CONTENTS

1	Log	ique et méthodes de raisonnement	3
	1.1	Régles de logique formelle	3
	1.2	La négation $\ll (nonP) \gg, \ll \bar{P} \gg : \dots \dots \dots \dots \dots$	3
	1.3	Les connecteurs logiques.	4
	1.4	L'implication	4
	1.5	La réciproque de l'implication	5
	1.6	La négation d'une implication	5
	1.7	Conclusion	6
	1.8	L'équivalence	6
	1.9	Propriétés des connecteurs logiques	7
	1.10	Les quantificateurs	8
		1.10.1 Quantificateur universel $\ll \forall \gg \ldots \ldots \ldots \ldots$	8
		1.10.2 Quatificateur existentiel $\ll \exists \gg$	8
	1.11	Régles de négations	9
	1.12	Méthodes de raisonnement	9
		1.12.1 Méthode de raisonnement direct	9
		1.12.2 Méthodes du raisonnement par la contraposée	9
		1.12.3 Raisonnement par l'absurde	10
		1.12.4 Contre exemple	10
		1.12.5 Raisonnement par recurrence	10
	1 13	Exercices Corrigés	10

CHAPTER 1 _____LOGIQUE ET MÉTHODES DE RAISONNEMENT

1.1 Régles de logique formelle

Definition 1.1 Une proposition est une expression mathématique à laquelle on peut attribuer la valeur de vérité vrai ou faux.

Example 1 (1) \ll Tout nombre premier est pair \gg , cette proposition est fausse.

- (2) $\sqrt{2}$ est un nombre irrationnel, cette proposition est vraie
- (3) 2 est inférieure à 4, cette proposition est vraie

Definition 1.2 Toute proposition démontrée vraie est appelée théorème (par exemple le théorème de PYTHAGORE, Thalès...)

1.2 La négation $\ll (nonP) \gg, \ll \bar{P} \gg$:

Definition 1.3 Soit P une proposition, la négation de P est une proposition désignant le contraire qu'on note (nonP), ou bien \bar{P} , on peut aussi trouver la notation \rceil P. Voici sa table de vérité.

 $\begin{array}{c|c}
P & \bar{P} \\
\hline
1 & 0 \\
0 & 1
\end{array}$

Example 2 (1) Soit $E \neq \emptyset$, $P : (a \in E)$, alors $\bar{P} : (a \notin E)$.

- (2) P: la fonction f est positive, alors P: la fonction f n'est pas positive.
- (3) P: x + 2 = 0, alors (non P): $x + 2 \neq 0$.

1.3 Les connecteurs logiques.

Soit P, Q deux propositions

1. La conjonction $\ll et \gg, \ll \wedge \gg$

Definition 1.4 la conjonction est le connecteur logique \ll et \gg , $\ll \wedge \gg$, la proposition (PetQ) ou $(P \wedge Q)$ est la conjonction des deux propositions P,Q.

- $(P \wedge Q)$ est vraie si P et Q le sont toutes les deux.
- $(P \land Q)$ est fausse dans les autres cas. On résume tout ça dans la table de vérité suivante.

P	Q	$P \wedge Q$	
1	1	1	
1	0	0	
0	1	0	
0	0	0	

Example 3 (1) 2 est un nombre pair et 3 est un nombre premier, cette proposition est vraie

- (2) $3 \le 2$ et $4 \ge 2$, cette proposition est fausse.
- 2. La disjonction \ll ou \gg , $\ll \vee \gg$

Definition 1.5 La disjonction est un connecteur logique \ll ou \gg , \ll \vee \gg on note la disjonction entre P,Q par $(PouQ),(P\vee Q).P\vee Q$ est fausse si P et Q sont fausses toutes les deux, sinon $(P\vee Q)$ est vraie.

On résume tout ça dans la table de vérité suivante.

P	Q	$P \vee Q$		
1	1	1 1		
1	0			
0	1	1		
0	0	0		

EXEMPLE 1.9. (1) 2 est un nombre pair ou 3 est un nombre premier. Vraie.

(2) $3 \le 2$ ou $2 \ge 4$ Fausse

1.4 L'implication

Definition 1.6 L'implication de deux propositions P, Q est notée $P \Rightarrow Q$ on dit P implique Q ou bien si P alors $Q.P \Rightarrow Q$ est fausse si P est vraie et Q est fausse, sinon $(P \Rightarrow Q)$ est vraie

dans les autres cas.

P	Q	$P \Rightarrow Q$
1	1	1
1	0	0
0	1	1
0	0	1

Example 4 (1) $0 \le x \le 9 \Rightarrow \sqrt{x} \le 3$. Vraie

- (2) Il pleut, alors je prends mon parapluie. Vraie c'est une conséquence.
- (3) Omar a gagné au loto ⇒ Omar a joué au loto. Vraie c'est une conséquence.

1.5 La réciproque de l'implication

Definition 1.7 La réciproque d'une implication $(P \Rightarrow Q)$ est une implication $Q \Rightarrow P$.

Example 5 (1) La réciproque de: $0 \le x \le 9 \Rightarrow \sqrt{x} \le 3$, est : $\sqrt{x} \le 3 \Rightarrow 0 \le x \le 9$

- (2) La réciproque de: (Il pleut, alors je prends mon parapluie), est: (je prends mon parapluie, alors il pleut).
- (3) La réciproque de: (Omar a gagné au loto \Rightarrow Omar a joué au loto), est: (Omar a joué au loto \Rightarrow Omar a gagné au loto).
- 4) La contraposée de l'implication Soit P,Q deux propositions, la contraposée de $(P\Rightarrow Q)$ est $(\bar{Q}\Rightarrow \bar{P})$, on a

$$(P \Rightarrow Q) \Longleftrightarrow (\bar{Q} \Rightarrow \bar{P})$$

Remark 1 $(P \Rightarrow Q)$ et $(\bar{Q} \Rightarrow \bar{P})$ ont la même table de vérité, i.e., la même valeur de vérité.

Example 6 (1) La contraposée de :(Il pleut, alors je prends mon parapluie), est (je ne prends pas mon parapluie, alors il ne pleut pas).

(2) La contraposée de : (Omar a gagné au loto \Rightarrow Omar a joué au loto), est: (Omar n'a pas joué au loto \Rightarrow Omar n'a pas gagné au loto).

1.6 La négation d'une implication

Soit P, Q deux propositions on a

$$\overline{(P \Rightarrow Q)} \Leftrightarrow (P \land \bar{Q}).$$

Example 7 (1) La négation de: (il pleut, alors je prends mon parapluie), est: (il pleut et je ne prends pas mon parapluie).

- (2) La négation de: (Omar a gagné au loto \Rightarrow Omar a joué au loto), est : (Omar a gagné au loto et Omar n'a pas joué au loto).
 - (3) $(x \in [0, 1] \Rightarrow x \ge 0)$ sa négation : $(x \in [0, 1] \land x < 0)$.

1.7 Conclusion

- (1) La négation de $(P \Rightarrow Q)$ est $(P \land \bar{Q})$.
 - (2) La contraposée de $(P \Rightarrow Q)$ est $(\bar{Q} \Rightarrow \bar{P})$.
 - (3) La réciproque de $(P \Rightarrow Q)$ est $(Q \Rightarrow P)$.

Remark 2 $(P \Rightarrow Q) \Leftrightarrow (\bar{P} \lor Q)$. RO ÉLÉMENT DE LOGIQUE ET MÉTHODES DE RAISONNEMENT AVEC

Preuve. Il suffit de montrer que $(P \Rightarrow Q)$ a la même valeur de vérité que $(\bar{P} \lor Q)$, on le voit bien dans la table de vérité suivante:

P	Q	\bar{P}	$P \Rightarrow Q$	$\bar{P} \lor Q$
1	1	0	1	1
1	0	0	0	0
0	1	1	1	1
0	0	1	1	1

1.8 L'équivalence

Definition 1.8 L'équivalence de deux propositions P, Q est notée $P \Leftrightarrow Q$, on peut aussi écrire $(P \Rightarrow Q)$ et $(Q \Rightarrow P)$. On dit que $P \Leftrightarrow Q$ si P et Q ont la même valeur de verité, sinon $(P \Leftrightarrow Q)$ est fausse.

P	Q	$P \Leftrightarrow Q$
1	1	1
1	0	0
0	1	0
0	0	1

Remark 3 (1) $P \& Q \text{ c'est à dire } P \text{ n'est pas équivalente à } Q \text{ lorsque } P \neq Q \text{ ou } Q \neq P.$

(2) $P \Leftrightarrow Q$ peut être lue P si et seulement si Q.

Example 8 (1) $x + 2 = 0 \Leftrightarrow x = -2$.

(2) Omar a gagné au loto \Leftrightarrow Amar a joué au loto.

Theorem 1 Soit P, Q deux propositions on a:

$$(P \Leftrightarrow Q) \Leftrightarrow (P \Rightarrow Q) \wedge (Q \Rightarrow P).$$

Preuve.

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$	$(P \Rightarrow Q) \land (Q \Rightarrow P)$	$(P \Leftrightarrow Q)$
1	1	1	1	1	1
1	0	0	1	0	0
0	1	1	0	0	0
0	0	1	1	1	1

1.9 Propriétés des connecteurs logiques

Quelle que soit la valeur de vérité des propositions P, Q, R les propriétés suivantes sont toujours vraies.

- (1) $\bar{P} \vee P$
- (2) $\overline{\bar{P}} \Leftrightarrow P$
- (3) $P \wedge P \Leftrightarrow P$
- (4) $P \wedge Q \Leftrightarrow Q \wedge P$. Commutativité de \wedge
- (5) $P \lor Q \Leftrightarrow Q \lor P$. Commutativité de \lor (6) $((P \land Q) \land R) \Leftrightarrow (P \land (Q \land R))$. Associativité de \land
 - (7) $((P \lor Q) \lor R) \Leftrightarrow (P \lor (Q \lor R))$. Associativité de \lor
 - (8) $P \lor P \Leftrightarrow P$
 - $(9) \ P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R))$
 - $(10)\ P \wedge (Q \vee R) \Leftrightarrow (P \wedge Q) \vee (P \wedge R)).$
 - $(11) \ P \land (P \lor Q) \Leftrightarrow P$
 - (12) $P \lor (P \land Q) \Leftrightarrow P$
 - (13) $\overline{P \wedge Q} \Leftrightarrow \overline{P} \vee \overline{Q}$ Lois de Morgan
 - (14) $\overline{P \vee Q} \Leftrightarrow \overline{P} \wedge \overline{Q}$ Lois de Morgan
 - $(15)\;(P\Rightarrow Q)\Leftrightarrow (\bar{P}\vee Q)\Leftrightarrow (\bar{Q}\Rightarrow \bar{P}).$

Preuve. On a

P	Q	\bar{P}	\bar{Q}	$P \wedge Q$	$\overline{P \wedge Q}$	$\bar{P} \vee \bar{Q}$
1	1	0	0	1	0	0
1	0	0	1	0	1	1
0	1	1	0	0	1	1
0	0	1	1	0	1	1

(14)

P	Q	\bar{P}	\bar{Q}	$\bar{P} \lor Q$	$P \Rightarrow Q$	$\bar{Q} \Rightarrow \bar{P}$
1	1	0	0	1	1	1
1	0	0	1	0	0	0
0	1	1	0	1	1	1
0	0	1	1	1	1	1

1.10 Les quantificateurs.

1.10.1 Quantificateur universel $\ll \forall \gg$

La relation pour tous x tel que P(x) est notée : $\forall x, P(x)$ se lit quel que soit x, P(x).

1.10.2 Quatificateur existentiel $\ll \exists \gg$

La relation il existe un x tel que P(x) est notée : $\exists x, P(x)$.

Remark 4 Il existe un et un seul élément x de E c'est à dire un unique x, P(x) est notée : $\exists ! x \in E, P(x)$

Example 9 Ecrire à l'aide des quantificateurs les propositions suivantes :

(1) P(x): La fonction f est nulle pour tous $x \in \mathbb{R}$ devient

$$P(x): \forall x \in \mathbb{R}, f(x) = 0.$$

(2) P(x) : la fonction f s'annule en x_0 devient

$$P(x): \exists x_0 \in \mathbb{R}, f(x_0) = 0.$$

Remark 5 Les relations $\forall x, \exists y, P(x,y)$ et $\exists y, \forall x, P(x,y)$ sont différentes, dans la première y dépend de x tandis que dans la seconde y ne dépend pas de x.

Example 10 (1) Tous les étudiants de la section 1 ont un groupe sanguin. \forall étudiant \in section $1, \exists$ un groupe sanguin, étudiant a un groupe sanguin. Vraie (cela veut dire que chaque étudiant a un groupe sanguin).

- (2) Il existe un groupe sanguin pour tous les étudiants de la section 1. \exists un groupe sanguin O^-, \forall l'étudiant de section 1, l'étudiant a O^- . Fausse (cela veut dire que tous les étudiants ont le même groupe sanguin ce qui est peut probable).
- (3) La proposition $(\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : x + y = 0)$ est vraie en effet $\forall x \in \mathbb{R}, \exists y = -x \in \mathbb{R}, x + (-x) = 0$.
 - (4) $\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, x^2 \geq y$ c'est vraie car $\exists y = 0, \forall x \in \mathbb{R}, x^2 \geq 0.$

1.11 Régles de négations

Soit P(x) une proposition,

- (1) la négation de $\forall x \in E, P(x) \text{ est } : \exists x \in E, \bar{P}(x).$
- (2) la négation de $\exists x \in E, P(x) \text{ est } : \forall x \in E, \bar{P}(x).$

Remark 6 (1) $\exists x \in E, \forall y \in E, P(x, y)$ veut dire que x est constante (fixé), il est indépendant de y qui varie dans E.

- (2) $\forall x \in E, \exists y \in P(x,y)$ veut dire y dépend x, par une certaine relation f telle que y = f(x).
- (3) On peut permuter entre deux quantificateurs de la même nature:

$$\forall x, \forall y, P(x, y) \Leftrightarrow \forall y, \forall x, P(x, y).$$

 $\exists x, \exists y, P(x,y) \Leftrightarrow \exists y, \exists x, P(x,y).$

Example 11 La négation de $\forall \epsilon > 0, \exists q \in \mathbf{Q}^+$ tel que : $0 < q < \epsilon$ est : $\exists \epsilon > 0, \forall q \in \mathbf{Q}^+$ tel que : $q \leq 0$ ou $q \geq \epsilon$

1.12 Méthodes de raisonnement

Pour montrer que $(P \Rightarrow Q)$ est vraie on peut utiliser ce qui suit :

1.12.1 Méthode de raisonnement direct

On suppose que P est vraie et on démontre que Q l'est aussi.

Example 12 Montrons que pour $n \in \mathbb{N}$ si n est pair $\Rightarrow n^2$ est pair.

On suppose que n est pair, i.e., $\exists k \in \mathbb{Z}, n = 2k$ donc

$$n.n = 2\left(2k^2\right) \Rightarrow n^2 = 2k'$$

on pose $k'=2k^2\in\mathbb{Z}$ ainsi $\exists k'\in\mathbb{Z}, n^2=2k', \, n^2$ est pair, d'où le résultat.

1.12.2 Méthodes du raisonnement par la contraposée

Sachant que $(P \Rightarrow Q) \Leftrightarrow (\bar{Q} \Rightarrow \bar{P})$, pour montrer que $P \Rightarrow Q$ on utilise la contraposée, c'est à dire il suffit de montrer que $\bar{Q} \Rightarrow \bar{P}$ de manière directe, on suppose que \bar{Q} est vraie et on montre que \bar{P} est vraie.

Example 13 Montrons que n^2 est impair $\Rightarrow n$ est impair. Par contraposée il suffit de montrer que si n est pair $\Rightarrow n^2$ est pair voir l'exemple précédent.

1.12.3Raisonnement par l'absurde

Pour montrer que R est une proposition vraie on suppose que \bar{R} est vrai et on tombe sur une contradiction (quelque chôse d'absurde), quand $R: P \Rightarrow Q$ est une implication par l'absurde on suppose que $\bar{R}: R \wedge \bar{Q}$ est vraie et on tombe sur une contradicition.

Example 14 (a) Montrer que $\sqrt{2}$ est un irrationnel.

(b) n est pair $\Rightarrow n^2$ est pair, par l'absurde: on suppose que n est pair et que n^2 est impaire contradiction

1.12.4Contre exemple

Pour montrer qu'une proposition est fausse il suffit de donner ce qu'on appelle un contre-exemple c'est à dire un cas particulier pour lequel la proposition est fausse.

Example 15 (n est un nombre pair) \Rightarrow (n² + 1 est pair), fausse car pour n = 2, 4 + 1 = 5 n'est pas pair, c'est un contre-exemple.

1.12.5Raisonnement par recurrence

Pour montrer que $P(n): \forall n \in \mathbb{N}, n \geq n_0, P_n(x)$ est vraie on suit les étapes suivantes :

- (a) On montre que $P(n_0)$ est vraie, (valeur initiale).
- (b) On suppose que P(n) est vraie à l'ordre n
- (c) On montre que P(n+1) est vraie à l'ordre n+1

Alors P est vrai pour tous $n \geq n_0$.

Example 16 Montrer $\forall n \in \mathbb{N}^* : 1 + 2 + \ldots + n = \frac{n(n+1)}{2}$

- (a) Pour n = 1, P(1) est vraie $1 = \frac{1(2)}{2}$.
- (b) On suppose que $1+2+\ldots+n=\frac{n(n+1)}{2}$ est vraie. (c) On montre que $1+2+\ldots+n+1=\frac{(n+1)(n+2)}{2}$ est vraie, $1+2+\ldots+n+1=1+2+\ldots+n+(n+1)=\frac{n(n+1)}{2}+(n+1)=\frac{(n+1)(n+2)}{2(n+1)}$ ainsi P est vraie à l'ordre n+1 alors $\forall n \in \mathbb{N}^* : 1 + 2 + \ldots + n = \frac{n(n+1)}{2}$ est vraie.

Exercices Corrigés 1.13

Exercice 1.1 Donner la négation des propositions suivantes:

- $(1) \ \forall x \in \mathbb{R}, \exists y \in \mathbb{R}, 2x + y > 3.$
- (2) $\forall \epsilon > 0, \exists \alpha > 0, |x| < \alpha \Rightarrow |x^2| < \epsilon.$
- (3) $\forall x \in \mathbb{R}, (x = 0 \lor x \in]2, 4]$).

(4) Il existe $M \in \mathbb{R}^+$, pour tous $n \in \mathbb{N}$ tel que : $|U_n| \leq M$.

Solution. (1) $P: \forall x \in \mathbb{R}, \exists y \in \mathbb{R}, 2x + y > 3$

- $\Leftrightarrow \bar{P}: \exists x \in \mathbb{I}, \forall y \in \mathbb{IR}, 2x + y \leq 3$
- (2) $P: \forall \epsilon > 0, \exists \alpha > 0, |x| < \alpha \Rightarrow |x^2| < \epsilon$
- $\Leftrightarrow \bar{P}: \exists \epsilon > 0, \forall \alpha > 0, |x| < \alpha \land |x^2| \ge \epsilon$
- (3) $P: \forall x \in \mathbb{R}, ((x = 0) \lor (x \in]2, 4]))$
- $\Leftrightarrow \bar{P}: \exists x \in \mathbb{R}, x \neq 0 \land (x \leq 2 \lor x > 4).$
- (4) P:il existe $M \in \mathbb{R}^+$, pour tous $n \in \mathbb{N}$ tel que : $|U_n| \leq M \Leftrightarrow \bar{P}$: pour tous $M \in \mathbb{R}^+$, il existe $n \in \mathbb{N}$ tel que : $|U_n| > M$.

Remark 7 (1) a < b veut dire $(a < b) \land (a \neq b)$ sa négation est : $(a > b) \lor (a = b)$ c'est à dire $a \ge b$.

(2) a < b < c veut dire $(a < b) \land (b < c)$ sa négation est : $(a \ge b) \lor (b \ge c)$.

Exercice 1.2 Exprimer les assertions suivantes à l'aide des quantificateurs et répondre aux questions :

- (1) Le produit de deux nombres pairs est-il pair?
- (2) Le produit de deux nombres impairs est-il impair?
- (3) Le produit d'un nombre pair et d'un nombre impair est-il pair ou impair?
- (4) Un nombre entier est pair si et seulement si son carré est pair?

Solution. (1) Le produit de deux nombres pairs est-il pair?

Soit $\mathbb{P} = \{2k/k \in \mathbb{Z}\}$ l'ensemble des nombres pairs.

 $\forall n, m \in \mathbb{P}, n \times m \in \mathbb{P}$?

Soient $n, m \in \mathbb{P}$, alors $\exists k_1 \in \mathbb{Z}/n = 2k_1, \exists k_2 \in \mathbb{Z}/m = 2k_2$ d'où $n \times m = 2(2k_1k_2) = 2k_3$, ainsi $\exists k_3 = 2k_1k_2 \in \mathbb{Z}/n \times m = 2k_3 \Rightarrow n \times m \in \mathbb{P}$ le produit est pair.

(2) Le produit de deux nombres impairs est-il impair?

Soit $I = \{2k + 1/k \in \mathbb{Z}\}$ l'ensemble des nombres impairs. $\forall n, m \in I, n \times m \in I$?

Soient $n, m \in I$, alors $\exists k_1 \in \mathbb{Z}/n = 2k_1 + 1, \exists k_2 \in \mathbb{Z}/m = 2k_2 + 1$ d'où $n \times m = 2(2k_1k_2 + k_1 + k_2) + 1 = 2k_3 + 1$, ainsi $\exists k_3 = 2k_1k_2 + k_1 + k_2 \in \mathbb{Z}/n \times m = 2k_3 + 1 \Rightarrow n \times m \in I$ le produit est impair.

(3) Le produit d'un nombre pair et d'un nombre impair est-il pair ou impair?

 $\forall n \in \mathbb{P}, m \in I, n \times m \in \mathbb{P}?, n \times m \in I ?$

Soient $n \in \mathbb{P}$, $m \in I$, alors $\exists k_1 \in \mathbb{Z}/n = 2k_1, \exists k_2 \in \mathbb{Z}/m = 2k_2 + 1$ d'où $n \times m = 2(2k_1k_2 + k_1) = 2k_3$, ainsi $\exists k_3 = 2k_1k_2 + k_1 \in \mathbb{Z}/n \times m = 2k_3 \Rightarrow n \times m \in I$ le produit est pair.

(4) Un nombre entier est pair si et seulement si son carré est pair? $\forall n \in \mathbb{Z}, n$ pair $\Leftrightarrow n^2$ est pair. Montrons que n pair $\Rightarrow n^2$ est pair.

Soit $n \in \mathbb{P}$, alors $\exists k_1 \in \mathbb{Z}/n = 2k_1$, d'où $n^2 = n.n = 2(2k_1^2)$, ainsi $\exists k_2 = 2k_1^2 \in \mathbb{Z}/n^2 = 2k_2$ il est pair.

Montrons que n^2 pair $\Rightarrow n$ est pair.

Par contraposée, on doit montrer que n est impair $\Rightarrow n^2$ est impair, c'est vrai cas particulier de la question 2), ainsi la proposition n^2 pair $\Rightarrow n$ est pair est vérifiée, de plus n pair $\Rightarrow n^2$ est pair $\Rightarrow \forall n \in \mathbb{Z}, n$ pair $\Leftrightarrow n^2$ est pair est vraie.

Exercice 1.3 Indiquer lesquelles des propositions suivantes sont vraies et celles qui sont fausses.

- $(1) \ \forall x \in \mathbb{R}, \exists y \in \mathbb{R} : 2x + y > 0.$
- $(2) \ \exists x \in \mathbb{R}, \forall y \in \mathbb{R} : 2x + y > 0.$
- (3) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R} : 2x + y > 0.$
- $(4) \ \exists x \in \mathbb{R}, \exists y \in \mathbb{R} : 2x + y > 0.$
- (5) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R} : y^2 > x$.
- (6) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : (2x + y > 0 \text{ ou } 2x + y = 0).$
- (7) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : (2x + y > 0 \text{ et } 2x + y = 0).$

Solution. (1) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : 2x + y > 0$, est vraie car $\forall x \in \mathbb{R}, \exists y = -2x + 1 \in \mathbb{R} : 2x + y > 0$.

- (2) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R} : 2x + y > 0$, est fausse car, sa négation $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : 2x + y > 0$
- $2x + y \le 0$, est vraie $\forall x \in \mathbb{R}, \exists y = -2x \in \mathbb{R}; 2x + y \le 0$
- (3) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R} : 2x + y > 0$, est fausse car sa négation $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}$:
- $2x + y \le 0$ est vraie, en effet $\exists x = 0, \exists y = 0; 0 \le 0$.
- (4) $\exists x \in \mathbb{R}, \exists y \in \mathbb{R} : 2x + y > 0$, vraie car $\exists x = 0, \exists y = 1; 1 > 0$.
- (5) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R} : y^2 > x$, vraie $\exists x = -1 \in \mathbb{R}, \forall y \in \mathbb{R} : x^2 > y$.
- (6) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : (2x+y>0 \text{ ou } 2x+y=0)$, Vraie car $\forall x \in \mathbb{R}, \exists y=-2x \in \mathbb{R} : 2x-2x=0$ (même si $2x+y \not> 0$) ou bien on peut dire que $\forall x \in \mathbb{R}, \exists y=-2x+1 : 2x-2x+1=1>0$ (même si $2x+y \neq 0$).
- (7) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : (2x + y > 0 \text{ et } 2x + y = 0)$ est fausse car on ne peut jamais avoir (2x + y > 0 et 2x + y = 0) en même temps.

Exercice 1.4 Par l'absurde montrer que :

- (1) $\sqrt{2} \notin \mathbb{Q}$.
- (2) $\forall n \in \mathbb{N}, n^2 \text{ pair} \Rightarrow n \text{ est pair}.$

Solution. (1) Par l'absurde on suppose que $\sqrt{2}$ est un rationnel i.e., $\exists a, b \in IN \ a \land b = 1, /\sqrt{2} = \frac{a}{b} \Rightarrow \frac{a^2}{b^2} \Rightarrow 2b^2 = a^2$ alors 2 divise a, a est pair $\exists k \in \mathbb{N}/n = 2k$, ainsi

$$2b^2 = 4k^2 \Leftrightarrow b^2 = 2k^2,$$

on déduit que b est pair aussi or a, b sont premier entre eux contradiction, ce que nous avons supposé au départ est faux c'est à dire $\sqrt{2} \notin \mathbf{Q}$.

(2) Soit $n \in \mathbb{IN}$ par l'absurde supposons que n^2 est pair et n est impair, alors $\exists k \in \mathbb{Z}$ tel que n = 2k + 1 d'où $n^2 = 2(2k^2 + 2k) + 1 = 2k' + 1, k' = (2k^2 + 2k) \in \mathbb{Z}, n^2$ est impair contradiction car n^2 est pair. Ce que nous avons supposé au départ est faux c'est à dire $\forall n \in \mathbb{N}, n^2$ pair $\Rightarrow n$ est pair est vraie.

Exercice 1.5 Par contraposée, montrer que

- (1) Si $(n^2 1) n'$ est pas divisible par $8 \Rightarrow n$ est pair.
- (2) $(\forall \epsilon > 0, |x| < \epsilon) \Rightarrow x = 0$

(1) Montrons que sa contraposée : $(n \text{ est impair} \Rightarrow (n^2 - 1) \text{ est divisible par } 8)$ Solution. est vraie. $n^2 - 1 = 4k^2 + 4k = 4k(k+1)il$ suffit de montrer que k(k+1) est pair.

Montrons que k(k+1) est pair on a deux cas :

Si k est pair alors k+1 est impair donc le produit d'un nombre pair et d'un nombre impair est pair voir exercice 2 question (3).

Si k est impair, alors k+1 est pair donc le produit est pair c'est le même raisonnement, (il faut savoir que le produit de deux nombre consécutifs est toujours pair).

Ainsi k(k+1) est pair $\exists k' \in \mathbb{Z}'/k(k+1) = 2k', d'$ ò $n^2 - 1 = 4(2k') = 8k' \Rightarrow n^2 - 1$ est divisible par 8.

(2) Montrons que sa contraposée: $(x \neq 0 \Rightarrow (\exists \epsilon > 0, |x| > \epsilon))$ est vraie.

Exercice 1.6 Montrer par récurrence que

$$\forall n \in \mathbb{N}^* : 1^3 + 2^3 + \ldots + n^3 = \frac{n^2(n+1)^2}{4}$$

 $\forall n \in \mathbb{N}^*, 4^n + 6n - 1$ est un multiple de 9.

∘Montrons que $\forall n \in \mathbb{N}^* : 1^3 + 2^3 + \ldots + n^3 = \frac{n^2(n+1)^2}{4}$. Solution.

- (1) Pour n = 1 on a : $1^3 = \frac{1^2(2)^2}{4} = 1$, P(1) est vraie. (2) On suppose que : $1^3 + 2^3 + \ldots + n^3 = \frac{n^2(n+1)^2}{4}$ est vraie. (3) On montre que $1^3 + 2^3 + \ldots + (n+1)^3 = \frac{(n+1)^2(n+2)^2}{4}$ est vraie. En utilisant p(n) on obtient:

betient:

$$1^{3} + 2^{3} + \ldots + (n+1)^{3} = 1^{3} + 2^{3} + \ldots + n^{3} + (n+1)^{3} = \frac{n^{2}(n+1)^{2}}{4} + (n+1)^{3}$$

$$1^{3} + 2^{3} + \ldots + (n+1)^{3} = \frac{n^{2}(n+1)^{2} + 4(n+1)^{3}}{4} + (n+1)^{3} = \frac{(n+1)^{2}(n^{2} + 4n + 4)}{4}$$

$$1^{3} + 2^{3} + \ldots + (n+1)^{3} = \frac{(n+1)^{2}(n^{2} + 2)^{2}}{4}.$$

Ainsi P(n+1) est vraie, alors $\forall n \in \mathbb{N}^* : 1^3 + 2^3 + \ldots + n^3 = \frac{n^2(n+1)^2}{4}$.

 \circ Montrons que $\forall n \in \mathbb{N}^*, 4^n + 6n - 1$ est un multiple de 9, c'est à dire $\forall n \in \mathbb{N}^*, \exists k \in$ $\mathbb{Z}/4^n + 6n - 1 = 9k$ (1) Pour n = 1 on a : $\exists k = 1 \in \mathbb{Z}, 4 + 6 - 1 = 9 = 9(1), P(1)$ est vraie.

(2) On suppose que : $\forall n \in \mathbb{N}^*, \exists k \in \mathbb{Z}/4^n + 6n - 1 = 9k$ est vraie.

(3) On montre que : $\forall n \in \mathbb{N}^*, \exists ?k' \in \mathbb{Z}/4^{n+1} + 6(n+1) - 1 = 9k'.$ est vraie.

$$4^{n+1} + 6(n+1) - 1 = 4.4^{n} + 6n + 6 - 1$$

$$= (9-5)4^{n} + 6n + 5$$

$$= 9.4^{n} - 5.4^{n} - 5(6n) + 36n + 5$$

$$= -5(4^{n} + 6n - 1) + 9.4^{n} + 36n, \text{ en utilisant } P_{n}$$

$$= -5(9k) + 9.4^{n} + 9.(4n) = 9(-5k + 4^{n} + 4n)$$

$$\Rightarrow \exists k' = -5k + 4^{n} + 4n \in \mathbb{Z}4^{n+1} + 6(n+1) - 1 = 9k'.$$