pour la contrainte de compression, il faut effectuer la méme vérification que
pour un appui simple mais de chaque coté de I'appui (V,, a gauche et a droite
de I'appui).

Surface de I'appui :

Si R, est la réaction totale d’appui, il faut vérifier :

Ry < 1.3fcj
section d’appui ~ v,

5.1.6 Répartition des armatures transversales

Pour déterminer la section d’acier transversale et I'espacement des cadres, il
faut procéder de la maniere suivante (voir Figure 38) :

e Pour des raisons de mise en ceuvre, les espacements s; sont choisis dans
la suite de Caquot (non obligatoire, conseillé) :

7-8-9-10-11-13-16-20-25-35-140

e On se fixe la valeur de la section d'armature transversale A;, ce qui revient
dans les faits a choisir le diamétre des armatures transversales (avec ¢y ~
¢1/3 < Min{h/35,b9/10, ¢;}). Pour des facilités de mise en ceuvre, on
placera des cadres identiques sur toute la travée.

e On détermine I'espacement sy, = 2pfsuAt/Vy sur I'appui, et le premier
cadre est placé a s;,/2 du nu de I'appui.

e On détermine la répartition des armatures transversales suivantes de facon
a avoir un effort tranchant résistant V,z(z) qui enveloppe la courbe de
I'effort tranchant a reprendre V,,(x). Pour cela, on peut procéder graphi-
quement sur le diagramme de I'effort tranchant en reportant les valeurs
des efforts tranchants résistants V,r, = zpfsuAt/st, pour les différents
espacements s;, de la suite de Caquot supérieurs a s;,. On répete autant
de fois que nécessaire |'espacement s;;, jusqu'a pouvoir adopter |'espa-
cement suivant sy, dans la suite de Caquot (voir exemple ci-dessous).
On doit par ailleurs vérifié que I'espacement maximal reste inférieur a
Min{0.9d; 40cm; A¢ fe/(0.4by)}.
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Vil

o

slor] 2us a6 20 | 25 | |25 | 20 |16 | 2u13 11| 2vi0]0] 3es |

2.85

Fig. 38 : Exemple de tracé de la répartition des cadres dans une poutre en
fonction de la courbe enveloppe de I'effort tranchant.

e Pour une travée, la cotation de I'espacement des cadres se fait a partir
des deux nus d'appui, ce qui permet de ne pas coté |'espacement central
qui, a priori, peut ne pas comporter un nombre entier de centimeétres.

5.2 Veérifications diverses liées a I'existence de I'effort tranchant
5.2.1 Entrainement des armatures (A.6.1,3)

La brusque variation de la contrainte de cisaillement longitudinal au niveau
de I'armature tendue peut conduire a un glissement de la barre par rapport
au béton. Il convient donc de s'assurer que I'effort tranchant résultant V,
est équilibré par I'adhérence se développant au contact acier-béton pour les
différentes armatures isolées ou paquets d'armatures.

Chaque armature isolée (ou paquet d'armatures) d'aire Ag; et de périmétre
utile u; reprend une fraction As;/As de I'effort tranchant, avec A, la section
totale des aciers longitudinaux tendus. L’effort normal dans I'armature i vaut

donc :

Asi
Nsti = Vu .
As

Cet effort de traction Ng; doit &tre équilibré par la contrainte d’adhérence
d’entrainement Ty, entre |'armature et le béton sur une longueur z;, (hypothése
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du fonctionnement selon un treillis de Ritter-Maorsch), soit :

Asi
Toe2bU; = —— Vi,
As

ou le périmetre utile u; est défini sur la Figure 39.

2.0 O

w=(n+2)p w=(n+3)o

Fig. 39: Définition du périmétre utile d’'un paquet de barres.

Il faut vérifier pour chaque paquet de barres que la contrainte d'adhérence 74,
reste inférieure a la valeur limite ultime 75, (A.6.1,3):

b

Va si - W, =1 pour les ronds lisses,
< - :
0.0du A, = Tew = Wl avee 1 g 1 5 bour les aciers HA.

Tse =

5.2.2 Décalage de la courbe du moment fléchissant (A.4.1,5)

La regle du décalage tient compte de I'inclinaison a = 45° des bielles de béton
comprimée : |'effort de traction Ny dans les aciers est constant sur une longueur
zp (fonctionnement simplifié selon un treillis de Ritter-Morsch comme décrit sur
la Figure 40). Par conséquent, |'effort agissant dans I'armature doit &tre évalué
en prenant en compte le moment fléchissant agissant a une distance z;, de la
section considérée.

Ny

C

N

Zp

Fig. 40 : Fonctionnement de la section de béton armé selon un treillis de
Ritter-Morsch.

Pour tenir compte de ce décalage, le BAEL propose de décaler horizontalement
de 0.8h (zp = 0.9d et d =~ 0.9h) dans le sens défavorable la courbe des mo-
ments fléchissants, ce qui revient a rallonger de 0.8h les deux cotés des aciers
longitudinaux.
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5.3 Regles des coutures généralisées (A.5.3)
5.3.1 Regle généralisée

Tout plan soumis a un effort de cisaillement doit étre traversé par des armatures
de couture totalement ancrées de part et d’autre de ce plan, faisant un angle
d'au moins 45° avec lui et inclinées en sens inverse de la direction probable des
fissures du béton. Si les actions tangentes sont susceptibles de changer de sens,
les armatures de couture doivent étre normales au plan sur lequel s'exercent les
actions.

5.3.2 Section d’acier de couture

Considérons un élément d'aire dP = p.dx du plan [P], de largeur dx et de pro-
fondeur p, situé entre deux fissures et traversé par une armature de couture. Le
plan [P] est supposé soumis a un effort de cisaillement g par unité de longueur
et a une contrainte uniforme de compression (ou traction) o,, perpendiculaire-
ment a [P] (voir Figure 41).

L'élément d'aire dP est donc soumis aux efforts suivants :

- un effort de cisaillement g.dx contenu dans [P],

- un effort de compression p.dz.o, normal a[P],

- un effort de compression dFy. incliné de /3 par rapport a [P] provenant des
bielles de béton comprimé,

- un effort de traction dFy; incliné de « par rapport a [P] provenant des arma-
tures de couture.

aciers de

couture At
. fissures dFst dFbc

AN NN\ AL
AAA /\ A P o

dx
Fig. 41: Equilibre d'une surface élémentaire du plan [P)].

@

La projection de ces efforts sur [P] et perpendiculairement a [P] conduit aux
deux équations suivantes :

dFgsin(a+ ) = g.dz.sin 8 — p.oy. dx.cos 3
dFpesin(a + ) = g.dz.sina + p.oy,.dz. cos 3

Les armatures de couture doivent équilibrer par metre de longueur du plan [P]
un effort :
dFy Ay A fe

=—0g=—.—
dz S¢ St Vs

OG 2004



54 Béton Armé IUP GCI3 - Option OS - 2004 /05

Compte tenu du fait que g = 7,.p, la résolution du systéme d'équations (5.3.2)
conduit a :

At fe sinasin 8 + cos acos

Pst s cos 3

=T, tanf — oy

Pour 8 = 45°, on obtient la méme formule que celle proposée par le BAEL en
A.5.3,12. Dans les cas habituellement rencontrés en BA, on a aussi o = 90°
(armatures de couture perpendiculaires au plan [P]), ce qui conduit a la formule
simplifiée (commentaire du A.5.3,12) :

At fe
DStYs

=Ty — Oy

Connaissant la contrainte de cisaillement 7, il est donc possible d'en déduire la
section A; et I'espacement s; des aciers de couture. La valeur de 7, dépend du
type de plan [P] que I'on consideére (plan de I'ame, liaison hourdis/ame, liaison
talon/ame, ...).

5.3.3 Liaison hourdis/ame

Considérons une poutre en T', dont la table de compression de largeur b est sup-
posée symétrique. Il se produit dans cette table des contraintes de cisaillement
parallelement et perpendiculairement aux faces verticales de I'dme. |l y a donc
un risque de séparation entre la table de compression et I'dme de la poutre.
Les armatures de coutures (droites) doivent reprendre I'effort de cisaillement
(0w =0):

At fe

hl St Vs

- TLL?
ol hi est |'épaisseur du hourdis.

Hypotheése : Les calculs suivants sont menés en supposant que les matériaux
travaillent dans le domaine élastique (hypothése des calculs aux ELS), puis
transposés aux ELU sans modifications.

Isolons un demi-hourdis. Comme indiqué sur la Figure 42, ce demi-hourdis est
en équilibre sous :

- des contraintes normales sur ses faces MNPQ et M' N' P'Q’

- des contraintes de cisaillement sur sa face MNM' N’

Les contraintes normales en = sur M N P() ont pour résultante :
b/2 b/2 M /
/ ope(y).dydz = Maer / ydydz = SermG
bU/Q Yyi1— hl b()/2 Yyi1— h1 I].

ol mIG est le moment statique de la section M N P() par rapport a I'axe neutre.
Son expression est :

, b— by h1
me = hi(y1 — 7)
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y /r N P IS MW,P,Q,G(x+dx,y)dydz
il
! N77’7’P / n T Qv
= | / y/"/// x
I' ) 7
= ‘ M 0"
|
-—
N T

Fig. 42: Notations et équilibre d'un demi-hourdis d’une poutre en T.

Dans la section située en z+d x, de facon identique la résultante des contraintes
normales sur M'N'P'Q’ vaut :
Mser + d Af[sm' /
- Mg
I

En faisant I’hypothése complémentaire que les contraintes de cisaillement
sont uniformes sur le plan MNM'N’, I'équilibre du demi-hourdis conduit  :

Mser + d ]\/1867‘ / Mser /

me — ma+T7hidx =0
I ¢ e
Hors, d Mg,/ dax = =V, et |'expression précédente se simplifie :
|7 b
—Ma =T
Lo¢

Dans le cas particulier ot y; = h; (Hypothése d'axe neutre confondu avec le nu
inférieur du hourdis), la définition du bras de levier z;, peut s'écrire z, = Il/mll,
oll m)] est le moment statique du hourdis (m} = bhi(yy — h1/2)) et il vient (en
remplacant 7 par 7, et V par V) :

 Vumg  Vumgmi  Vyb—by 1
_h1 Il _hlmll Il _hl 2b Zh

Tu

qui correspond a la formule du BAEL (commentaire de I'article A.5.3,2). On
obtient alors la section d'acier de couture a mettre en place :

Vub—b() St
A > — —
t_zb 2b fsu

Comme pour tous les calculs a I'effort tranchant, on adopte comme bras de levier
zp = 0.9d. L'espacement s; des aciers de couture est généralement identique a
celui des cadres de I'ame.
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Al]

y —

Lrtr rta

Fig. 43: Notations pour le calcul des aciers de couture a la liaison talon/dme.

5.3.4 Liaison talon/ame

Les notations utilisées sont définies sur la Figure 43. Le calcul est mené de
facon identique a celui du hourdis, mais ici, comme le béton tendu est négligé,
les moments statiques se réduisent a :

m’G = Aj1(d — y1) pour un demi-talon contenant une section d’'aciers longitu-
dinaux A,

m/1 = A;(d—y1) pour le talon entier contenant la section d'aciers longitudinaux
A

En notant hg I'épaisseur du talon, I'équation (5.3.3) conduit a :

Vtu m/G ’I’I’Lll Vu All 1

Tu 7

_h0m1 Il _hoAle

Cette formule est celle donnée dans le commentaire de |'article A.5.3,2 du BAEL.
La section d’acier de couture a mettre en place pour la liaison talon/ame est
donnée par :

VuAn st
Ay > ————
L= 2y A fsu




