Date: December 2013

4

il

11

2
g
g
E

o
l

é

'

OBJECT MANAGEMENT GROUP

Business Process Model and Notation
(BPMN)

Version 2.0.2

NOTE: Version 2.0.2 contains a minor change to Clause 15.

OMG Document Number: formal/2013-12-09
Standard document URL: http://www.omg.org/spec/BPMN

Machine consumable files:
http://www.omg.org/spec/BPMN/20100501/BPMN20.cmof
http://www.omg.org/spec/BPMN/20100501/BPMNDI.cmof
http://www.omg.org/spec/BPMN/20100501/DC.cmof
http://www.omg.org/spec/BPMN/20100501/DIl.cmof
http://www.omg.org/spec/BPMN/20100501/BPMN20.xsd
http://www.omg.org/spec/BPMN/20100501/BPMNDI.xsd
http://www.omg.org/spec/BPMN/20100501/DC.xsd
http://www.omg.org/spec/BPMN/20100501/DI.xsd
http://www.omg.org/spec/BPMN/20100501/Semantic.xsd
http://www.omg.org/spec/BPMN/20100502/Infrastructure.cmof
http://www.omg.org/spec/BPMN/20100502/Semantic.cmof

Copyright © 2010, Axway

Copyright © 2010, BizAgi

Copyright © 2010, Bruce Silver Associates
Copyright © 2010, IDS Scheer

Copyright © 2010, IBM Corp.

Copyright © 2010, MEGA International
Copyright © 2010, Model Driven Solutions
Copyright © 2013, Object Management Group
Copyright © 2010, Oracle

Copyright © 2010, SAP AG

Copyright © 2010, Software AG

Copyright © 2010, TIBCO Software
Copyright © 2010, Unisys

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification, and
to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright
notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or

mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of
the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

IMM®, MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are
registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified
Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™,
XMI Logo™, CWM™, CWM Logo™, [IOP™ MOF™ | OMG Interface Definition Language (IDL)™ , and OMG
SysML™ are trademarks of the Object Management Group. All other products or company names mentioned are used for
identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.
Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes the
testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this
process we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they
may find by completing the Issue Reporting Form listed on the main web page http.//
www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/report issue.htm).

Table of Contents

Preface ... XXVil
(S Lo o] o 1= TP 1
LI C 1T =T = | 1

2 ©70] o) o] 1 1F=1 o (o1 TR 1
P B € 1= o 1= > R 1

2.2 Process Modeling Conformanceccccoeeiieeeiieiieiieeeeeeecee e 2

2.2.1 BPMN ProCess TYPES ..ccoiiiiieiieieieeeeeeeee s s e e e e e e e e e e e et e e e e e e e as 2

2.2.2 BPMN Process EIEmMENtScoooiiiiiiii e 3

2.2.3 ViSUAl APPEAIANCEuiieieiiei e e eeee ettt a e s eeeaeaeenanns e ns 8

2.2.4 Structural CoNfOrMANCEooiiiiiiiiiiiiccceee e e e e e e 8

2.2.5 ProCess SEMANTICSccccuuuiiiiiiiiiie e e ettt e 9

2.2.6 Attributes and Model ASSOCIAtIONSueuiiiiiiiii e 9

2.2.7 Extended and Optional EIEMENEScccevviiiiiiiiiiciece e 9

2.2.8 Visual INterChangecccooieii i e e 10

2.3 Process Execution Conformancecccooovviiiiiiiiiiiii e, 10

2.3.1 EXECULiON SEMANTICSuuviiiiiiiiiiii e 10

2.3.2 Import of Process Diagramscccooiiiiiiiiiiiiiieee s ciiiie e e e sneeee e snneeeas 10

2.4 BPEL Process Execution Conformancecccoeeevveeeeiiieeeieieeeeiieeeee, 10

2.5 Choreography Modeling Conformancecccccceeeeeiiiiiiiiiiiiiinn, 10

2.5.1 BPMN Choreography TYPES ...occceeeiiiiiieiiiiieeiee et e e e e e e st e e e e e e e e e e e seanaresaeees 10

2.5.2 BPMN Choreography EIementsc.uuvviiiiiiiieeiic e 11

2.5.3 ViSUAl APPEAIANCEcceiiiiiei ettt et e e aaas 11

2.5.4 Choreography SEmaNntiCsccceeiiiiiiiiiiieeeeee e 11

2.5.5 Visual INterChangecccoooiiiiii i e 11

2.6 Summary of BPMN Conformance TYPescceeeriiiiiiiiiiiiiiiiiiiiiiis 12

3 Normative ReferenCesScoooveuiiiiiiiii e, 12
T I CT=T o 1Y o= | TR 12

3.2 NOIMMALIVE .oeeeiiiee e e e e e e e e e aeees 13

3.3 NON-NOrMALtIVEeeeeiii e 13

4 Terms and Definitionscooovvniiiiiii e, 16
5 SYMDOIS .o 16
6 Additional Informationooiiiii e, 16
6.1 CONVENLIONS ... e e e e e e e e e e e n e nnes 16

6.1.1 Typographical and Linguistic Conventions and Stylecccccoviiiiiiieninenn. 16

6.1.2 ADDIEVIatioNSouviiiiiiiiii e ————— 17

6.2 Structure of this Document ... 17

6.3 ACKNOWIEAgMENLS ..o 17

Business Process Model and Notation (BPMN), v2.0.2 iii

PO A=Y a VA= AR 19

T B CT=T 0 1= - | PP UPPPPUPR 19
7.2 BPIMN SCOPE ...covvieieeieeeee ettt e e e eaaaans 20
7.2.1 USES Of BPMN ...ttt e e s e e e e et e e e e e nneeas 21

7.3 BPMN EIEMENLS ..oee e 25
7.3.1 Basic BPMN Modeling Elements ..o 26
7.3.2 Extended BPMN Modeling Elements ... 29

7.4 BPMN Diagram TYPESccouiiiiiiiiiiiiiiie ettt 39
7.5 Use of Text, Color, Size, and Lines in a Diagramccccoovvvvvninnnnnnn. 39
7.6 Flow Object Connection RUIEScccuiiiiiiiiiiiiiiieeeeee s 40
7.6.1 Sequence Flow Connections RUIEScoooiiiiiiiiiiiiiiiiiiiieeeeeeeee e 40
7.6.2 Message Flow Connection RUIESooiiiiiiiiiiiiiiiie e 41

7.7 BPMN EXtensibilityccoooiiiiiiiiiiiiiii e 42
7.8 BPMN EXAMPIE ..oeeiii e 43
8 BPMN Core Structurecooooviiiiie e, 47
8.1 GENEIAI ... 47
8.2 INfrastruCtureooooimiii e 49
LS 02 I = {1 T1 (o] 1= U 49

LS 02 1] o S 51
8.2.3 Infrastructure Package XML SChemas...........ccccooiiiiiiiiiiiiiie e 52

8.3 FOoUNAAtioN ..o 53
8.3.1Base Element ... 54
8.3.2 DOCUMENTALION ..o 54
8.3.3 EXIENSIDIITY ..eeeeieiiiiiiie e 55
8.3.4 External RelationShipS ...ccoooo oo oo 59
8.3.5 ROOt EIEMENT ... 62
8.3.6 Foundation Package XML SChemasccccccceeeeiiiiiiiiiiiiiieeeee e 62

8.4 CommoON EIemMeENtSoooniiiii e 64
S oy N 1] = Lo PR 64

S A ©70 1y =1 =1 (o] o PR 72
S B =l o PR PR 79
8.4.4 ESCAIALION ... e e 80
845 EVENES .o a e 81
8.4.6 EXPIrESSIONS ..uuuuuiiieie i et e ——————————————————— 82
8.4.7 FIOW EIEMENT ... e e e e e e e e 84
8.4.8 Flow Elements CONtAINEToooiiiiiiiiiei et e e e 86
8.4.9 GAlEBWAYS ..ueeeiiieiiiieiee ettt e e e e e e e e e e e e e e eeeeeanrees 88
8.4.10 tem DEfiNItIONeeiiiii e 89
g B I AV 1= Vo [PP UPPRPRP 9
8.4.12 RESOUICESeeeiiiiiieiie e ettt et e e e e ettt et e e e e e e e s e e e e nbbnteeeeeeeaaaaeeeaeaaannnes 93
8.4.13 SEQUENCE FIOW ..o e e e 95
8.4.14 Common Package XML SCheMASccccueiiiiiiiiiiiie it 98

8.5 SEIVICES ..ottt et aaaas 101
S T I 1 (= =T USSR 102
8.5.2 ENAPOINT ...ttt e e e e e e 103
LSRRI I @ o T=T =1 1 o] o TSP 103
8.5.4 Service Package XML SChemasoooiiiiiiiiiiiiiie e 104

Business Process Model and Notation (BPMN), v2.0.2

O CollabOrationoeeee e 107

O I I €T o =Y = 107
9.2 Basic Collaboration Conceptscooeeiiiiiiiiiiiiiieccce e 110
9.2.1 Use of BPMN Common EIEMENLScoooiiiiiiiiieiicceeeee e 110

9.3 Pool and PartiCipantccoooiiiiiie e 111
9.3.1 PartiCIPantSueueiiiiiii e ————— 113
0.8.2 LANES .o e aee 119

9.4 MeSSAQE FIOW ...cooiiiiiiiiiie e 119
9.4.1 INteracCtion NOGEooiiiiiieeeeeeeeee et 122
9.4.2 Message FIOW ASSOCIAtIONSoiiuiiiiiiiiiiiie e 122

S I 070 01 V/=T £F= 11 0] 1< 123
9.5.1 ConVersation NOGEccccooiiiiiiiiiiiiieeeeeee e 127
9.5.2 CONVEISALION ...vvtitiiiiiiie eeeae bbb ns 129
9.5.3 SUD-CONVEISALIONuuuiiiiieiiiiie ettt et 129
9.5.4 Call CONVEISALIONvuviuiiiieeieeeiee et eeae e aaaanns 130
9.5.5 GIlobal CoNVEISAtioNcccccoiiiiiiiiiieeeeeeeeeeee e 131
9.5.6 CoNVErsation LiNKccoiiiiiiiiiiiiiiee e e e e e e e e e e e e e e e ee e 131
9.5.7 Conversation ASSOCIAtIoNoooiiiiiiiieiieecee e 134
9.5.8 COITEIALIONS ...eevvveiiitieee ————- 135

9.6 Process within Collaboration ... 136
9.7 Choreography within Collaborationccccccceiiiiiiiiiiiiieeee, 136
9.8 Collaboration Package XML Schemascccccceeeiiiieeiiiiiiiiiieieeeeei, 138
TO PrOCESS ...t a e e e 143
O TR I CT=T o= = | 143
10.2 Basic Process CONCEPLS ...ccovveiiiiiiiiiiiiiiieee et 147
10.2.1 Types of BPMN ProCeSSEScoiiiiiiiiiiiiiiiiie et 147
10.2.2 Use of BPMN Common EIEMENtSeoiiiiiiiieeeeeeeee e 148
TO.3 ACHVITIES oo e e e ean s 149
10.3.1 Resource ASSIGNMENTccooiiiiiiiieeceeeeeeee e e e e e e e e e e e e e e e 152
TO.3.2 PEITOMMET ...ttt e rea et annnns 154
(L T 7= =] (SRR 154
10.3.4 HUMAN INtEracCtioNSoouuiiiiiiiiiii e e aeas 163
T0.3.5 SUD-PIrOCESSESucoieiiiieii ettt e e e e e e e e e e e e e e e e s 171
10.3.6 Call ACHVILY ..oveeeeiieiiie et 182
(LR R €1 lo) o T=T I ==Y R 186
10.3.8 LOOP CharacteriStiCSciiiiiiiieiiiiiiiiiieieeeee e 188
10.3.9 XML Schema for AGHVItIEScooeiiiiiiiieeeeeccee e 194
10.4 HemsS and Dataooeeiiieiie e 202
10.4.1 Data MOdeliNg ...coeoiiiieiiii et e e 202
10.4.2 Execution Semantics for Datauuvuviiiiiiiiiiieieeeeeeeeeeeeee 224
10.4.3 Usage of Data in XPath EXPressions ... 225
10.4.4 XML Schema for Dataoovvvviiiiiiiiieeeeeee et 228
TO.5 BVENES o 232
O T I 70T (o= o £ T PRSP 233
TO5.2 STArt EVENT ..o e e e e 237
TOL.BENA EVEND ..ot e e 245
10.5.4 Intermediate EVENtooveeiiieeeee e e 248

Business Process Model and Notation (BPMN), v2.0.2 v

Vi

10.5.5 EVent DEefiNItiONSoeeiiiiiieee et e e e e 259

10.5.6 HaNdliNg EVENLS ...t 274
T0.5.7 SCOPES oottt e e e e e e e e e e e e e e e aaaaaas 280
10.5.8 Events Package XML SChEMAScccuviiiiiiiiiiiee i 281
10.6 GAEWAYS ...ooiiiiiiie e a e 286
10.6.1 Sequence Flow Considerationscoooiiiiiiioiiiiiieee e 288
10.6.2 EXCIUSIVE GAtEWAYcooiiiiiiiiii ittt 289
10.6.3 INCIUSIVE GAEWAYeeiiiiiiiiiiiee ettt 291
10.6.4 Parallel GateWaycooiiiiiiiiiiii s 292
10.6.5 ComMPIEX GAEWAYeviiiiiiiiiiiie et 294
10.6.6 Event-Based GateWaycooooiiiiiiiiiiiiiiiie e 296
10.6.7 Gateway Package XML SChemascceeeiiiiiiiiiiiiiiiiee e 300
10.7 COMPENSALIONccoiiiiiiii e e e 301
10.7.1 Compensation HaNAIErcooiiiiiiiiie e 302
10.7.2 Compensation THGQEINGcccoiiiiiiiiiieeeeee e e e e e e e eeees 303
10.7.3 Relationship between Error Handling and Compensationccccccvvveeeeennn. 304
(R T = T 304
10.9 Process Instances, Unmodeled Activities, and Public Processes 308
1010 AUAITING et e e e e e e e 310
10.11 MONIOMING .. e e e e e e e 310
10.12 Process Package XML Schemascooooiiiiiiiiiiiiiiiiiiicecceeeeee 311
11 Choreographycoooe i e 315
I O B =T =T | PSR 315
11.2 Basic Choreography Concepts ... 317
(PR T I | - TSR 319
11.4 Use of BPMN Common Elementsoouieeiiiiiiiieiieeeeieeeeeeeeeen 319
11.4.1 SEQUENCE FIOW ...ueiiiiiiiiiiiee e e e e e ee e 320
T1.4.2 ATEIfACES .ot 321
11.5 Choreography ACHVItIESoooiiiiiiiiiiiiiiieee e 321
11.5.1 Choreography TasKcccuuiiiiiiiiiiie ettt e e e e e e e e s snneaeeeeean 323
11.5.2 SUD-ChOre0ographiyooii i e seaeee e 328
11.5.3 Call Choreographyccooi i e e e seaaeeeeas 333
11.5.4 Global Choreography TasKcccccveiiiiiiiiiiiiieee e seeeee s 335
11.5.5 LOOPING ACHVILIESeeeiiiiiiieie ittt 335
11.5.6 The Sequencing of ACtIVILIEScooiiiiiiiii i 335
(T = o | € 339
T S =T =Y o (SR 339
11.6.2 Intermediate EVENTSooooeiiiiiiiee e 340
T1.8.3 ENA EVENLS ..o e e e e e e e aeas 343
117 GAEWAYS .oeeeeiiiie et a e e 344
11.7.1 EXCIUSIVE GAEWAYoeeeiiiiiiiiiiii it e e e 344
11.7.2 Event-Based GateWayoooociiiiiiiiiiieice e 349
11.7.3 INCIUSIVE GAIEBWAYeeiiiiiieeeei e e e e e e e e e e e eeeaaeas 351
11.7.4 Parallel GatE@WaYcuueeiiiiiiiiiiiii it e e e e e e e s e e s aeaees 358
11.7.5 COMPIEX GAIEWAYvvviiiiiiiieee e ettt e e e e e e e e e e e e e e e e aeeeees 360
11.7.6 ChainiNg GatEWaAYSccoiiiiieiiiiiiiiciee e e e e e e e e e e e eeeees 361
11.8 Choreography within Collaboration ..., 361

Business Process Model and Notation (BPMN), v2.0.2

T1.8.1 PartiCiPantscccoooiiiiii e ———————— 361

11.8.2 SWIMIANESoiieiiiiiiie et e e e e e e e et e e e e et e e e e e e nnbeeaeeeannreeas 362
11.9 XML Schema for Choreographyccccccuvviviiiiiiiiiiiiiieeeeeee s 363
12 BPMN Notation and Diagramscccoooveiiiiiiiiiiiiiieeeeceeeeeeeeen, 367
12.1 BPMN Diagram Interchange (BPMN DI) ..., 367
2 Tt TS ToTo o Y EPUPPRRRIN 367
12.1.2 Diagram Definition and Interchangecccccceeeeeiiiiiiiiiieeeeee e 367
12.1.3 How to Read this ClauSecooiiiiiiiiiiiiiie e 368
12.2 BPMN Diagram Interchange (DI) Meta-modelcccccciiiinnins 368
12.2.1 OVEIVIEW ...ttt ettt e ettt e e ettt e e e et e e e s e ntte e e e e enstaeeeeennnteneeeennnees 368
12.2.2 ADSract SYNtaX ... 368
12.2.3 Classifier DESCHPLONScoiiiiiiiiiiiiiceee e 370
12.2.4 Complete BPMN DI XML Schemaccccoiiiiiiiiiiiici e 378
12.3 Notational Depiction Library and Abstract Element Resolutions 380
12.3.1 LADEIS ...veieiee et 381
12.3.2 BPMNSRAPEooiiiiiiiee ettt 381
12.3.3 BPMNEGAQE ...ociviiiiiiie et ettt ettt et e e eaae e nes 410
12.4 EXAMPIE(S) wrrrrunitiiiiiie ettt e e 412
12.4.1 Depicting Content in @ SUDb-Processcccoveeeiiiiiiiiiiiiceeee e 412
12.4.2 Multiple Lanes and Nested Lanesuuuueiiiiiiiiiiiiii e 417
12.4.3 Vertical Collaborationcoociiiiriiiiiiie e 418
D O] 1Y/ T =T (1] I PSPPI 419
12.4.5 Choreographyocooiiiieiieeee e e e e e 421

13 BPMN Execution Semanticscccooeiiiiiiiiiiiiie e, 425
L T B C 1= o= = | LR 425
13.2 Process Instantiation and Terminationcc.ooooviiiiiiie e, 426
13.3 ACHVILIES oo 426
13.3.1 Sequence Flow Considerationscccccviiiiiiiieeee e 427
13.3.2 ACHVITY et nae e 428
(TR TR T 1=]SSP 430
13.3.4 SUb-Process/Call ACHVILYeeeiiiiiiiieiiiiiiceeee e 430
13.3.5 Ad-HOC SUD-PIrOCESSoeiiiiiiiiiiiie e 431
13.3.6 LOOP ACHVILY .oeeeeeeeiiiie ettt ettt e st e et e e st e e snrae e s ennee e e 432
13.3.7 Multiple InStances ACLIVILYcooeiiiiiieeeeee e 432
13.4 GAIEWAYS ...t 434
13.4.1 Parallel Gateway (Fork and JOiN)coooiiiiiiiiiiiie e 434
13.4.2 Exclusive Gateway (Exclusive Decision (data-based) and Exclusive Merge) ... 434
13.4.3 Inclusive Gateway (Inclusive Decision and Inclusive Merge)ccccceeeenneee. 435
13.4.4 Event-based Gateway (Exclusive Decision (event-based))c.cccccceveernnnen. 437
13.4.5 Complex Gateway (related to Complex Condition and Complex Merge) 437
135 EVENES oo 439
LR TR T IS = g N =T o | TSP 439
13.5.2 Intermediate EVENLSoeeiiiiiiiiie s 440
13.5.3 Intermediate Boundary EVENESoooiiiiiiiiiiii e 440
13.5.4 EVENE SUD-PIrOCESSESuvviiiiiiiiiieiee et a e e 440
13.5.5 COMPENSALION ...t 441
1356 ENA EVENES oo e 443

Business Process Model and Notation (BPMN), v2.0.2 vii

viii

14 Mapping BPMN Models to WS-BPELccoooiiiiie. 445

L B C T T = | 445

14.2 Basic BPMN-BPEL Mappingccccceeeiiiiiiiiiiieeeeeeeeie e 446

T4.2.1 PrOCESS ..ooiiiiieieeeeeeeet e e e e e e e e e e e e e e e e et et e ettt ee e teea it e aeaeaaeaeaaeaaaeeeeeeeaeraarnra 447

14.2.2 ACHVITIES .ottt e s e e e e e e e e e e e e e e e e e e eeeaeeseeannnnnnanas 448

L B Y =Y o | (PP 455

14.2.4 Gateways and SequeENCE FIOWSccooiiiiiiiiiiiiieeeeee e 461

L2 T o F= T To | g To TN = | = PSR 465

14.3 Extended BPMN-BPEL Mappingccccoeeeeiieiiiieeeeee e 469

T4.3. 1 ENA EVENES ..ot a e e e e ———— 469

14.3.2 Loop/Switch Combinations From a Gatewaycccccccevviiieeeiiiiiiene i 469

14.3.3 INtErleaved LOOPSoovviiiiiiiiicee et e e e e e e e e e e e e e e e e e e e 470

14.3.4 INfINItE LOOPS ...t e e e e e e 473

14.3.5 BPMN Elements that Span Multiple WSBPEL Sub-Elementscccc.......... 473

15 Exchange Formats ... 475
15.1 Interchanging Incomplete Models ..., 475

15.2 Machine Readable Files ..., 475

15.3 XSO D e 475

15.3.1 DOCUMENE STIUCLUIE ...ooiiiiiiiiiiice et 475

15.3.2 References within the BPMN XSDcoooiiiiiiiiiieeeeee e, 476

ST | 477

15.5 XSLT Transformation between XSD and XMIccccceeeeeeeiiinnnin. 477

Annex A - Changes from v1.2.........oooiiiii e 479
Annex B - Diagram Interchange..........cccooooviiiiiiii e 481
ANNEX C - GlOSSANY ...cceuiiiieeeee e 499

Business Process Model and Notation (BPMN), v2.0.2

List of Figures

Figure 7.1 — Example of a private Business Process 21

Figure 7.2 — Example of a public Process 22

Figure 7.3 — An example of a Collaborative Process 23

Figure 7.4 — An example of a Choreography 23

Figure 7.5 — An example of a Conversation diagram 24

Figure 7.6 — An example of a Collaboration diagram with black-box Pools 43
Figure 7.7 — An example of a stand-alone Choreography diagram 44
Figure 7.8 — An example of a stand-alone Process (Orchestration) diagram 45
Figure 8.1 — A representation of the BPMN Core and Layer Structure 47
Figure 8.2 — Class diagram showing the core packages 48

Figure 8.3 — Class diagram showing the organization of the core BPMN elements 49
Figure 8.4 — Definitions class diagram 50

Figure 8.5 — Classes in the Foundation package 53

Figure 8.6 — Extension class diagram 55

Figure 8.7 — External Relationship Metamodel 60

Figure 8.8 — Artifacts Metamodel 64

Figure 8.9 — An Association 65

Figure 8.10 — The Association Class Diagram 65

Figure 8.11 — A Directional Association 66

Figure 8.12 — An Association of Text Annotation 66

Figure 8.13 — A Group Artifact 67

Figure 8.14 — A Group around Activities in different Pools 67

Figure 8.15 — The Group class diagram 68

Figure 8.16 — A Text Annotation 69

Figure 8.17 — The Correlation Class Diagram 74

Figure 8.18 — Error class diagram 79

Figure 8.19 — Escalation class diagram 80

Figure 8.20 — Event class diagram 82

Figure 8.21 — Expression class diagram 83

Figure 8.22 — FlowElement class diagram 85

Figure 8.23 — FlowElementContainers class diagram 87

Figure 8.24 — Gateway class diagram 88

Figure 8.25 — ItemDefinition class diagram 90

Figure 8.26 — A Message 91

Figure 8.27 — A non-initiating Message 91

Figure 8.28 — Messages Association overlapping Message Flows 92
Figure 8.29 — Messages shown Associated with a Choreography Task 92
Figure 8.30 — The Message class diagram 93

Figure 8.31 — Resource class diagram 94

Figure 8.32 — A Sequence Flow 95

Figure 8.33 — A Conditional Sequence Flow 95

Figure 8.34 — A Default Sequence Flow 96

Business Process Model and Notation (BPMN), v2.0.2

Xi

Figure 8.35 — SequenceFlow class diagram 96

Figure 8.36 — The Service class diagram 102

Figure 9.1 — Classes in the Collaboration package 108

Figure 9.2 — A Pool 111

Figure 9.3 — Message Flows connecting to the boundaries of two Pools 112
Figure 9.4 — Message Flows connecting to Flow Objects within two Pools 112
Figure 9.5 — Main (Internal) Pool without boundaries 113

Figure 9.6 — Pools with a Multi-Instance Participant Markers 113

Figure 9.7 — The Participant Class Diagram 114

Figure 9.8 — A Pool with a Multiple Participant 116

Figure 9.9 — The Participant Multiplicity class diagram 116

Figure 9.10 — ParticipantAssociation class diagram 118

Figure 9.11 — A Message Flow 119

Figure 9.12 — A Message Flow with an Attached Message 120

Figure 9.13 — A Message Flow passing through a Choreography Task 120
Figure 9.14 — The Message Flow Class Diagram 121

Figure 9.15 — MessageFlowAssociation class diagram 123

Figure 9.16 — A Conversation diagram 124

Figure 9.17 — A Conversation diagram where the Conversation is expanded into Message Flows 124
Figure 9.18 — Conversation diagram depicting several conversations between Participants in a related domain 125
Figure 9.19 — An example of a Sub-Conversation 126

Figure 9.20 — An example of a Sub-Conversation expanded to a Conversation and Message Flow 126
Figure 9.21 — An example of a Sub-Conversation that is fully expanded 127
Figure 9.22 — Metamodel of ConversationNode Related Elements 128
Figure 9.23 — A Communication element 129

Figure 9.24 — A compound Conversation element 130

Figure 9.25 — A Call Conversation calling a GlobalConversation 130
Figure 9.26 — A Call Conversation calling a Collaboration 130

Figure 9.27 — A Conversation Link element 131

Figure 9.28 — Conversation links to Activities and Events 132

Figure 9.29 — Metamodel of Conversation Links related elements 133
Figure 9.30 — Call Conversation Links 134

Figure 9.31 — The ConversationAssociation class diagram 135

Figure 9.32 — An example of a Choreography within a Collaboration 137
Figure 9.33— Choreography within Collaboration class diagram 138

Figure 10.1 — An Example of a Process 143

Figure 10.2 — Process class diagram 144

Figure 10.3 — Process Details class diagram 145

Figure 10.4 — Example of a private Business Process 148

Figure 10.5 — Example of a public Process 148

Figure 10.6 — Activity class diagram 149

Figure 10.7 — The class diagram for assigning Resources 152

Figure 10.8 — A Task object 154

Figure 10.9 — Task markers 155

Figure 10.10 — The Task class diagram 155

Figure 10.11 — A Service Task Object 156

Figure 10.12 — The Service Task class diagram 157

xii Business Process MOdel and Notation (BPMN), v2.0.2

Figure 10.13 — A Send Task Object 158

Figure 10.14 — The Send Task and Receive Task class diagram 158
Figure 10.15 — A Receive Task Object 159

Figure 10.16 — A Receive Task Object that instantiates a Process 160
Figure 10.17 — A User Task Object 161

Figure 10.18 — A Manual Task Object 161

Figure 10.19 — A Business Rule Task Object 162

Figure 10.20 — A Script Task Object 162

Figure 10.21 — Manual Task class diagram 163

Figure 10.22 — User Task class diagram 164

Figure 10.23 — HumanPerformer class diagram 165

Figure 10.24 — Procurement Process Example 168

Figure 10.25 — A Sub-Process object (collapsed) 171

Figure 10.26 — A Sub-Process object (expanded) 172

Figure 10.27 — Expanded Sub-Process used as a “Parallel Box” 172
Figure 10.28 — Collapsed Sub-Process Markers 173

Figure 10.29— The Sub-Process class diagram 173

Figure 10.30 — An Event Sub-Process object (Collapsed) 175
Figure 10.31 — An Event Sub-Process object (expanded) 175
Figure 10.32 — An example that includes Event Sub-Processes 176
Figure 10.33 — A Transaction Sub-Process 177

Figure 10.34 — A Collapsed Transaction Sub-Process 177

Figure 10.35 — A collapsed Ad-Hoc Sub-Process 179

Figure 10.36 — An expanded Ad-Hoc Sub-Process 179

Figure 10.37 — An Ad-Hoc Sub-Process for writing a book chapter 181

Figure 10.38 — An Ad-Hoc Sub-Process with data and sequence dependencies 182

Figure 10.39— A Call Activity object calling a Global Task 183

Figure 10.40 — A Call Activity object calling a Process (Collapsed) 183
Figure 10.41 — A Call Activity object calling a Process (Expanded) 183
Figure 10.42 —The Call Activity class diagram 184

Figure 10.43 — CallableElement class diagram 185

Figure 10.44 — Global Tasks class diagram 187

Figure 10.45 — LoopCharacteristics class diagram 188

Figure 10.46 — A Task object with a Standard Loop Marker 189

Figure 10.47 — A Sub-Process object with a Standard Loop Marker 189
Figure 10.48 — Activity Multi-Instance marker for parallel instances 190
Figure 10.49 — Activity Multi-Instance marker for sequential instances 190
Figure 10.50 - ItemAware class diagram 203

Figure 10.51 — DataObject class diagram 204

Figure 10.52 — A DataObject 206

Figure 10.53 — A DataObject that is a collection 206

Figure 10.54 — A Data Store 207

Figure 10.55 — DataStore class diagram 207

Figure 10.56 — Property class diagram 209

Figure 10.57 — InputOutputSpecification class diagram 211

Figure 10.58 — A Datalnput 213

Figure 10.59 — Data Input class diagram 213

Business Process Model and Notation (BPMN), v2.0.2

xiii

Figure 10.60 — A Data Output 215

Figure 10.61 — Data Output class diagram 215

Figure 10.62 — InputSet class diagram 218

Figure 10.63 — OutputSet class diagram 219

Figure 10.64 — DataAssociation class diagram 221

Figure 10.65 — A Data Association 221

Figure 10.66 — A Data Association used for an Outputs and Inputs into an Activities 221
Figure 10.67 — A Data Object shown as an output and an inputs 223

Figure 10.68 — A Data Object associated with a Sequence Flow 224

Figure 10.69 — The Event Class Diagram 233

Figure 10.70 — Start Event 238

Figure 10.71 — End Event 245

Figure 10.72 — Intermediate Event 249

Figure 10.73 — EventDefinition Class Diagram 261

Figure 10.74 — Cancel Events 262

Figure 10.75 — Compensation Events 262

Figure 10.76 — CompensationEventDefinition Class Diagram 262

Figure 10.77 — Conditional Events 263

Figure 10.78 — ConditionalEventDefinition Class Diagram 264

Figure 10.79 — Error Events 264

Figure 10.80 — ErrorEventDefinition Class Diagram 265

Figure 10.81 — Escalation Events 265

Figure 10.82 — EscalationEventDefinition Class Diagram 266

Figure 10.83 — Link Events 266

Figure 10.84 — Link Events Used as Off-Page Connector 267

Figure 10.85 — A Process with a long Sequence Flow 268

Figure 10.86 — A Process with Link Intermediate Events used as Go To Objects 268
Figure 10.87 — Link Events Used for looping 269

Figure 10.88 — Message Events 269

Figure 10.89 — MessageEventDefinition Class Diagram 270

Figure 10.90 — Multiple Events 271

Figure 10.91 — None Events 271

Figure 10.92 — Multiple Events 272

Figure 10.93 — SignalEventDefinition Class Diagram 272

Figure 10.94 — Signal Events 272

Figure 10.95 — Terminate Event 273

Figure 10.96 — Timer Events 273

Figure 10.97 — Exclusive start of a Process 274

Figure 10.98 — A Process initiated by an Event-Based Gateway 275

Figure 10.99 — Event synchronization at Process start 275

Figure 10.100 — Example of inline Event Handling via Event Sub-Processes 277
Figure 10.101 — Example of boundary Event Handling 278

Figure 10.102 — A Gateway 286

Figure 10.103 — The Different types of Gateways 287

Figure 10.104 — Gateway class diagram 288

Figure 10.105 — An Exclusive Data-Based Decision (Gateway) Example without the Internal Indicator 289
Figure 10.106 — A Data-Based Exclusive Decision (Gateway) Example with the Internal Indicator 290

xiv Business Process MOdel and Notation (BPMN), v2.0.2

Figure 10.107 — Exclusive Gateway class diagram 290

Figure 10.108 — An example using an Inclusive Gateway 291

Figure 10.109 — Inclusive Gateway class diagram 292

Figure 10.110 — An example using an Parallel Gateway 293

Figure 10.111 — An example of a synchronizing Parallel Gateway 293

Figure 10.112 — Parallel Gateway class diagram 294

Figure 10.113 — An example using a Complex Gateway 294

Figure 10.114 — Complex Gateway class diagram 295

Figure 10.115 — Event-Based Gateway 296

Figure 10.116 — An Event-Based Gateway example using Message Intermediate Events 297
Figure 10.117 — An Event-Based Gateway example using Receive Tasks 297
Figure 10.118 — Exclusive Event-Based Gateway to start a Process 298

Figure 10.119 — Parallel Event-Based Gateway to start a Process 298

Figure 10.120 — Event-Based Gateway class diagram 299

Figure 10.121- Compensation through a boundary Event 302

Figure 10.122 — Monitoring Class Diagram 303

Figure 10.123 — Two Lanes in a Vertical Pool 305

Figure 10.124 — Two Lanes in a horizontal Pool 305

Figure 10.125 — An Example of Nested Lanes 306

Figure 10.126 — The Lane class diagram 307

Figure 10.127 — One Process supporting to another 309

Figure 10.128 — Auditing Class Diagram 310

Figure 10.129 — Monitoring Class Diagram 311

Figure 11.1 — The Choreography metamodel 316

Figure 11.2 — An example of a Choreography 317

Figure 11.3 — A Collaboration diagram logistics example 318

Figure 11.4 — The corresponding Choreography diagram logistics example 319
Figure 11.5 — The use of Sequence Flows in a Choreography 320

Figure 11.6 — The metamodel segment for a Choreography Activity 322

Figure 11.7 — A Collaboration view of Choreography Task elements 323

Figure 11.8 — A Choreography Task 323

Figure 11.9 — A Collaboration view of a Choreography Task 324

Figure 11.10 — A two-way Choreography Task 324

Figure 11.11 — A Collaboration view of a two-way Choreography Task 325
Figure 11.12 — Choreography Task Markers 326

Figure 11.13 — The Collaboration view of a looping Choreography Task 326
Figure 11.14 — The Collaboration view of a Parallel Multi-Instance Choreography Task 327
Figure 11.15 — A Choreography Task with a multiple Participant 327

Figure 11.16 — A Collaboration view of a Choreography Task with a multiple Participant 328
Figure 11.17— A Sub-Choreography 329

Figure 11.18 — A Collaboration view of a Sub-Choreography 329

Figure 11.19 — An expanded Sub-Choreography 330

Figure 11.20 — A Collaboration view of an expanded Sub-Choreography 330
Figure 11.21 — Sub-Choreography (Collapsed) with More than Two Participants 331
Figure 11.22 — Sub-Choreography Markers 332

Figure 11.23 — Sub-Choreography Markers with a multi-instance Participant 332
Figure 11.24 — A Call Choreography calling a Global Choreography Task 333

Business Process Model and Notation (BPMN), v2.0.2 XV

Figure 11.25 — A Call Choreography calling a Choreography (Collapsed) 333
Figure 11.26 — A Call Choreography calling a Choreography (expanded) 334
Figure 11.27— The Call Choreography class diagram 334
Figure 11.28 — A valid sequence of Choreography Activities 336
Figure 11.29 — The corresponding Collaboration for a valid Choreography sequence 337
Figure 11.30 — A valid sequence of Choreography Activities with a two-way Activity 337
Figure 11.31 — The corresponding Collaboration for a valid Choreography sequence with a two-way Activity 338
Figure 11.32 — An invalid sequence of Choreography Activities 338
Figure 11.33 — The corresponding Collaboration for an invalid Choreography sequence 339
Figure 11.34 — An example of the Exclusive Gateway 345
Figure 11.35 — The relationship of Choreography Activity Participants across the sides
of the Exclusive Gateway shown through a Collaboration 346
Figure 11.36 — Different Receiving Choreography Activity Participants
on the output sides of the Exclusive Gateway 347
Figure 11.37 — The corresponding Collaboration view of the above
Choreography Exclusive Gateway configuration 348
Figure 11.38 — An example of an Event Gateway 349
Figure 11.39 — The corresponding Collaboration view of the above Choreography Event Gateway configuration 350
Figure 11.40 — An example of a Choreography Inclusive Gateway configuration 352
Figure 11.41 — The corresponding Collaboration view of the above Choreography Inclusive Gateway
configuration 353
Figure 11.42 — An example of a Choreography Inclusive Gateway configuration 354
Figure 11.43 — The corresponding Collaboration view of the above Choreography
Inclusive Gateway configuration 355
Figure 11.44 — Another example of a Choreography Inclusive Gateway configuration 356
Figure 11.45 — The corresponding Collaboration view of the above Choreography
Inclusive Gateway configuration 357
Figure 11.46 — The relationship of Choreography Activity Participants
across the sides of the Parallel Gateway 358
Figure 11.47 — The corresponding Collaboration view of the above
Choreography Parallel Gateway configuration 359
Figure 11.48 — An example of a Choreography Complex Gateway configuration 360
Figure 11.49 — The corresponding Collaboration view of the above Choreography Complex Gateway
configuration 361
Figure 11.50 — An example of a Choreography Process combined with Black Box Pools 362
Figure 11.51 — An example of a Choreography Process combined with Pools that contain Processes 363
Figure 12.1 — BPMN Diagram 369
Figure 12.2 — BPMN Plane 369
Figure 12.3 — BPMN Shape 369
Figure 12.4 — BPMN Edge 370
Figure 12.5 — BPMN Label 370
Figure 12.6 — Depicting a Label for a DataObjectReference with its state 381
Figure 12.7 — Combined Compensation and Loop Characteristic Marker Example 384
Figure 12.8 — Expanded Sub-Process Example 413
Figure 12.9 — Start and End Events on the Border Example 414
Figure 12.10 — Collapsed Sub-Process 415
Figure 12.11 — Contents of Collapsed Sub-Process 416

Xvi Business Process MOdel and Notation (BPMN), v2.0.2

Figure 12.12 — Nested Lanes Example 417

Figure 12.13 — Vertical Collaboration Example 418

Figure 12.14 — Conversation Example 420

Figure 12.15 — Choreography Example 422

Figure 13.1 — Behavior of multiple outgoing Sequence Flows of an Activity 427

Figure 13.2 — The Lifecycle of a BPMN Activity 428

Figure 13.3 — Merging and Branching Sequence Flows for a Parallel Gateway 434
Figure 13.4 — Merging and Branching Sequence Flows for an Exclusive Gateway 434
Figure 13.5 — Merging and Branching Sequence Flows for an Inclusive Gateway 435
Figure 13.6 — Merging and branching Sequence Flows for an Event-Based Gateway 437
Figure 13.7 — Merging and branching Sequence Flows for a Complex Gateway 437
Figure 14.1 — A BPMN orchestration process and its block hierarchy 446

Figure 14.2 — An example of distributed token recombination 469

Figure 14.3 — An example of a loop from a decision with more than two alternative paths 470
Figure 14.4 — An example of interleaved loops 471

Figure 14.5 — An example of the WSBPEL pattern for substituting for the derived Process 472
Figure 14.6 — An example of a WSBPEL pattern for the derived Process 472

Figure 14.7 — An example: An infinite loop 473

Figure 14.8 — An example: Activity that spans two paths of a WSBPEL structured element 474
Figure B.1 — Diagram Definition Architecture 483

Figure B.2 — The Primitive Types 483

Figure B.3 — Diagram Definition Architecture 484

Figure B.4 — Diagram Definition Architecture 484

Figure B.5 — Dependencies of the DI package 488

Figure B.6 — Diagram Element 488

Figure B.7 — Node 488

Figure B.8 — Edge 489

Figure B.9 — Diagram 489

Figure B.10 — Plane 489

Figure B.11 — Labeled Edge 490

Figure B.12 — Labeled Shape 490

Figure B.13 — Shape 490

Business Process Model and Notation (BPMN), v2.0.2

Xvii

xviii Business Process MOdel and Notation (BPMN), v2.0.2

List of Tables

Table 2.1 — Descriptive Conformance Sub-Class Elements and Attributes 3
Table 2.2 — Analytic Conformance Sub-Class Elements and Attributes 4

Table 2.3 — Common Executable Conformance Sub-Class Elements and Attributes 6
Table 2.4 — Common Executable Conformance Sub-Class Supporting Classes 7

Table 2.5 — Types of BPMN Conformance 12

Table 7.1 — Basic Modeling Elements 27

Table 7.2 — BPMN Extended Modeling Elements 29

Table 7.3 — Sequence Flow Connection Rules 40

Table 7.4 — Message Flow Connection Rules 42

Table 8.1 — Definitions attributes and model associations 50
Table 8.2 — Import attributes 52

Table 8.3 — Definitions XML schema 52

Table 8.4 — Import XML schema 53

Table 8.5 — BaseElement attributes and model associations 54
Table 8.6 — Documentation attributes 54

Table 8.7 — Extension attributes and model associations 56
Table 8.8 — ExtensionDefinition attributes and model associations 57
Table 8.9 — ExtensionAttributeDefinition attributes 57

Table 8.10 — ExtensionAttributeValue model associations 57
Table 8.11 — Extension XML schema 58

Table 8.12 — Example Core XML schema 58

Table 8.13 — Example Extension XML schema 59

Table 8.14 — Sample XML instance 59

Table 8.15 — Relationship attributes 61

Table 8.16 — Reengineer XML schema 61

Table 8.17 — BaseElement XML schema 62

Table 8.18 — RootElement XML schema 63

Table 8.19 — Relationship XML schema 63

Table 8.20 — Association attributes and model associations 66
Table 8.21 — Group model associations 68

Table 8.22 — Category model associations 69

Table 8.23 — CategoryValue attributes and model associations 69
Table 8.24 — Text Annotation attributes 70

Table 8.25 — Artifact XML schema 70

Table 8.26 — Association XML schema 70

Table 8.27 — Category XML schema 70

Table 8.28 — CategoryValue XML schema 71

Table 8.29 — Group XML schema 71

Table 8.30 — Text Annotation XML schema 71

Table 8.31— CorrelationKey model associations 75

Table 8.32 — CorrelationProperty model associations 75
Table 8.33 — CorrelationPropertyRetrievalExpression model associations 76

Business Process Model and Notation (BPMN), v2.0.2

Xix

Table 8.34 — CorrelationSubscription model associations 76
Table 8.35 — CorrelationPropertyBinding model associations 77
Table 8.36 — Correlation Key XML schema 77

Table 8.37 — Correlation Property XML schema 77

Table 8.38 — Correlation Property Binding XML schema 78
Table 8.39 — Correlation Property Retrieval Expression XML schema 78
Table 8.40 — Correlation Subscription XML schema 78

Table 8.41 — Error attributes and model associations 80

Table 8.42 — Esclation attributes and model associations 81

Table 8.43 — FormalExpression attributes and model associations 84
Table 8.44 — FlowElement attributes and model associations 86
Table 8.45 — FlowElementsContainer model associations 87
Table 8.46 — Gateway attributes 89

Table 8.47 — ItemDefinition attributes & model associations 90
Table 8.48 — Message attributes and model associations 93

Table 8.49 — Resource attributes and model associations 94
Table 8.50 — ResourceParameter attributes and model associations 95
Table 8.51 — SequenceFlow attributes and model associations 97
Table 8.52 — FlowNode model associations 98

Table 8.53 — Error XML schema 98

Table 8.54 — Escalation XML schema 98

Table 8.55 — Expression XML schema 98

Table 8.56 — FlowElement XML schema 99

Table 8.57 — FlowNode XML schema 99

Table 8.58 — FormalExpression XML schema 99

Table 8.59 — InputOutputBinding XML schema 99

Table 8.60 — ItemDefinition XML schema 100

Table 8.61 — Message XML schema 100

Table 8.62 — Resources XML schema 100

Table 8.63 — ResourceParameter XML schema 101

Table 8.64 — SequenceFlow XML schema 101

Table 8.65 — Interface attributes and model associations 103
Table 8.66 — Operation attributes and model associations 104
Table 8.67 — Interface XML schema 104

Table 8.68 — Operation XML schema 104

Table 8.69 — EndPoint XML schema 105

Table 9.1 — Collaboration Attributes and Model Associations 108
Table 9.2 — Participant attributes and model associations 115
Table 9.3 — PartnerEntity attributes 115

Table 9.4 — PartnerRole attributes 116

Table 9.5 — ParticipantMultiplicity attributes 117

Table 9.6 — ParticipantMultiplicity Instance attributes 117

Table 9.7 — ParticipantAssociation model associations 119

Table 9.8 — Message Flow attributes and model associations 122
Table 9.9 — MessageFlowAssociation attributes and model associations 123
Table 9.10 — ConversationNode Model Associations 129

Table 9.11 — Sub-Conversation Model Associations 130

XX Business Process Model and Notation (BPMN), v2.0.2

Table 9.12 — Call Conversation Model Associations 131

Table 9.13 — Conversation Link Attributes and Model Associations 133
Table 9.14 — ConversationAssociation Model Associations 135
Table 9.15 — Call Conversation XML schema 138

Table 9.16 — Collaboration XML schema 138

Table 9.17 — Conversation XML schema 139

Table 9.18 — ConversationAssociation XML schema 139

Table 9.19 — ConversationAssociation XML schema 139

Table 9.20 — ConversationNode XML schema 140

Table 9.21 — Conversation Node XML schema 140

Table 9.22 — Global Conversation XML schema 140

Table 9.23 — MessageFlow XML schema 140

Table 9.24 — MessageFlowAssociation XML schema 141

Table 9.25 — Participant XML schema 141

Table 9.26 — ParticipantAssociation XML schema 141

Table 9.27 — ParticipantMultiplicity XML schema 142

Table 9.28 — PartnerEntity XML schema 142

Table 9.29 — PartnerRole XML schema 142

Table 9.30 — Sub-Conversation XML schema 142

Table 10.1 — Process Attributes & Model Associations 145

Table 10.2 — Process instance attributes 147

Table 10.3 — Activity attributes and model associations 150

Table 10.4— Activity instance attributes 151

Table 10.5 — Resource Role model associations 153

Table 10.6 — ResourceAssignmentExpression model associations 153
Table 10.7 — ResourceParameterBinding model associations 154
Table 10.8 — Service Task model associations 157

Table 10.9 — Send Task model associations 159

Table 10.10 — Receive Task attributes and model associations 160
Table 10.11 — Business Rule Task attributes and model associations 162
Table 10.12 — Script Task attributes 163

Table 10.13 — User Task attributes and model associations 164

Table 10.14 — User Task instance attributes 165

Table 10.15 — ManualTask XML schema 166

Table 10.16 — UserTask XML schema 167

Table 10.17 — HumanPerformer XML schema 168

Table 10.18 — PotentialOwner XML schema 168

Table 10.19 — XML serialization of Buyer process 169

Table 10.20 — Sub-Process attributes 174

Table 10.21 — Transaction Sub-Process attributes and model associations 178
Table 10.22 — Ad-hoc Sub-Process model associations 180

Table 10.23 — CallActivity model associations 185

Table 10.24 — CallableElement attributes and model associations 186
Table 10.25 — InputOutputBinding model associations 186

Table 10.26 — Global Task model associations 187

Table 10.27 — Loop Activity instance attributes 189

Table 10.28 — StandardLoopCharacteristics attributes and model associations 190

Business Process Model and Notation (BPMN), v2.0.2

XXi

Table 10.29 — MultilnstanceLoopCharacteristics attributes and model associations 191
Table 10.30 — Multi-instance Activity instance attributes 193

Table 10.31 — ComplexBehaviorDefinition attributes and model associations 194
Table 10.32 — Activity XML schema 194

Table 10.33 — AdHocSubProcess XML schema 195

Table 10.34 — BusinessRuleTask XML schema 195

Table 10.35 — CallableElement XML schema 196

Table 10.36 — CallActivity XML schema 196

Table 10.37 — GlobalBusinessRuleTask XML schema 196

Table 10.38 — GlobalScriptTask XML schema 197

Table 10.39 — GlobalTask XML schema 197

Table 10.40 — LoopCharacteristics XML schema 197

Table 10.41 — MultilnstanceLoopCharacteristics XML schema 198

Table 10.42 — ReceiveTask XML schema 199

Table 10.43 — ResourceRole XML schema 199

Table 10.44 — ScriptTask XML schema 200

Table 10.45 — SendTask XML schema 200

Table 10.46 — ServiceTask XML schema 200

Table 10.47 — StandardLoopCharacteristics XML schema 201

Table 10.48 — SubProcess XML schema 201

Table 10.49 — Task XML schema 201

Table 10.50 — Transaction XML schema 202

Table 10.51 — ItemAwareElement model associations 203

Table 10.52 — DataObject attributes 205

Table 10.53 — DataObjectReference attributes and model associations 205
Table 10.54 — DataState attributes and model associations 205

Table 10.55 — Data Store attributes 208

Table 10.56 — Data Store attributes 208

Table 10.57 — Property attributes 209

Table 10.58 — InputOutputSpecification Attributes and Model Associations 212
Table 10.59 — Datalnput attributes and model associations 214

Table 10.60 — DataOutput attributes and associations 216

Table 10.61 — InputSet attributes and model associations 218

Table 10.62 — OutputSet attributes and model associations 220

Table 10.63 — DataAssociation model associations 222

Table 10.64 — Assignment attributes 223

Table 10.65 — XPath Extension Function for Data Objects 226

Table 10.66 — XPath Extension Function for Data Inputs and Data Outputs 226
Table 10.67 — XPath Extension Functions for Properties 227

Table 10.68 — XPath extension functions for instance attributes 228

Table 10.69 — Assignment XML schema 228

Table 10.70 — DataAssociation XML schema 229

Table 10.71 — Datalnput XML schema 229

Table 10.72 — DatalnputAssociation XML schema 229

Table 10.73 — DataObject XML schema 230

Table 10.74 — DataState XML schema 230

Table 10.75 — DataOutput XML schema 230

xxii Business Process Model and Notation (BPMN), v2.0.2

Table 10.76 — DataOutputAssociation XML schema 230

Table 10.77 — InputOutputSpecification XML schema 231

Table 10.78 — InputSet XML schema 231

Table 10.79 — OutputSet XML schema 232

Table 10.80 — Property XML schema 232

Table 10.81 — Event model associations 235

Table 10.82 — CatchEvent attributes and model associations 235
Table 10.83 — ThrowEvent attributes and model associations 236
Table 10.84 — Top-Level Process Start Event Types 239

Table 10.85 — Sub-Process Start Event Types 241

Table 10.86 — Event Sub-Process Start Event Types 241

Table 10.87 — Start Event attributes 244

Table 10.88 — End Event Types 246

Table 10.89 — Intermediate Event Types in Normal Flow 250
Table 10.90 — Intermediate Event Types Attached to an Activity Boundary 253
Table 10.91 — Boundary Event attributes 257

Table 10.92 — Possible Values of the cancelActivity Attribute 257
Table 10.93 — Types of Events and their Markers 260

Table 10.94 — CompensationEventDefinition attributes and model associations 263
Table 10.95 — ConditionalEventDefinition model associations 264
Table 10.96 — ErrorEventDefinition attributes and model associations 265
Table 10.97 — EscalationEventDefinition attributes and model associations 266
Table 10.98 — LinkEventDefinition attributes 269

Table 10.99 — MessageEventDefinition model associations 270
Table 10.100 — SignalEventDefinition model associations 272
Table 10.101 — TimerEventDefinition model associations 273
Table 10.102 — BoundaryEvent XML schema 281

Table 10.103 — CancelEventDefinition XML schema 281

Table 10.104 — CatchEvent XML schema 281

Table 10.105 — CancelEventDefinition XML schema 281

Table 10.106 — CompensateEventDefinition XML schema 282
Table 10.107 — ConditionalEventDefinition XML schema 282
Table 10.108 — ErrorEventDefinition XML schema 282

Table 10.109 — EscalationEventDefinition XML schema 282
Table 10.110 — Event XML schema 283

Table 10.111 — EventDefinition XML schema 283

Table 10.112 — ImplicitThrowEvent XML schema 283

Table 10.113 — IntermediateCatchEvent XML schema 283

Table 10.114 — Intermediate ThrowEvent XML schema 283

Table 10.115 — LinkEventDefinition XML schema 283

Table 10.116 — MessageEventDefinition XML schema 284

Table 10.117 — Signal XML schema 284

Table 10.118 — SignalEventDefinition XML schema 284

Table 10.119 — StartEvent XML schema 285

Table 10.120 — TerminateEventDefinition XML schema 285
Table 10.121 — ThrowEvent XML schema 285

Table 10.122 — TimerEventDefinition XML schema 285

Business Process Model and Notation (BPMN), v2.0.2

xxiii

Table 10.123 — ExclusiveGateway Attributes & Model Associations 291
Table 10.124 — InclusiveGateway Attributes & Model Associations 292
Table 10.125 — Complex Gateway model associations 295

Table 10.126 — Instance attributes related to the Complex Gateway 296
Table 10.127 — EventBasedGateway Attributes & Model Associations 299
Table 10.128 — ComplexGateway XML schema 300

Table 10.129 — EventBasedGateway XML schema 300

Table 10.130 — ExclusiveGateway XML schema 300

Table 10.131 — Gateway XML schema 300

Table 10.132 — InclusiveGateway XML schema 301

Table 10.133 — ParallelGateway XML schema 301

Table 10.134 — LaneSet attributes and model associations 307

Table 10.135 — Lane attributes and model associations 308

Table 10.136 — Process XML schema 311

Table 10.137 — Auditing XML schema 312

Table 10.138 — GlobalTask XML schema 312

Table 10.139 — Lane XML schema 312

Table 10.140 — LaneSet XML schema 312

Table 10.141— Monitoring XML schema 313

Table 10.142 — Performer XML schema 313

Table 11.1 — Choreography Activity Model Associations 322

Table 11.2 — Choreography Task Model Associations 328

Table 11.3 — Sub-Choreography Model Associations 332

Table 11.4 — Call Choreography Model Associations 335

Table 11.5 — Global Choreography Task Model Associations 335

Table 11.6 — Use of Start Events in Choreography 340

Table 11.7 — Use of Intermediate Events in Choreography 340

Table 11.8 — Use of End Events in Choreography 343

Table 11.9 — Choreography XML schema 363

Table 11.10 — GlobalChoreographyTask XML schema 364

Table 11.11 — ChoreographyActivity XML schema 364

Table 11.12 — ChoreographyTask XML schema 364

Table 11.13 — CallChoreography XML schema 365

Table 11.14 — SubChoreography XML schema 365

Table 12.1 — BPMNDiagram XML schema 371

Table 12.2 — BPMNPIlane XML schema 372

Table 12.3 — BPMNShape XML schema 374

Table 12.4 — BPMNEdge XML schema 376

Table 12.5 — BPMNLabel XML schema 377

Table 12.6 — BPMNLabelStyle XML schema 378

Table 12.7 — Complete BPMN DI XML schema 378

Table 12.8 — Depiction Resolution for Loop Compensation Marker 382
Table 12.9 — Depiction Resolution for Tasks 385

Table 12.10 — Depiction Resolution for Collapsed Sub-Processes 386
Table 12.11 — Depiction Resolution for Expanded Sub-Processes 386
Table 12.12 — Depiction Resolution for Collapsed Ad Hoc Sub-Processes 387
Table 12.13 — Depiction Resolution for Expanded Ad Hoc Sub-Processes 387

xxiv Business Process Model and Notation (BPMN), v2.0.2

Table 12.14 — Depiction Resolution for Collapsed Transactions 387

Table 12.15 — Depiction Resolution for Tasks 388

Table 12.16 — Depiction Resolution for Collapsed Event Sub-Processes 388

Table 12.17 — Depiction Resolution for Expanded Event Sub-Processes 391

Table 12.18 — Depiction Resolution for Call Activities (Calling a Global Task) 391
Table 12.19 — Depiction Resolution for Collapsed Call Activities (Calling a Process) 392
Table 12.20 — Depiction Resolution for Expanded Call Activities (Calling a Process) 392
Table 12.21 — Depiction Resolution for Data 393

Table 12.22 — Depiction Resolution for Events 394

Table 12.23 — Depiction Resolution for Gateways 400

Table 12.24 — Depiction Resolution for Artifacts 401

Table 12.25 — Depiction Resolution for Lanes 401

Table 12.26 — Depiction Resolution for Pools 402

Table 12.27 — Depiction Resolution for Choreography Tasks 403

Table 12.28 — Depiction Resolution for Sub-Choreographies (Collapsed) 404

Table 12.29 — Depiction Resolution for Sub-Choreographies (Expanded) 405

Table 12.30 — Depiction Resolution for Call Choreographies (Calling a Global Choreography Task) 405
Table 12.31 — Depiction Resolution for Collapsed Call Choreographies (Calling a Choreography) 406
Table 12.32 — Depiction Resolution for Expanded Call Choreographies (Calling a Choreography) 407
Table 12.33 — Depiction Resolution for Choreography Participant Bands 408

Table 12.34 — Depiction Resolution for Conversations 410

Table 12.35 — Depiction Resolution for Connecting Objects 411

Table 12.36 — Expanded Sub-Process BPMN DI instance 413

Table 12.37 — Start and End Events on the Border BPMN DI instance 414

Table 12.38 — Collapsed Sub-Process BPMN DI instance 416

Table 12.39 — Sub-Process Content BPMN DI instance 416

Table 12.40 — Multiple Lanes and Nested Lanes BPMN DI instance 417

Table 12.41 — Vertical Collaboration BPMN DI instance 418

Table 12.42 — Conversation BPMN DI instance 420

Table 12.43 — Choreography BPMN DI instance 422

Table 13.1 — Parallel Gateway Execution Semantics 434

Table 13.2 — Exclusive Gateway Execution Semantics 435

Table 13.3 — Inclusive Gateway Execution Semantics 436

Table 13.4 — Event-Based Gateway Execution Semantics 437

Table 13.5 — Semantics of the Complex Gateway 438

Table 14.1 — Common Activity Mappings to WS-BPEL 448

Table 14.2 — Expressions mapping to WS-BPEL 468

Business Process Model and Notation (BPMN), v2.0.2

XXV

xxvi Business Process Model and Notation (BPMN), v2.0.2

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at Attp./www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG specifications
are available from the OMG website at:

http://www.omg.org/spec

Specifications are organized by the following categories:
Business Modeling Specifications

Middleware Specifications
« CORBAJ/IOP
. Data Distribution Services
. Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications
. UML, MOF, CWM, XMI
. UML Profile

Modernization Specifications

Business Process Model and Notation (BPMN), v2.0.2 XXVii

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications
* CORBAServices
* CORBAFacilities

OMG Domain Specifications
CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the link cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult Attp-/www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetical/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note — Terms that appear in ifalics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to Attp./www.omg.org/
report_issue.htm.

xxviii Business Process Model and Notation (BPMN), v2.0.2

1 Scope

1.1 General

The Object Management Group (OMG) has developed a standard Business Process Model and Notation (BPMN).
The primary goal of BPMN is to provide a notation that is readily understandable by all business users, from the business
analysts that create the initial drafts of the processes, to the technical developers responsible for implementing the
technology that will perform those processes, and finally, to the business people who will manage and monitor those
processes. Thus, BPMN creates a standardized bridge for the gap between the business process design and process
implementation.

Another goal, but no less important, is to ensure that XML languages designed for the execution of business processes,
such as WSBPEL (Web Services Business Process Execution Language), can be visualized with a business-oriented
notation.

This International Standard represents the amalgamation of best practices within the business modeling community to
define the notation and semantics of Collaboration diagrams, Process diagrams, and Choreography diagrams. The
intent of BPMN is to standardize a business process model and notation in the face of many different modeling notations
and viewpoints. In doing so, BPMN will provide a simple means of communicating process information to other business
users, process implementers, customers, and suppliers.

The membership of the OMG has brought forth expertise and experience with many existing notations and has sought to
consolidate the best ideas from these divergent notations into a single standard notation. Examples of other notations or
methodologies that were reviewed are UML Activity Diagram, UML EDOC Business Processes, IDEF, ebXML BPSS,
Activity-Decision Flow (ADF) Diagram, RosettaNet, LOVeM, and Event-Process Chains (EPCs).

2 Conformance

21 General

Software can claim compliance or conformance with BPMN 2.0 if and only if the software fully matches the applicable
compliance points as stated in the International Standard. Software developed only partially matching the applicable
compliance points can claim only that the software was based on this International Standard, but cannot claim compliance
or conformance with this International Standard. The document defines four types of conformance namely Process
Modeling Conformance, Process Execution Conformance, BPEL Process Execution Conformance, and
Choreography Modeling Conformance.

The implementation claiming conformance to Process Modeling Conformance type is NOT REQUIRED to support
Choreography Modeling Conformance type and vice-versa. Similarly, the implementation claiming Process Execution
Conformance type is NOT REQUIRED to be conformant to the Process Modeling and Choreography Conformance

types.
The implementation claiming conformance to the Process Modeling Conformance type SHALL comply with all of the
requirements set forth in sub clause 2.1. The implementation claiming conformance to the Process Execution

Conformance type SHALL comply with all of the requirements set forth in sub clause 2.2. The implementation claiming
conformance to the BPEL Process Execution Semantics Conformance type SHALL comply with all of the

Business Process Model and Notation (BPMN), v2.0.2 1

requirements set forth in sub clause 2.3. The implementation claiming conformance to the Choreography Conformance
type SHALL comply with all of the requirements set forth in sub clause 2.4. The implementation is said to have BPMN
Complete Conformance if it complies with all of the requirements stated in sub clauses 2.1, 2.2, 2.3, and 2.4.

2.2 Process Modeling Conformance

The next eight sub clauses describe Process Modeling Conformance.
221 BPMN Process Types

The implementations claiming Process Modeling Conformance MUST support the following BPMN packages:

€ The BPMN core elements, which include those defined in the Infrastructure, Foundation, Common, and Service
packages (see Clause 8).

& Process diagrams, which include the elements defined in the Process, Activities, Data, and Human Interaction
packages (see Clause 10).

& Collaboration diagrams, which include Pools and Message Flow (see Clause 9).

& Conversation diagrams, which include Pools, Conversations, and Conversation Links (see Clause 9).
As an alternative to full Process Modeling Conformance, there are three conformance sub-classes defined:

€ Descriptive

€ Analytic

4 Common Executable

Descriptive is concerned with visible elements and attributes used in high-level modeling. It should be comfortable for
analysts who have used BPA flowcharting tools.

Analytic contains all of Descriptive and in total about half of the constructs in the full Process Modeling Conformance
Class. It is based on experience gathered in BPMN training and an analysis of user-patterns in the Department of Defense
Architecture Framework and planned standardization for that framework.

Both Descriptive and Analytic focus on visible elements and a minimal subset of supporting attributes/elements.
Common Executable focuses on what is needed for executable process models.
Elements and attributes not in these sub-classes are contained in the full Process Modeling Conformance class.

The elements for each sub-class are defined in the next sub clause.
2.2.2 BPMN Process Elements

The Process Modeling Conformance type set consists of Collaboration and Process diagram elements, including all
Task types, embedded Sub-Processes, CallActivity, all Gateway types, all Event types (Start, Intermediate, and
End), Lane, Participants, Data Object (including Datalnput and DataOutput), Message, Group, Text
Annotation, Sequence Flow (including conditional and default flows), Message Flow, Conversations (limited to
grouping Message Flow, and associating correlations), Correlation, and Association (including Compensation
Association). The set also includes markers (Loop, Multi-Instance, Transaction, Compensation) for Tasks and
embedded Sub-Processes).

2 Business Process Model and Notation (BPMN), v2.0.2

NOTE: Implementations are not expected to support Choreography modeling elements such as Choreography Task and
Sub-Choreography.
For a tool to claim support for a sub-class the following criteria MUST be satisfied:

& All the elements in the sub-class MUST be supported.

€ For each element, all the listed attributes MUST be supported.

€ In general, if the sub-class doesn’t mention an attribute and it is NOT REQUIRED by the schema, then it is not in the
subclass. Exceptions to this rule are noted.

Descriptive Conformance Sub-Class

The Descriptive conformance sub-class elements are shown in Table 2.1.

Table 2.1 — Descriptive Conformance Sub-Class Elements and Attributes

Element Attributes

participant (pool) id, name, processRef

laneSet id, lane with name, childLaneSet, flowElementRef
sequenceFlow (unconditional) id, name, sourceRef, targetRef

messageFlow id, name, sourceRef, targetRef
exclusiveGateway id, name

parallelGateway id, name

task (None) id, name

userTask id, name

serviceTask id, name

subProcess (expanded) id, name, flowElement

subProcess (collapsed) id, name, flowElement

CallActivity id, name, calledElement

DataObject id, name

TextAnnotation id, text

association/dataAssociation?@ id, name, sourceRef, targetRef, associationDirection®
dataStoreReference id, name, dataStoreRef

startEvent (None) id, name

endEvent (None) id, name

Business Process Model and Notation (BPMN), v2.0.2 3

Table 2.1 — Descriptive Conformance Sub-Class Elements and Attributes

messageStartEvent

id, name, messageEventDefinition

messageEndEvent

id, name, messageEventDefinition

timerStartEvent

id, name, timerEventDefinition

terminateEndEvent

id, name, terminateEventDefinition

documentation®

text

Group

id, categoryRef

a. Data Association is ABSTRACT: Data Input Association and Data Output Association will appear in
the XML serialization. These both have REQUIRED attributes [sourceRef and targetRef] which refer to
itemAwareElements. To be consistent with the metamodel, this will require the following additional
elements: ioSpecification, inputSet, outputSet, Data Input, Data Output. When a BPMN editor
draws a Data Association to an Activity or Event it should generate this supporting invisible substructure.
Otherwise, the metamodel would have to be changed to make sourceRef and targetRef optional or allow
reference to non-itemAwareElements, e.g., Activity and Event.

b. associationDirection not specified for Data Association

c. Documentation is not a visible element. It is an attribute of most elements.

Analytic Conformance Sub-Class

The Analytic conformance sub-class contains all the elements of the Descriptive conformance sub-class plus the

elements shown in Table 2.2.

Table 2.2 — Analytic Conformance Sub-Class Elements and Attributes

Element

Attributes

sequenceFlow (conditional)

id, name, sourceRef, targetRef, conditionExpression?

sequenceFlow (default)

id, name, sourceRef, targetRef, default®

sendTask id, name
receiveTask id, name
Looping Activity standardLoopCharacteristics

Multilnstance Activity

multiinstanceLoopCharacteristics

exclusiveGateway

Add default attribute

inclusiveGateway

id, name, eventGatewayType

eventBasedGateway

id, name, eventGatewayType

Link catch/throw Intermediate Event

Id, name, linkEventDefinition

signalStartEvent

id, name, signalEventDefinition

Business Process Model and Notation (BPMN), v2.0.2

Table 2.2 — Analytic Conformance Sub-Class Elements and Attributes

Boundary message Intermediate
Event

signalEndEvent id, name, signalEventDefinition
Catching message Intermediate id, name, messageEventDefinition
Event
Throwing message Intermediate id, name, messageEventDefinition
Event
id, name, attachedToRef, messageEventDefinition

Non-interrupting Boundary message
Intermediate Event

id, name, attachedToRef, cancelActivity=false,
messageEventDefinition

Catching timer Intermediate Event

id, name, timerEventDefinition

Boundary timer Intermediate Event id, name, attachedToRef, timerEventDefinition

Non-interrupting Boundary timer id, name, attachedToRef, cancelActivity=false, timerEventDefinition
Intermediate Event

Boundary error Intermediate Event id, name, attachedToRef, errorEventDefinition

errorEndEvent id, name, errorEventDefinition

Non-interrupting Boundary escalation
Intermediate Event

id, name, attachedToRef, cancelActivity=false,
escalationEventDefinition

Non-interrupting Boundary condi-
tional Intermediate Event

Throwing escalation Intermediate |d, name, escalationEventDefinition
Event
escalationEndEvent |d, name, escalationEventDefinition
Catching signal Intermediate Event | id, name, signalEventDefinition
Throwing signal Intermediate Event | id, name, signalEventDefinition
Boundary signal Intermediate Event | id, name, attachedToRef, signalEventDefinition
Non-interrupting Boundary signal id, name, attachedToRef, cancelActivity=false, signalEventDefinition
Intermediate Event
conditionalStartEvent id, name, conditionalEventDefinition
Catching conditional Intermediate id, name, conditionalEventDefinition
Event
Boundary conditional Intermediate id, name, conditionalEventDefinition
Event
id, name, cancelActivity=false, conditionalEventDefinition

Business Process Model and Notation (BPMN), v2.0.2

Table 2.2 — Analytic Conformance Sub-Class Elements and Attributes

message®

id,

name, add messageRef attribute to messageFlow

a. ConditionExpression, allowed only for Sequence Flow out of Gateways, MAY be null.
b. Default is an attribute of a sourceRef (exclusive or inclusive) Gateway.
c. Note that messageRef, an attribute of various message Events, is optional and not in the sub-class.

Common Executable Conformance Sub-Class

This conformance sub-class is intended for modeling tools that can emit executable models.
€ Data type definition language MUST be XML Schema.
€ Service Interface definition language MUST be WSDL.

€ Data access language MUST be XPath.

The Common Executable conformance sub-class elements are shown in Table 2.3 and its supporting classes in Table 2.4.

Table 2.3 — Common Executable Conformance Sub-Class Elements and Attributes

Element

Attributes

sequenceFlow (unconditional)

id,

(name), sourceRef?, targetRefb

sequenceFlow (conditional) id, name, sourceRef, targetRef, conditionExpression®

sequenceFlow (default) id, name, sourceRef, targetRef, defaultd

subProcess (expanded) id, name, flowElement, loopCharacteristics, boundaryEventRefs

exclusiveGateway id, name, gatewayDirection (only converging and diverging), default

parallelGateway id, name, gatewayDirection (only converging and diverging)

startEvent (None) id, name

endEvent (None) id, name

eventBasedGateway id, name, gatewayDirection, eventGatewayType

userTask id, name, renderings, implementation, resources, ioSpecification,
datalnputAssociations, dataOutputAssociations, loopCharacteristics,
boundaryEventRefs

serviceTask id, name, implementation, operationRef, ioSpecification,
datalnputAssociations, dataOutputAssociations, loopCharacteristics,
boundaryEventRefs

callActivity id, name, calledElement, ioSpecification, datalnputAssociations,
dataOutputAssociations, loopCharacteristics, boundaryEventRefs

dataObject id, name, isCollection, itemSubjectRef

textAnnotation id, text

Business Process Model and Notation (BPMN), v2.0.2

Table 2.3 — Common Executable Conformance Sub-Class Elements and Attributes

dataAssociation id, name, sourceRef, targetRef, assignment

messageStartEvent id, name, messageEventDefinition (either ref or contained),
dataOutput, dataOutputAssociations

messageEndEvent id, name, messageEventDefinition, (either ref or contained), datalnput,

datalnputAssociations

terminateEndEvent

(Terminating trigger in combination with one of the other end events)

Catching message Intermediate
Event

id, name, messageEventDefinition (either ref or contained),
dataOutput, dataOutputAssociations

Throwing message Intermediate
Event

id, name, messageEventDefinition (either ref or contained), datalnput,
datalnputAssociations

Catching timer Intermediate Event

id, name, timerEventDefinition (contained)

Boundary error Intermediate Event

id, name, attachedToRef, errorEventDefinition, (contained or
referenced), dataOutput, dataOutputAssociations

ao o

. Multiple outgoing connections are only allowed for converging Gateways.

. Multiple outgoing connections are only allowed for diverging Gateways.
ConditionExpression, allowed only for Sequence Flow out of Gateways, MAY be null.
Default is an attribute of a sourceRef (exclusive or inclusive) Gateway.

Table 2.4 — Common Executable Conformance Sub-Class Supporting Classes

Element

Attributes

StandardLoopCharacteristics

id, loopCondition

MultilnstanceLoopCharacteristics

id, isSequential, loopDatalnput, inputDataltem

Rendering

Resource

id, name

ResourceRole

id, resourceRef, resourceAssignmentExpression

InputOutputSpecification id, datalnputs, dataOutputs
Datalnput id, name, isCollection, itemSubjectRef
DataOutput id, name, isCollection, itemSubjectRef

ItemDefinition

id, structure or import?

Operation id, name, inMessageRef, outMessageRef, errorRefs
Message id, name, structureRef

Error id, structureRef

Assignment id, from, to®

Business Process Model and Notation (BPMN), v2.0.2

Table 2.4 — Common Executable Conformance Sub-Class Supporting Classes

MessageEventDefinition id, messageRef, operationRef
TerminateEventDefinition id
TimerEventDefinition id, timeDate

a. Structure MUST be defined by an XSD Complex Type
b. Structure MUST be defined by an XSD Complex Type

2.2.3 Visual Appearance

A key element of BPMN is the choice of shapes and icons used for the graphical elements identified in this International
Standard. The intent is to create a standard visual language that all process modelers will recognize and understand. An
implementation that creates and displays BPMN Process Diagrams SHALL use the graphical elements, shapes, and
markers illustrated in this International Standard.

NOTE: There is flexibility in the size, color, line style, and text positions of the defined graphical elements, except where
otherwise specified (see page 41).

The following extensions to a BPMN Diagram are permitted:

€ New markers or indicators MAY be added to the specified graphical elements. These markers or indicators could be
used to highlight a specific attribute of a BPMN element or to represent a new subtype of the corresponding concept.

€ A new shape representing a kind of Artifact MAY be added to a Diagram, but the new Artifact shape SHALL NOT
conflict with the shape specified for any other BPMN element or marker.

€ Graphical elements MAY be colored, and the coloring MAY have specified semantics that extend the information
conveyed by the element as specified in this International Standard.

€ The line style of a graphical element MAY be changed, but that change SHALL NOT conflict with any other line
style REQUIRED by this International Standard.

€ An extension SHALL NOT change the specified shape of a defined graphical element or marker (e.g., changing a
square into a triangle, or changing rounded corners into squared corners, etc.).

2.2.4 Structural Conformance

An implementation that creates and displays BPMN diagrams SHALL conform to the specifications and restrictions with
respect to the connections and other diagrammatic relationships between graphical elements. Where permitted or
requested connections are specified as conditional and based on attributes of the corresponding concepts, the
implementation SHALL ensure the correspondence between the connections and the values of those attributes.

NOTE: In general, these connections and relationships have specified semantic interpretations, which specify interactions
among the process concepts represented by the graphical elements. Conditional relationships based on attributes represent
specific variations in behavior. Structural conformance therefore guarantees the correct interpretation of the diagram as a
specification of process, in terms of flows of control and information. Throughout the document, structural specifications will
appear in paragraphs using a special shaped bullet: Example: ¢ A TASK MAY be a target for Sequence Flow; it can have
multiple incoming Flows. An incoming Flow MAY be from an alternative path and/or parallel paths.

8 Business Process Model and Notation (BPMN), v2.0.2

2.2.5 Process Semantics

This International Standard defines many semantic concepts used in defining Processes, and associates them with
graphical elements, markers, and connections. To the extent that an implementation provides an interpretation of the
BPMN diagram as a semantic specification of Process, the interpretation SHALL be consistent with the semantic
interpretation herein specified. In other words, the implementation claiming BPMN Process Modeling Conformance has
to support the semantics surrounding the diagram elements expressed in Clause 10.

NOTE: The implementations claiming Process Modeling Conformance are not expected to support the BPMN execution
semantics described in Clause 13.

2.2.6 Attributes and Model Associations

This International Standard defines a number of attributes and properties of the semantic elements represented by the
graphical elements, markers, and connections. Some of these attributes are purely representational and are so marked, and
some have mandated representations. Some attributes are specified as mandatory, but have no representation or only
optional representation. And some attributes are specified as optional. For every attribute or property that is specified as
mandatory, a conforming implementation SHALL provide some mechanism by which values of that attribute or property
can be created and displayed. This mechanism SHALL permit the user to create or view these values for each BPMN
element specified to have that attribute or property. Where a graphical representation for that attribute or property is
specified as REQUIRED, that graphical representation SHALL be used. Where a graphical representation for that
attribute or property is specified as optional, the implementation MAY use either a graphical representation or some other
mechanism. If a graphical representation is used, it SHALL be the representation specified. Where no graphical
representation for that attribute or property is specified, the implementation MAY use either a graphical representation or
some other mechanism. If a graphical representation is used, it SHALL NOT conflict with the specified graphical
representation of any other BPMN element.

2.2.7 Extended and Optional Elements

A conforming implementation is NOT REQUIRED to support any element or attribute that is specified herein to be non-
normative or informative. In each instance in which this specification defines a feature to be “optional,” it specifies
whether the option is in:

 how the feature will be displayed,

« whether the feature will be displayed,

« whether the feature will be supported.
A conforming implementation is NOT REQUIRED to support any feature whose support is specified to be optional. If an

implementation supports an optional feature, it SHALL support it as specified. A conforming implementation SHALL
support any “optional” feature for which the option is only in whether or how it SHALL be displayed.

2.2.8 Visual Interchange
One of the main goals of this International Standard is to provide an interchange format that can be used to exchange
BPMN definitions (both domain model and diagram layout) between different tools. The implementation should support

the metamodel for Process types specified in sub clause 13.1 to enable portability of process diagrams so that users can
take business process definitions created in one vendor’s environment and use them is another vendor’s environment.

Business Process Model and Notation (BPMN), v2.0.2 9

2.3 Process Execution Conformance

The next two sub clauses describe Process Execution Conformance.
2.3.1 Execution Semantics

The BPMN execution semantics have been fully formalized in this version of the International Standard. The tool
claiming BPMN Execution Conformance type MUST fully support and interpret the operational semantics and
Activity life-cycle specified in sub clause 14.2.2. Non-operational elements listed in Clause 14 MAY be ignored by
implementations claiming BPMN Execution Conformance type. Conformant implementations MUST fully support
and interpret the underlying metamodel.

NOTE: The tool claiming Process Execution Conformance type is not expected to support and interpret Choreography
models. The tool claiming Process Execution Conformance type is not expected to support Process Modeling Conformance.
More precisely, the tool is not required to support graphical syntax and semantics defined in this International Standard. [t MAY
use different graphical elements, shapes and markers, than those defined in this International Standard.

2.3.2 Import of Process Diagrams

The tool claiming Process Execution Conformance type MUST support import of BPMN Process diagram types
including its definitional Collaboration (see Table 10.1).

2.4 BPEL Process Execution Conformance

Special type of Process Execution Conformance that supports the BPMN mapping to WS-BPEL as specified in sub clause
15.1 can claim BPEL Process Execution Conformance.

NOTE: The tool claiming BPEL Process Execution Conformance MUST fully support Process Execution Conformance.
The tool claiming BPEL Process Execution Conformance is not expected to support and interpret Choreography models.
The tool claiming BPEL Process Execution Conformance is not expected to support Process Modeling Conformance.

2.5 Choreography Modeling Conformance

The next five sub clauses describe Choreography Conformance.
251 BPMN Choreography Types

The implementations claiming Choreography Conformance type MUST support the following BPMN packages:

¢ The BPMN core elements, which include those defined in the Infrastructure, Foundation, Common, and Service
packages (see Clause 8).

& Choreography diagrams, which includes the elements defined in the Choreography, and Choreography
packages (see Clause 11).

4 Collaboration diagrams, which include Pools and Message Flow (see Clause 9).

10 Business Process Model and Notation (BPMN), v2.0.2

2.5.2 BPMN Choreography Elements

The Choreography Conformance set includes Message, Choreography Task, Global Choreography Task,
Sub-Choreography (expanded and collapsed), certain types of Start Events (e.g., None, Timer, Conditional,
Signal, and Multiple), certain types of Intermediate Events (None, Message attached to Activity boundary,
Timer — normal as well as attached to Activity boundary, Timer used in Event Gateways, Cancel attached to an
Activity boundary, Conditional, Signal, Multiple, Link, etc.) and certain types of End Events (None and
Terminate), and Gateways. In addition, to enable Choreography within Collaboration it should support Pools and
Message Flow.

2.5.3 Visual Appearance

An implementation that creates and displays BPMN Choreography Diagrams SHALL use the graphical elements,
shapes, and markers as specified in the BPMN International Standard. The use of text, color, size and lines for
Choreography diagram types are listed in sub clause 7.4.

2.5.4 Choreography Semantics

The tool claiming Choreography Conformance should fully support and interpret the graphical and execution semantics
surrounding Choreography diagram elements and Choreography diagram types.

2.5.5 Visual Interchange
The implementation should support import/export of Choreography diagram types and Collaboration diagram types
that depict Choreography within collaboration as specified in sub clause 9.4 to enable portability of Choreography

definitions, so that users can take BPMN definitions created in one vendor’s environment and use them is another
vendor’s environment.

Business Process Model and Notation (BPMN), v2.0.2 1

2.6

Table 2.5 summarizes the requirements for BPMN Conformance.

Table 2.5 — Types of BPMN Conformance

Summary of BPMN Conformance Types

that need to be supported.

Sub-Process, Call Activity,
all Event types, all Gateway
types, Pool, Lane, Data
Object (including Datalnput
and DataOutput), Message,
Group, Artifacts, markers for
Tasks and Sub-Processes,
Sequence Flow, Associations,
and Message Flow.

Category Process Modeling Process BPELProcess | Choreography

Conformance Execution Execution Conformance
Conformance Conformance

Visual representation of Process diagram types N/A N/A Choreography diagram types

BPMN Diagram Types and and
Collaboration diagram types Collaboration diagram types
depicting collaborations depicting collaboration among
among Process diagram Choreography diagram types.
types.

BPMN Diagram Elements | All Task types, embedded N/A N/A Message, Choreography Task,

Global Choreography Task,
Sub-Choreography
(expanded and collapsed),
certain types of Start,
Intermediate, and End Events,
Gateways, Pools and Message
Flow.

Import/Export of diagram

Yes for Process and

Yes for Process

Yes for Process

Yes for Choreography and

syntax and semantics

diagrams that depict Process
within Collaboration.

types Collaboration diagrams that | diagrams diagrams Collaboration diagrams
depict Process within depicting choreography within
Collaboration. Collaboration.

Support for Graphical Process and Collaboration N/A N/A Choreography and

Collaboration diagrams
depicting Choreography
within Collaboration.

Support for Execution
Semantics

N/A

Yes for Process
diagrams

Yes for Process
diagrams

Choreography execution
semantics

3 Normative References

3.1 General

The following referenced documents are indispensable for the application of this document. For dated references, only the
edition cited applies. For undated references, the latest edition of the referenced document (including any amendments)

applies.

12

Business Process Model and Notation (BPMN), v2.0.2

3.2 Normative

OMG UML

+ OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2 -
http://www.omg.org/spec/UML/2.1.2/Superstructure

OMG MOF

+ Object Management Group - Meta Object Facility (MOF) Core Specification, V2.0
http://www.omg.org/spec/MOF/2.0

RFC-2119

« Key words for use in RFCs to Indicate Requirement Levels, S. Bradner, IETF RFC 2119, March 1997
http://www.ietf.org/rfc/rfc2119.txt

3.3 Non-Normative

Activity Service

« Additional Structuring Mechanism for the OTS Specification, OMG, June 1999
http://www.omg.org

« J2EE Activity Service for Extended Transactions (JSR 95), JCP
http://www.jcp.org/jsr/detail/95.jsp

BPEL4People

« WS-BPEL Extension for People (BPEL4People) Specification Version 1.1, Committee Specification,
17 August 2010
http://docs.oasis-open.org/bpeldpeople/bpeldpeople-1.1-spec-cs-01.html

Business Process Definition Metamodel

« OMG, May 2008,
http://www.omg.org/docs/dtc/08-05-07.pdf

Business Process Modeling

« Jean-Jacques Dubray, “A Novel Approach for Modeling Business Process Definitions,” 2002
http://www.ebpml.org/ebpml2.2.doc

Business Transaction Protocol

« OASIS BTP Technical Committee, June, 2002
http://www.oasis-open.org/committees/download.php/1184/2002-06-03.BTP_cttee spec_1.0.pdf

Business Process Model and Notation (BPMN), v2.0.2 13

Dublin Core Meta Data

» Dublin Core Metadata Element Set, Dublin Core Metadata Initiative
http://dublincore.org/documents/dces/

ebXML BPSS

« Jean-Jacques Dubray, “A new model for ebXML BPSS Multi-party Collaborations and Web Services Choreography,”
2002
http://www.ebpml.org/ebpml.doc

Open Nested Transactions

« Concepts and Applications of Multilevel Transactions and Open Nested Transactions, Gerhard Weikum, Hans-J.
Schek, 1992
http://citeseer.nj.nec.com/weikum92concepts.html

RDF

« RDF Vocabulary Description Language 1.0: RDF Schema, W3C Working Draft
http://www.w3.org/TR/rdf-schema/

SOAP 1.2

» SOAP Version 1.2 Part 1: Messaging Framework, W3C Working Draft
http://'www.w3.org/TR/soap12-part1/

* SOAP Version 1.2 Part21: Adjuncts, W3C Working Draft
http://www.w3.org/TR/soap12-part2/

UDDI

+ Universal Description, Discovery and Integration, Ariba, IBM and Microsoft, UDDI.org.
http://www.uddi.org

URI

» Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L. Masinter, IETF RFC 2396,
August 1998
http://www.ietf.org/rfc/rfc2396.txt

WfMC Glossary

» Workflow Management Coalition Terminology and Glossary
http://www.wfmc.org/wfmc-standards-framework.html

Web Services Transaction

* (WS-Transaction) 1.1, OASIS, 12 July 2007,
http://www.oasis-open.org/committees/ws-tx/

14 Business Process Model and Notation (BPMN), v2.0.2

Workflow Patterns

+ Russell, N., ter Hofstede, A.H.M., van der Aalst W.M.P, & Mulyar, N. (2006). Workflow Control-Flow Patterns: A
Revised View. BPM Center Report BPM-06-22, BPMcentre.org
http://www.workflowpatterns.com/

WSBPEL

« Web Services Business Process Execution Language (WSBPEL) 2.0, OASIS Standard, April 2007
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

WS-Coordination

« Web Services Coordination (WS-Coordination) 1.1, OASIS Standard, July 2007
http://www.oasis-open.org/committees/ws-tx/

WSDL

« Web Services Description Language (WSDL) 2.0, W3C Proposed Recommendation, June 2007
http://www.w3.org/TR/wsdl20/

WS-HumanTask

« Web Services Human Task (WS-HumanTask) 1.1, August 2010
http://docs.oasis-open.org/bpeldpeople/ws-humantask-1.1-spec-cs-01.html

XML 1.0 (Second Edition)

 Extensible Markup Language (XML) 1.0, Second Edition, Tim Bray et al., eds., W3C, 6 October 2000
http://'www.w3.org/TR/REC-xml

XML-Namespaces

« Namespaces in XML, Tim Bray et al., eds., W3C, 14 January 1999
http://www.w3.org/TR/REC-xml-names

XML-Schema

« XML Schema Part 1: Structures, Henry S. Thompson, David Beech, Murray Maloney, Noah Mendelsohn, W3C, 2 May
2001
http://www.w3.org/TR/xmlschema-1//

« XML Schema Part 2: Datatypes, Paul V. Biron and Ashok Malhotra, eds., W3C, 2 May 2001
http://www.w3.org/TR/xmlschema-2/

XPath

« XML Path Language (XPath) 1.0, James Clark and Steve DeRose, eds., W3C, 16 November 1999
http://www.w3.org/TR/xpath

Business Process Model and Notation (BPMN), v2.0.2 15

XPDL

« Workflow Management Coalition XML Process Definition Language, version 2.0.
http://www.wfmec.org/wfmc-standards-framework.html

4 Terms and Definitions

NOTE: See Annex C - Glossary.

5 Symbols

NOTE: There are no symbols defined.

6 Additional Information

6.1 Conventions

The sub clause introduces the conventions used in this document. This includes (text) notational conventions and
notations for schema components. Also included are designated namespace definitions.

6.1.1 Typographical and Linguistic Conventions and Style

This International Standard incorporates the following conventions:

« The keywords “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “MUST NOT,” “SHOULD,” “SHOULD NOT,”
“RECOMMENDED,” “MAY,” and “OPTIONAL” in this document are to be interpreted as described in RFC-2119.

» A term is a word or phrase that has a special meaning. When a term is defined, the term name is highlighted in bold
typeface.

A reference to another definition, sub clause, or specification is highlighted with underlined typeface and provides a
link to the relevant location in this International Standard.

A reference to a graphical element is highlighted with a bold, capitalized word and will be presented with the Arial
font (e.g., Sub-Process).

« A reference to a non-graphical element or BPMN concept is highlighted by being italicized and will be presented with
the Times New Roman font (e.g., token).

A reference to an attribute or model association will be presented with the Courier New font (e.g., Expression).

« A reference to a WSBPEL element, attribute, or construct is highlighted with an italic lower-case word, usually
preceded by the word “WSBPEL” and will be presented with the Courier New font (e.g., WSBPEL pick).

» Non-normative examples are set off in boxes and accompanied by a brief explanation.

16 Business Process Model and Notation (BPMN), v2.0.2

« XML and pseudo code is highlighted with mono-spaced typeface. Different font colors MAY be used to highlight
the different components of the XML code.

 The cardinality of any content part is specified using the following operators:
* <none> — exactly once
* [0..1]—Oor1
* [0..*]— 0 or more

* [1.*]—1 or more

« Attributes separated by | and grouped within { and } — alternative values
o <value> — default value

+ <type>— the type of the attribute

6.1.2 Abbreviations

The following abbreviations are used throughout:

This abbreviation Refers to

WSBPEL Web Services Business Process Execution Language (see WSBPEL). This abbreviation refers
specifically to version 2.0 of this International Standard.

WSDL Web Service Description Language (see WSDL). This abbreviation refers specifically to the W3C
Technical Note, 15 March 2001, but is intended to support future versions of the WSDL specification.

6.2 Structure of this Document

Clause 1 discusses the scope of the document and provides a summary of the elements introduced in subsequent clauses
of the document.

Clause 7 introduces the BPMN Core that includes basic BPMN elements needed for constructing various Business
Processes, including collaborations, orchestration Processes and Choreographies.

Elements needed for modeling of Collaborations, orchestration Processes, Conversations, and Choreographies
are introduced in Clauses 8, 9, 10 and 11, respectively.

Clause 13 introduces the BPMN visual diagram model. Clause 14 defines the execution semantics for Process
orchestrations in BPMN 2.0. Clause 14 discusses a mapping of a BPMN model to WS-BPEL that is derived by
analyzing the BPMN objects and the relationships between these objects. Exchange formats and an XSLT transformation
between them are provided in Clause 15.

6.3 Acknowledgments

Submitting Organizations

The following companies are formal submitting members of OMG:

+ Axway

+ International Business Machines

Business Process Model and Notation (BPMN), v2.0.2 17

MEGA International
* Oracle

+ SAP AG

+ Unisys

Supporting Organizations

The following organizations support this International Standard but are not formal submitters:

« Accenture

« Adaptive

+ BizAgi

+ Bruce Silver Associates
+ Capgemini

» Enterprise Agility

» France Telecom

« IDS Scheer

« Intalio

» Metastorm

» Model Driven Solutions
» Nortel

» Red Hat Software

+ Software AG

« TIBCO Software

» Vangent

Special Acknowledgments

The following persons were members of the core teams that contributed to the content of this International Standard:
Anurag Aggarwal, Mike Amend, Sylvain Astier, Alistair Barros, Rob Bartel, Mariano Benitez, Conrad Bock, Gary
Brown, Justin Brunt, John Bulles, Martin Chapman, Fred Cummins, Rouven Day, Maged Elaasar, David Frankel, Denis
Gagné, John Hall, Reiner Hille-Doering, Dave Ings, Pablo Irassar, Oliver Kieselbach, Matthias Kloppmann, Jana Koehler,
Frank Michael Kraft, Tammo van Lessen, Frank Leymann, Antoine Lonjon, Sumeet Malhotra, Falko Menge, Jeff
Mischkinsky, Dale Moberg, Alex Moffat, Ralf Mueller, Sjir Nijssen, Karsten Ploesser, Pete Rivett, Michael Rowley,
Bernd Ruecker, Tom Rutt, Suzette Samoojh, Robert Shapiro, Vishal Saxena, Scott Schanel, Axel Scheithauer, Bruce
Silver, Meera Srinivasan, Antoine Toulme, Ivana Trickovic, Hagen Voelzer, Franz Weber, Andrea Westerinen and Stephen
A. White.

In addition, the following persons contributed valuable ideas and feedback that improved the content and the quality of
this International Standard: im Amsden, Mariano Belaunde, Peter Carlson, Cory Casanave, Michele Chinosi, Manoj Das,
Robert Lario, Sumeet Malhotra, Henk de Man, David Marston, Neal McWhorter, Edita Mileviciene, Vadim Pevzner, Pete
Rivett, Jesus Sanchez, Markus Schacher, Sebastian Stein, and Prasad Yendluri.

18 Business Process Model and Notation (BPMN), v2.0.2

7 Overview

7.1 General

There has been much activity in the past few years in developing web service-based XML execution languages for
Business Process Management (BPM) systems. Languages such as WSBPEL provide a formal mechanism for the
definition of business processes. The key element of such languages is that they are optimized for the operation and inter-
operation of BPM Systems. The optimization of these languages for software operations renders them less suited for
direct use by humans to design, manage, and monitor Business Processes. WSBPEL has both graph and block structures
and utilizes the principles of formal mathematical models, such as pi—calculusl. This technical underpinning provides the
foundation for business process execution to handle the complex nature of both internal and B2B interactions and takes
advantage of the benefits of Web services. Given the nature of WSBPEL, a complex Business Process could be
organized in a potentially complex, disjointed, and unintuitive format that is handled very well by a software system (or
a computer programmer), but would be hard to understand by the business analysts and managers tasked to develop,
manage, and monitor the Process. Thus, there is a human level of “inter-operability” or “portability” that is not addressed
by these web service-based XML execution languages.

Business people are very comfortable with visualizing Business Processes in a flow-chart format. There are thousands
of business analysts studying the way companies work and defining Business Processes with simple flow charts. This
creates a technical gap between the format of the initial design of Business Processes and the format of the languages,
such as WSBPEL, that will execute these Business Processes. This gap needs to be bridged with a formal mechanism
that maps the appropriate visualization of the Business Processes (a notation) to the appropriate execution format (a
BPM execution language) for these Business Processes.

Inter-operation of Business Processes at the human level, rather than the software engine level, can be solved with
standardization of the Business Process Model and Notation (BPMN). BPMN provides multiple diagrams, which are
designed for use by the people who design and manage Business Processes. BPMN also provides a mapping to an
execution language of BPM Systems (WSBPEL). Thus, BPMN would provide a standard visualization mechanism for
Business Processes defined in an execution optimized business process language.

BPMN provides businesses with the capability of understanding their internal business procedures in a graphical notation
and will give organizations the ability to communicate these procedures in a standard manner. Currently, there are scores
of Process modeling tools and methodologies. Given that individuals will move from one company to another and that
companies will merge and diverge, it is likely that business analysts need to understand multiple representations of
Business Processes—potentially different representations of the same Process as it moves through its lifecycle of
development, implementation, execution, monitoring, and analysis. Therefore, a standard graphical notation will facilitate
the understanding of the performance Collaborations and business transactions within and between the organizations.
This will ensure that businesses will understand themselves and participants in their business and will enable
organizations to adjust to new internal and B2B business circumstances quickly. BPMN follows the tradition of
flowcharting notations for readability and flexibility. In addition, the BPMN execution semantics is fully formalized. The
OMG is using the experience of the business process notations that have preceded BPMN to create the next generation
notation that combines readability, flexibility, and expandability.

1. See Milner, 1999, “Communicating and Mobile Systems: the —Calculus,” Cambridge University Press. ISBN 0 521 64320 1
(hc.) ISBN 0 521 65869 1 (pbk.)

Business Process Model and Notation (BPMN), v2.0.2 19

BPMN will also advance the capabilities of traditional business process notations by inherently handling B2B Business
Process concepts, such as public and private Processes and Choreographies, as well as advanced modeling concepts,
such as exception handling, transactions, and compensation.

7.2 BPMN Scope

This International Standard provides a notation and model for Business Processes and an interchange format that can be
used to exchange BPMN Process definitions (both domain model and diagram layout) between different tools. The goal
of the International Standard is to enable portability of Process definitions, so that users can take Process definitions
created in one vendor’s environment and use them in another vendor’s environment.

The BPMN 2.0.2 International Standard extends the scope and capabilities of the BPMN 1.2 in several areas:

« Formalizes the execution semantics for all BPMN elements.

« Defines an extensibility mechanism for both Process model extensions and graphical extensions.
« Refines Event composition and correlation.

« Extends the definition of human interactions.

» Defines a Choreography model.

This International Standard also resolves known BPMN 1.2 inconsistencies and ambiguities.

BPMN is constrained to support only the concepts of modeling that are applicable to Business Processes. This means
that other types of modeling done by organizations for business purposes is out of scope for BPMN. Therefore, the
following are aspects that are out of the scope of this International Standard:

+ Definition of organizational models and resources,
» Modeling of functional breakdowns,
» Data and information models,
* Modeling of strategy,
+ Business rules models.
Since these types of high-level modeling either directly or indirectly affects Business Processes, the relationships

between BPMN and other high-level business modeling can be defined more formally as BPMN and other specifications
are advanced.

While BPMN shows the flow of data (Messages), and the association of data artifacts to Activities, it is not a data flow
language. In addition, operational simulation, monitoring, and deployment of Business Processes are out of scope of
this International Standard.

BPMN 2.0.2 can be mapped to more than one platform dependent process modeling language, e.g., WS-BPEL 2.0. This
International Standard includes a mapping of a subset of BPMN to WS-BPEL 2.0. Mappings to other emerging standards
are considered to be separate efforts.

The International Standard utilizes other standards for defining data types, Expressions, and service operations. These
standards are XML Schema, XPath, and WSDL, respectively.

20 Business Process Model and Notation (BPMN), v2.0.2

7.2.1 Uses of BPMN

Business Process modeling is used to communicate a wide variety of information to a wide variety of audiences. BPMN
is designed to cover many types of modeling and allows the creation of end-to-end Business Processes. The structural
elements of BPMN allow the viewer to be able to easily differentiate between sections of a BPMN Diagram. There are
three basic types of sub-models within an end-to-end BPMN model:

1. Processes (Orchestration), including:
* Private non-executable (internal) Business Processes
* Private executable (internal) Business Processes

* Public Processes
2. Choreographies

3. Collaborations, which can include Processes and/or Choreographies

* A view of Conversations

Private (Internal) Business Processes

Private Business Processes are those internal to a specific organization. These Processes have been generally called
workflow or BPM Processes (see Figure 10.4). Another synonym typically used in the Web services area is the
Orchestration of services. There are two types of private Processes: executable and non-executable. An executable
Process is a Process that has been modeled for the purpose of being executed according to the semantics defined in
Clause 14. Of course, during the development cycle of the Process, there will be stages where the Process does not have
enough detail to be “executable.” A non-executable Process is a private Process that has been modeled for the purpose
of documenting Process behavior at a modeler-defined level of detail. Thus, information needed for execution, such as
formal condition Expressions are typically not included in a non-executable Process.

If a swimlanes-like notation is used (e.g., a Collaboration, see below) then a private Business Process will be contained
within a single Pool. The Process flow is therefore contained within the Pool and cannot cross the boundaries of the
Pool. The flow of Messages can cross the Pool boundary to show the interactions that exist between separate private
Business Processes.

Order is Record of Premium of or Reject Applicant of

Complete Applicant Policy Policy Aszjr;)(\;/t?é:r

&Determine & Check etermine) Approve Notify |

Figure 7.1 — Example of a private Business Process

Public Processes

A public Process represents the interactions between a private Business Process and another Process or Participant
(see Figure 7.2). Only those Activities that are used to communicate to the other Participant(s) are included in the public
Process. All other “internal” Activities of the private Business Process are not shown in the public Process. Thus, the
public Process shows to the outside world the Message Flows and the order of those Message Flows that are needed to
interact with that Process. Public Processes can be modeled separately or within a Collaboration to show the flow of
Messages between the public Process Activities and other Participants. Note that the public type of Process was named
“abstract” in BPMN 1.2.

Business Process Model and Notation (BPMN), v2.0.2 21

Patient

o

T lr | feeTsick Pickup yoir medicine T Here is yoﬁ’ medicine

and you Can leave
| want to gee doctor -
1 doctor | | need my"nedlcme |

Go seei
l

Recelve Receive Send Recelve Send
Doctor Send Appt. Symptoms Prescription Medicine Medicine
Request ymp Pickup Request

Figure 7.2 — Example of a public Process

Collaborations

A Collaboration depicts the interactions between two or more business entities. A Collaboration usually contains two or
more Pools, representing the Participants in the Collaboration. The Message exchange between the Participants is
shown by a Message Flow that connects two Pools (or the objects within the Pools). The Messages associated with the
Message Flows can also be shown. The Collaboration can be shown as two or more public Processes communicating
with each other (see Figure 7.3). With a public Process, the Activities for the Collaboration participants can be
considered the “touch-points” between the participants. The corresponding internal (executable) Processes are likely to
have much more Activity and detail than what is shown in the public Processes. Or a Pool MAY be empty, a “black
box.” Choreographies MAY be shown “in between” the Pools as they bisect the Message Flows between the Pools. All
combinations of Pools, Processes, and a Choreography are allowed in a Collaboration.

22 Business Process Model and Notation (BPMN), v2.0.2

- .
2 Send Doctor Receive Send = Recglvg MSe.nq Receive
© R Aopt s t rescription edicine Medici
o equest ppt. ymptoms Pick R ¢ edicine
lliness ICKUp eques
Occurs T 7,y 9 7y T yay
IwaLt to Ifeel sick Pick LI dici I need m)J medicine |
see (100tor Go see doctor | ickup your medicine | . N
and you gan leave Here is yoyr medicine
| ' | ' | '
> v l v 1 v l
c = : .
S Receive . Send Receive
e 8 Doctor Send Appt. SRriC?:;/ris Prescription Medicine Msgir;(ijne
8 A Request ymp Pickup Request
o)
(14

Figure 7.3 — An example of a Collaborative Process

Choreographies

A self-contained Choreography (no Pools or Orchestration) is a definition of the expected behavior, basically a
procedural contract, between interacting Participants. While a normal Process exists within a Pool, a Choreography

exists between Pools (or Participants).

The Choreography looks similar to a private Business Process since it consists of a network of Activities, Events, and
Gateways (see Figure 7.4). However, a Choreography is different in that the Activities are interactions that represent a

set (1 or more) of Message exchanges, which involves two or more Participants. In addition, unlike a normal Process,
there is no central controller, responsible entity, or observer of the Process.

| want to see

: I need my
the Doctor | feel SICKE medicine
Patient Patient Patient Patient
C) Doctor Handle Handle Handle

Request Symptoms Prescription Medicine
Dr. Office Dr. Office Dr. Office Dr. Office

Go see the P'C.kl.Jp your Here is your :

medicine, then
Doctor

Figure 7.4 — An example of a Choreography

leave

Business Process Model and Notation (BPMN), v2.0.2

medicine

23

Conversations

The Conversation diagram is a particular usage of and an informal description of a Collaboration diagram. However, the
Pools of a Conversation usually do not contain a Process and a Choreography is usually not placed in between the
Pools of a Conversation diagram. A Conversation is the logical relation of Message exchanges. The logical relation, in
practice, often concerns a business object(s) of interest, e.g., “Order,” “Shipment and Delivery,” or “Invoice.”

Message exchanges are related to each other and reflect distinct business scenarios. For example, in logistics, stock
replenishments involve the following type scenarios: creation of sales orders; assignment of carriers for shipments
combining different sales orders; crossing customs/quarantine; processing payment, and investigating exceptions. Thus, a
Conversation diagram, as shown in Figure 7.5, shows Conversations (as hexagons) between Participants (Pools). This
provides a “bird’s eye” perspective of the different Conversations that relate to the domain.

. Delivery Supplier
Retailer Negotiations
Delivery / Dispatch Consignee Shipment Schedule
Plan —
_/ _/

A O
(]

Delivery / Dispatch . .
Consolidator Plan Carrier Planning Shipper
/\ Carrier /\
__/ (Land, Sea, Rail, or Air) _/
Clearance Pre- Coverage
Customs/ Notification Notification Insurance
Quarantine {) {)
— n - —
Breakdown l l 1 Locative Service
Service

Truck Breakdown Arrival/Pickup Traffic Optimization
Provision Confirmation Guidance

Figure 7.5 — An example of a Conversation diagram

Diagram Point of View

Since a BPMN Diagram MAY depict the Processes of different Participants, each Participant could view the Diagram
differently. That is, the Participants have different points of view regarding how the Processes will apply to them. Some
of the Activities will be internal to the Participant (meaning performed by or under control of the Participant) and other
Activities will be external to the Participant. Each Participant will have a different perspective as to which are internal
and external. At runtime, the difference between internal and external Activities is important in how a Participant can

24 Business Process Model and Notation (BPMN), v2.0.2

view the status of the Activities or troubleshoot any problems. However, the Diagram itself remains the same. Figure 7.3
displays a Business Process that has two points of view. One point of view is of a Patient, the other is of the Doctor’s
office. The Diagram shows the Activities of both participants in the Process, but when the Process is actually being
performed, each Participant will only have control over their own Activities. Although the Diagram point of view is
important for a viewer of the Diagram to understand how the behavior of the Process will relate to that viewer, BPMN
will not currently specify any graphical mechanisms to highlight the point of view. It is open to the modeler or modeling
tool vendor to provide any visual cues to emphasize this characteristic of a Diagram.

Understanding the Behavior of Diagrams

Throughout this International Standard, we discuss how Sequence Flows are used within a Process. To facilitate this
discussion, we employ the concept of a token that will traverse the Sequence Flows and pass through the elements in the
Process. A token is a theoretical concept that is used as an aid to define the behavior of a Process that is being
performed. The behavior of Process elements can be defined by describing how they interact with a token as it
“traverses” the structure of the Process. However, modeling and execution tools that implement BPMN are NOT
REQUIRED to implement any form of token.

A Start Event generates a foken that MUST eventually be consumed at an End Event (which MAY be implicit if not
graphically displayed). The path of fokens should be traceable through the network of Sequence Flows, Gateways, and
Activities within a Process.

NOTE: A token does not traverse a Message Flow since it is a Message that is passed down a Message Flow (as the name
implies).

7.3 BPMN Elements

It should be emphasized that one of the drivers for the development of BPMN is to create a simple and understandable
mechanism for creating Business Process models, while at the same time being able to handle the complexity inherent
to Business Processes. The approach taken to handle these two conflicting requirements was to organize the graphical
aspects of the notation into specific categories. This provides a small set of notation categories so that the reader of a
BPMN diagram can easily recognize the basic types of elements and understand the diagram. Within the basic categories
of elements, additional variation and information can be added to support the requirements for complexity without
dramatically changing the basic look and feel of the diagram. The five basic categories of elements are:

Flow Objects

Data

1
2
3. Connecting Objects
4. Swimlanes

5

Artifacts

Flow Objects are the main graphical elements to define the behavior of a Business Process. There are three Flow
Objects:

1. Events
2. Activities
3. Gateways

Data is represented with the four elements:

Business Process Model and Notation (BPMN), v2.0.2 25

1. Data Objects
2. Data Inputs
3. Data Outputs
4. Data Stores

There are four ways of connecting the Flow Objects to each other or other information. There are four Connecting
Objects:

1. Sequence Flows
2. Message Flows
3. Associations
4. Data Associations
There are two ways of grouping the primary modeling elements through “Swimlanes:”
1. Pools

2. Lanes

Artifacts are used to provide additional information about the Process. There are two standardized Artifacts, but
modelers or modeling tools are free to add as many Artifacts as necessary. There could be additional BPMN efforts to
standardize a larger set of Artifacts for general use or for vertical markets. The current set of Artifacts includes:

* Group

« Text Annotation
7.3.1 Basic BPMN Modeling Elements

Table 7.1 displays a list of the basic modeling elements that are depicted by the notation.

Table 7.1 — Basic Modeling Elements

Element Description Notation

Event An Event is something that “happens” during the
course of a Process (see page 235) or a
Choreography (see page 339). These Events
affect the flow of the model and usually have a
cause (trigger) or an impact (result). Events are
circles with open centers to allow internal markers
to differentiate different triggers or results. There
are three types of Events, based on when they
affect the flow: Start, Intermediate, and End.

Activity An Activity is a generic term for work that company
performs (see page 149) in a Process. An Activity
can be atomic or non-atomic (compound). The
types of Activities that are a part of a Process
Model are: Sub-Process and Task, which are
rounded rectangles. Activities are used in both
standard Processes and in Choreographies.

26 Business Process Model and Notation (BPMN), v2.0.2

Table 7.1 — Basic Modeling Elements

Gateway

A Gateway is used to control the divergence and
convergence of Sequence Flows in a Process
(see page 147) and in a Choreography (see page
335). Thus, it will determine branching, forking,
merging, and joining of paths. Internal markers will
indicate the type of behavior control.

Sequence Flow

A Sequence Flow is used to show the order that
Activities will be performed in a Process (see page
95) and in a Choreography (see page 320).

Message Flow

A Message Flow is used to show the flow of
Messages between two Participants that are
prepared to send and receive them (see page
113). In BPMN, two separate Pools in a
Collaboration Diagram will represent the two
Participants (e.g., PartnerEntities and/or
PartnerRoles).

Association

An Association is used to link information and
Artifacts with BPMN graphical elements (see page
65). Text Annotations (see page 69) and other
Artifacts (see page 64) can be Associated with the
graphical elements. An arrowhead on the
Association indicates a direction of flow (e.g.,
data), when appropriate.

Pool

A Pool is the graphical representation of a
Participant in a Collaboration (see page 113). It
also acts as a “swimlane” and a graphical
container for partitioning a set of Activities from
other Pools, usually in the context of B2B
situations. A Pool MAY have internal details, in the
form of the Process that will be executed. Or a
Pool MAY have no internal details, i.e., it can be a
“pblack box.”

Name

Lane

A Lane is a sub-partition within a Process,
sometimes within a Pool, and will extend the entire
length of the Process, either vertically or
horizontally (see on page 304). Lanes are used to
organize and categorize Activities.

Name

Name | Name

Data Object

Data Objects provide information about what
Activities require to be performed and/or what they
produce (see page 204), Data Objects can
represent a singular object or a collection of
objects. Data Input and Data Output provide the
same information for Processes.

Message

A Message is used to depict the contents of a
communication between two Participants (as
defined by a business PartnerRole or a business
PartnerEntity—see on page 91).

<

Business Process Model and Notation (BPMN), v2.0.2

Table 7.1 — Basic Modeling Elements

Group (a box around a
group of objects within
the same category)

A Group is a grouping of graphical elements that
are within the same Category (see page 68). This
type of grouping does not affect the Sequence
Flows within the Group. The Category name
appears on the diagram as the group label.
Categories can be used for documentation or
analysis purposes. Groups are one way in which
Categories of objects can be visually displayed on
the diagram.

Text Annotation
(attached with an
Association)

Text Annotations are a mechanism for a modeler
to provide additional text information for the reader
of a BPMN Diagram (see page 69).

_T)escriptive Text

Here

7.3.2 Extended BPMN Modeling Elements

Table 7.2 displays a more extensive list of the Business Process concepts that could be depicted through a business
process modeling notation.

Table 7.2 - BPMN Extended Modeling Elements

Element

Description

Notation

Event

An Event is something that “happens” during
the course of a Process (see page 237) or a
Choreography (see page 335). These Events
affect the flow of the model and usually have
a cause (Trigger) or an impact (Result).
Events are circles with open centers to allow
internal markers to differentiate different
Triggers or Results. There are three types of
Events, based on when they affect the flow:
Start, Intermediate, and End.

Flow Dimension (e.g., Start, Intermediate, End)

28

Business Process Model and Notation (BPMN), v2.0.2

Table 7.2 — BPMN Extended Modeling Elements

Start As the name implies, the Start Event indicates | Start
where a particular Process (see page 235) or
Choreography (see page 339) will start.

Intermediate Intermediate Events occur between a Start
Event and an End Event. They will affect the
flow of the Process (see page 237) or
Choreography (see page 340), but will not
start or (directly) terminate the Process.

Intermediate

O U O

End As the name implies, the End Event indicates End

where a Process (see page 245) or

Choreography (see page 343) will end.
Type Dimension (e.g., The Start and some Intermediate Events have «Catching” “Throwing” Nondnterrupting
None, Message, Timer, “triggers” that define the cause for the Event e me
Error, Cancel, (See “Start Event” on page 237. and Message @ =2 o
Compensation, “Intermediate Event” on page 248). There are ' G
Conditional, Link, Signal, | multiple ways that these events can be Timer ‘E:B’ ‘@
Multiple, Terminate.) triggered. End Events MAY define a “result” Error @ @

that is a consequence of a Sequence Flow Escalation @ @ @ (:_:; «”'j»

path ending. Start Events can only react to - -

(“catch”) a trigger. End Events can only create | " ®

(“throw”) a result. Intermediate Events can Compensation @

catch or throw triggers. For the Events, Conditional = A=
triggers that catch, the markers are unfilled, onctiond = ‘g

and for triggers and results that throw, the Link

markers are filled. Signal @

Terminate

®®
@O®

’
1

N
)
u

7

R
\~E|

=

Additionally, some Events, which were used

to interrupt Activities in BPMN 1.1, can now Multiple @ (:6) (.’:_j)
be used in a mode that does notinterrupt. The | paraitel ,’:\ i
boundary of these Events is dashed (see Multiple @ g

figure to the right).

Activity An Activity is a generic term for work that
company performs (see page 149) in a
Process. An Activity can be atomic or non-
atomic (compound). The types of Activities
that are a part of a Process Model are: Sub-
Process and Task, which are rounded
rectangles. Activities are used in both
standard Processes and in Choreographies.

Business Process Model and Notation (BPMN), v2.0.2

Table 7.2 — BPMN Extended Modeling Elements

Task (Atomic) A Task is an atomic Activity that is included
within a Process (see page 154). A Task is ()
used when the work in the Process is not Task
broken down to a finer level of Process detail.
Name
—
Choreography Task A Choreography Task is an atomic Activity in —
a Choreography (see page 323). It represents Participant A
a set of one (1) or more Mgssage exchanges. Choreography
Each Choreography Task involves two (2) Task Name
Participants. The name of the Choreography
Task and each of the Participants are all —
displayed in the different bands that make up Participant B
the shape’s graphical notation. There are two
(2) or more Participant Bands and one Task
Name Band.
Process/Sub-Process A Sub-Process is a compound Activity that is
(non-atomic) included within a Process (see page 171) or)
Choreography (see page 335). Itis compound See Next Four Figures

in that it can be broken down into a finer level
of detail (a Process or Choreography) through
a set of sub-Activities.

Collapsed Sub-Process The details of the Sub-Process are not visible
in the Diagram (see page 171). A “plus” sign
in the lower-center of the shape indicates that
the Activity is a Sub-Process and has a lower- Sub-Process
level of detail. Name

Expanded Sub-Process The boundary of the Sub-Process is
expanded and the details (a Process) are
visible within its boundary (see page 171).
Note that Sequence Flows cannot cross the
boundary of a Sub-Process.

Collapsed Sub- The details of the Sub-Choreography are not
Choreography visible in the Diagram (see page 328). A Participant A
“plus” sign in the lower-center of the Task Sub-
Name Band of the shape indicates that the Choreography
Activity is a Sub-Process and has a lower- Name
level of detail.
Participant B

30 Business Process Model and Notation (BPMN), v2.0.2

Table 7.2 — BPMN Extended Modeling Elements

Expanded Sub-

The boundary of the Sub-Choreography is

and convergence of Sequence Flows in a
Process (see page 286) and in a
Choreography (see page 344). Thus, it will
determine branching, forking, merging, and
joining of paths. Internal markers will indicate
the type of behavior control (see below).

Choreography expanded and the details (a Choreography) ﬁ:ﬁ:ﬁ:ﬁ::}é

are visible within its boundary (see page 328). | |Sub-Choreography Name

Note that Sequence Flows cannot cross the [Participant C) (Participant A)

boundary of a Sub-Choreography. Choreography Choreography

O_’ Task Name Task Name _’O
(_ Participant B Participant C
L Participant B

Gateway A Gateway is used to control the divergence

O

Gateway Control Types

Icons within the diamond shape of the
Gateway will indicate the type of flow control
behavior. The types of control include:

» Exclusive decision and merging. Both
Exclusive (see page 286) and Event-Based
(see page 296) perform exclusive
decisions and merging Exclusive can be
shown with or without the “X” marker.

» Event-Based and Parallel Event-based
gateways can start a new instance of the
Process.

* Inclusive Gateway decision and merging
(see page 291).

+ Complex Gateway -- complex conditions
and situations (e.g., 3 out of 5; page 294).

+ Parallel Gateway forking and joining (see
page 292).

Each type of control affects both the incoming
and outgoing flow.

Exclusive or

Event-Based

0
@ Qx>

Parallel
Event-Based

Inclusive

Complex

Parallel

Sequence Flow

A Sequence Flow is used to show the order
that Activities will be performed in a Process
(see page 95) and in a Choreography (see
page 323).

See next seven figures

Business Process Model and Notation (BPMN), v2.0.2

31

Table 7.2 — BPMN Extended Modeling Elements

Normal Flow Normal flow refers to paths of Sequence Flow
that do not start from an Intermediate Event
attached to the boundary of an Activity. -

Uncontrolled flow Uncontrolled flow refers to flow that is not
affected by any conditions or does not pass
through a Gateway. The simplest example of -
this is a single Sequence Flow connecting two
Activities. This can also apply to multiple
Sequence Flows that converge to or diverge
from an Activity. For each uncontrolled
Sequence Flows a token will flow from the
source object through the Sequence Flows
to the target object.

Conditional flow A Sequence Flow can have a condition
Expression that are evaluated at runtime to
determine whether or not the Sequence Flow <> L
will be used (i.e., will a token travel down the
Sequence Flow — see page 95). If the
conditional flow is outgoing from an Activity,
then the Sequence Flow will have a mini-
diamond at the beginning of the connector
(see figure to the right). If the conditional flow
is outgoing from a Gateway, then the line will
not have a mini-diamond (see figure in the
row above).

Default flow For Data-Based Exclusive Gateways or N -
Inclusive Gateways, one type of flow is the
Default condition flow (see page 95). This flow
will be used only if all the other outgoing
conditional flow is not true at runtime. These
Sequence Flows will have a diagonal slash
will be added to the beginning of the
connector (see the figure to the right).

Exception Flow Exception flow occurs outside the normal flow
of the Process and is based upon an
Intermediate Event attached to the boundary
of an Activity that occurs during the
performance of the Process (see page 286). @

xception
Flow

Message Flow A Message Flow is used to show the flow of
Messages between two Participants that are
prepared to send and receive them (see page Oo—————_— == [‘,::r
122). In BPMN, two separate Pools in a
Collaboration Diagram will represent the two
Participants (e.g., PartnerEntities and/or
PartnerRoles).

32 Business Process Model and Notation (BPMN), v2.0.2

Table 7.2 — BPMN Extended Modeling Elements

Compensation
Association

Compensation Association occurs outside the
normal flow of the Process and is based upon
a Compensation Intermediate Event that is
triggered through the failure of a transaction
or a throw Compensation Event (see page
302). The target of the Association MUST be
marked as a Compensation Activity.

Compensation,
Association

Data Object

Data Objects provide information about what
Activities require to be performed and/or what
they produce (see page 204), Data Objects
can represent a singular object or a collection
of objects. Data Input and Data Output
provide the same information for Processes.

Data Object

]

Data Object (Collection)

]

Data Input Data Output

Message

A Message is used to depict the contents of a
communication between two Participants (as
defined by a business PartnerRole ora

business PartnerEntity—see on page 91).

N

Business Process Model and Notation (BPMN), v2.0.2

33

Table 7.2 — BPMN Extended Modeling Elements

Fork

BPMN uses the term “fork” to refer to the
dividing of a path into two or more parallel
paths (also known as an AND-Split). It is a
place in the Process where activities can be
performed concurrently, rather than
sequentially.

There are two options:

* Multiple Outgoing Sequence Flows can be
used (see figure top-right). This represents
“uncontrolled” flow is the preferred method
for most situations.

» A Parallel Gateway can be used (see figure
bottom-right). This will be used rarely,
usually in combination with other
Gateways.

L
T

Join

BPMN uses the term “join” to refer to the
combining of two or more parallel paths into
one path (also known as an AND-Join or
synchronization).

A Parallel Gateway is used to show the joining
of multiple Sequence Flows.

—

Decision, Branching
Point

Decisions are Gateways within a Process
(see page 286) or a Choreography (see page
344) where the flow of control can take one or
more alternative paths.

See next five rows.

Exclusive

This Decision represents a branching point
where Alternatives are based on conditional
Expressions contained within the
outgoing Sequence Flows (see page 288 or
page 344). Only one of the Alternatives will be
chosen.

Condition

Default

34

Business Process Model and Notation (BPMN), v2.0.2

Table 7.2 — BPMN Extended Modeling Elements

Event-Based

This Decision represents a branching point
where Alternatives are based on an Event
that occurs at that point in the Process (see
page 296) or Choreography (see page 349).
The specific Event, usually the receipt of a
Message, determines which of the paths will
be taken. Other types of Events can be used,
such as Timer. Only one of the Alternatives
will be chosen.

There are two options for receiving
Messages:

» Tasks of Type Receive can be used (see
figure top-right).

* Intermediate Events of Type Message can
be used (see figure bottom-right).

Inclusive

This Decision represents a branching point
where Alternatives are based on conditional
Expressions contained within the
outgoing Sequence Flows (see page 291).

In some sense it is a grouping of related
independent Binary (Yes/No) Decisions.
Since each path is independent, all
combinations of the paths MAY be taken, from
zero to all. However, it should be designed so
that at least one path is taken. A Default
Condition could be used to ensure that at
least one path is taken.

There are two versions of this type of
Decision:

» The first uses a collection of conditional
Sequence Flows, marked with mini-
diamonds (see top-right figure).

» The second uses an Inclusive Gateway
(see bottom-right picture).

Condition 1

Condition 2

Condition 1

Condition 2

Business Process Model and Notation (BPMN), v2.0.2

35

Table 7.2 — BPMN Extended Modeling Elements

Merging BPMN uses the term “merge” to refer to the P
exclusive combining of two or more paths into

one path (also known as an OR-Join).
A Merging Exclusive Gateway is used to show
the merging of multiple Sequence Flows (see —
upper figure to the right).
If all the incoming flow is alternative, then a —
Gateway is not needed. That is, uncontrolled
flow provides the same behavior (see lower
}B
CEE—

figure to the right).
See Next Two Figures

Looping BPMN provides two mechanisms for looping
within a Process.

Activity Looping The attributes of Tasks and Sub-Processes

will determine if they are repeated or
performed once (see page 188). There are
two types of loops: Standard and Multi-
Instance. A small looping indicator will be
displayed at the bottom-center of the activity.

Sequence Flow Looping | Loops can be created by connecting a
Sequence Flow to an “upstream” object. An
object is considered to be upstream if that
object has an outgoing Sequence Flow that
leads to a series of other Sequence Flows,
the last of which is an incoming Sequence
Flow for the original object.

36 Business Process Model and Notation (BPMN), v2.0.2

Table 7.2 — BPMN Extended Modeling Elements

Multiple Instances

The attributes of Tasks and Sub-Processes
will determine if they are repeated or
performed once (see page 190). A set of three
horizontal lines will be displayed at the
bottom-center of the activity for sequential
Multi-Instances (see upper figure to the right).
A set of three vertical lines will be displayed at
the bottom-center of the activity for sequential
Multi-Instances (see lower figure to the right).

Sequential

Parallel

Process Break
(something out of the
control of the process
makes the process
pause)

A Process Break is a location in the Process
that shows where an expected delay will
occur within a Process. An Intermediate Event
is used to show the actual behavior (see top-
right figure). In addition, a Process Break
Artifact, as designed by a modeler or
modeling tool, can be associated with the
Event to highlight the location of the delay
within the flow.

Announce

Issues for Vote

Increment
Tally

Voting
Response

Transaction

A transaction is a Sub-Process that is
supported by a special protocol that insures
that all parties involved have complete
agreement that the activity should be
completed or canceled (see page 176). The
attributes of the activity will determine if the
activity is a transaction. A double-lined
boundary indicates that the Sub-Process is a
Transaction.

\

Business Process Model and Notation (BPMN), v2.0.2

37

Table 7.2 — BPMN Extended Modeling Elements

Nested/Embedded Sub- | A nested (or embedded) Sub-Process is an
Process (Inline Block) activity that shares the same set of data as its) o
parent process (see page 171). This is There is no special indicator for nested Sub-
opposed to a Sub-Process that is Processes

independent, re-usable, and referenced from
the parent process. Data needs to be passed
to the referenced Sub-Process, but not to the
nested Sub-Process.

Group (a box around a A Group is a grouping of graphical | _~ _ __ _ _ . —
group of objects within elements that are within the same Category "r
the same category) (see page 66). This type of grouping does not | |
affect the Sequence Flows within the Group. |’
The Category name appears on the diagram | |
as the group label. Categories can be used for | .
documentation or analysis purposes. Groups | |
are one way in which Categories of objects .
can be visually displayed on the diagram. | |

Off-Page Connector Generally used for printing, this object will

show where a Sequence Flow leaves one

page and then restarts on the next page. A

Link Intermediate Event can be used as an

Off-Page Connector.

Association An Association is used to link information and
Artifacts with BPMN graphical elements (see
page 65). Text Annotations (see page 69) and | ..iiiiiiiiiiiiiiiiiiiiieeeenn >
other Artifacts (see page 64) can be
Associated with the graphical elements. An
arrowhead on the Association indicates a
direction of flow (e.g., data), when

appropriate.
Text Annotation Text Annotations are a mechanism for a
(attached with an modeler to provide additional text information it
Association) for the reader of a BPMN Diagram (see page Descrlptlve Text
69). Here
Pool A Pool is the graphical representation of a

Participant in a Collaboration (see page 110).
It also acts as a “swimlane” and a graphical
container for partitioning a set of Activities
from other Pools, usually in the context of B2B
situations. A Pool MAY have internal details,
in the form of the Process that will be
executed. Or a Pool MAY have no internal
details, i.e., it can be a “black box.”

Name

38 Business Process Model and Notation (BPMN), v2.0.2

Table 7.2 — BPMN Extended Modeling Elements

Lanes A Lane is a sub-partition within a Pool and will
extend the entire length of the Pool, either g
vertically or horizontally (see on page 304). g 3
Lanes are used to organize and categorize Slo
Activities. §

7.4 BPMN Diagram Types

The BPMN 2.0.2 aims to cover three basic models of Processes: private Processes (both executable and non-
executable), public Processes, and Choreographies. Within and between these three BPMN sub-models, many types of
Diagrams can be created. The following are examples of Business Processes that can be modeled using BPMN 2.0.2:

 High-level non-executable Process Activities (not functional breakdown).

+ Detailed executable Business Process.

 As-is or old Business Process.

+ To-be or new Business Process.

A description of expected behavior between two (2) or more business Participants—a Choreography.

+ Detailed private Business Process (either executable or non-executable) with interactions to one or more external
Entities (or “Black Box” Processes).

« Two or more detailed executable Processes interacting.

« Detailed executable Business Process relationship to a Choreography.
« Two or more public Processes.

 Public Process relationship to Choreography.

+ Two or more detailed executable Business Processes interacting through a Choreography.

BPMN is designed to allow describing all above examples of Business Processes. However, the ways that different sub-
models are combined is left to tool vendors. A BPMN 2.0.2 compliant implementation could RECOMMEND that
modelers pick a focused purpose, such as a private Process, or Choreographies. However, the BPMN 2.0.2 International
Standard makes no assumptions.

7.5 Use of Text, Color, Size, and Lines in a Diagram

Text Annotation objects can be used by the modeler to display additional information about a Process or attributes of the
objects within a BPMN Diagram.

€ BPMN elements (e.g., Flow objects) MAY have labels (e.g., its name and/or other attributes) placed inside the shape,
or above or below the shape, in any direction or location, depending on the preference of the modeler or modeling
tool vendor.

@ The fills that are used for the graphical elements MAY be white or clear.

@ The notation MAY be extended to use other fill colors to suit the purpose of the modeler or tool (e.g., to
highlight the value of an object attribute). However,

€ the markers for “throwing” Events MUST have a dark fill (see “End Event” on page 245 and “Intermediate
Event” on page 248 for more details).

Business Process Model and Notation (BPMN), v2.0.2 39

€ Participant Bands for Choreography Tasks and Sub-Choreographies that are not the initiator of the Activity
MUST have a light fill (see “Choreography Task” on page 323 and “Sub-Choreography” on page 328 for
more details).

€ Flow objects and markers MAY be of any size that suits the purposes of the modeler or modeling tool.
@ The lines that are used to draw the graphical elements MAY be black.

€ The notation MAY be extended to use other line colors to suit the purpose of the modeler or tool (e.g., to
highlight the value of an object attribute).

€ The notation MAY be extended to use other line styles to suit the purpose of the modeler or tool (e.g., to
highlight the value of an object attribute) with the condition that the line style MUST NOT conflict with any
current BPMN defined line style. Thus, the line styles of Sequence Flows, Message Flows, and Text
Associations MUST NOT be modified or duplicated.

7.6 Flow Object Connection Rules

An incoming Sequence Flow can connect to any location on a Flow Object (left, right, top, or bottom). Likewise, an
outgoing Sequence Flow can connect from any location on a Flow Object (left, right, top, or bottom). A Message Flow
also has this capability.

NOTE: BPMN allows this flexibility; however, we also RECOMMEND that modelers use judgment or best practices in how

Flow Objects should be connected so that readers of the Diagrams will find the behavior clear and easy to follow. This is even
more important when a Diagram contains Sequence Flows and Message Flows. In these situations it is best to pick a direction
of Sequence Flows, cither left to right or top to bottom, and then direct the Message Flows at a 90° angle to the Sequence

Flows. The resulting Diagrams will be much easier to understand.

7.6.1 Sequence Flow Connections Rules

Table 7.3 displays the BPMN Flow Objects and shows how these objects can connect to one another through Sequence
Flows. These rules apply to the connections within a Process Diagram and within a Choreography Diagram. The /1
symbol indicates that the object listed in the row can connect to the object listed in the column. The quantity of
connections into and out of an object is subject to various configuration dependencies are not specified here. Refer to the
sub clauses in the next clause for each individual object for more detailed information on the appropriate connection
rules. Note that if a Sub-Process has been expanded within a Diagram, the objects within the Sub-Process cannot be
connected to objects outside of the Sub-Process, nor can Sequence Flows cross a Pool boundary.

Table 7.3 — Sequence Flow Connection Rules

From\To O @ O
O o 7 2 2 V

40 Business Process Model and Notation (BPMN), v2.0.2

Table 7.3 — Sequence Flow Connection Rules

oo 2 2 2 A

)
~—
)

oo 2 2 2 2

{ [+)

<> o 7 7 7 7
O
O

Yoo 2 2 2 2

Only those objects that can have incoming and/or outgoing Sequence Flows are shown in the table. Thus, Pool, Lane,
Data Object, Group, and Text Annotation are not listed in the table. Also, the Activity shapes in the table represent
Activities and Sub-Processes for Processes, and Choreography Activities and Sub-Choreographies for
Choreography.

7.6.2 Message Flow Connection Rules

Table 7.4 displays the BPMN modeling objects and shows how these objects can connect to one another through Message
Flows. These rules apply to the connections within a Collaboration Diagram. The ¢! symbol indicates that the object
listed in the row can connect to the object listed in the column. The quantity of connections into and out of an object is
subject to various configuration dependencies that are not specified here. Refer to the sub clauses in the next clause for
each individual object for more detailed information on the appropriate connection rules. Note that Message Flows
cannot connect to objects that are within the same Pool.

Business Process Model and Notation (BPMN), v2.0.2 41

Table 7.4— Message Flow Connection Rules

From\To

Pool @

Name

Pool

Name

2
) A a b2 b2
®

Only those objects that can have incoming and/or outgoing Message Flows are shown in the table. Thus, Lane, Gateway,
Data Object, Group, and Text Annotation are not listed in the table.

7.7 BPMN Extensibility

BPMN 2.0.2 introduces an extensibility mechanism that allows extending standard BPMN elements with additional
attributes. It can be used by modelers and modeling tools to add non-standard elements or Artifacts to satisfy a
specific need, such as the unique requirements of a vertical domain, and still have valid BPMN Core. Extension attributes
MUST NOT contradict the semantics of any BPMN element. In addition, while extensible, BPMN Diagrams should still
have the basic look-and-feel so that a Diagram by any modeler should be easily understood by any viewer of the Diagram.
Thus the footprint of the basic flow elements (Events, Activities, and Gateways) MUST NOT be altered.

The International Standard differentiates between mandatory and optional extensions (sub clause 8.3.3 explains the syntax
used to declare extensions). If a mandatory extension is used, a compliant implementation MUST understand the
extension. If an optional extension is used, a compliant implementation MAY ignore the extension.

42 Business Process Model and Notation (BPMN), v2.0.2

7.8 BPMN Example

The following is an example of a manufacturing process from different perspectives.

Customer

—0

T 7 5
Conﬁrlnation Shipl-nem Rejsi:tion
|] |

o
K— —=—

Manufacturer
i I
P4ns Open
Provisioning Autfion
| v
Supplier Bidder

1]
Figure 7.6 — An example of a Collaboration diagram with black-box Pools

Business Process Model and Notation (BPMN), v2.0.2

43

oer [

3
Customer

- Customer

Can Fulfill

Order Request

Order ?
—<

Ma nufacturer

]
Capacity OK,

Parts Must I

be Ordered

Yes Order

Customer

[

Confirmation

Man ufacturer
*

Confimation E

Deliver Order

Manufacturer
_ranacnicl J

Shipme nt E

Part
Request

Man ufacturer

Procure Parts

Supplier

t
Part
Response

All Parts
Available ?,

Part
Request

Manufacturer

Part Auction

Bidder
I

4

Part
Response

Figure 7.7 — An example of a stand-alone Choreography diagram

44

Business Process Model and Notation (BPMN), v2.0.2

C ustomer
. Order
"1 Rejection
[\ [o
>

All Parts

Obtained?l

Ma nufacturer

Rejection E

—C

Capapity &
Pans Abailable

()

Rtrigea Ordor

o)
Lul

Parts (1..m)

Create Order
Confiemation

Invoica o
Customes

Ordor
[Subemitied]

Retrieve

Manut. Capacity

Capacity nat

&Sﬂﬂd

Parts List

& Pants Available

Available

¥

Rejection to
Customar

Arrives et
P Procure Parts
Heurs
=738
............... = .

(1.m)

o

Roset System Capacky OK,
Parts|hust

e Orfjered

Part Requisiton Pan Requisition

{1.n}

Part Roquisition
{1.n}

o Part Will Ba
Available on

Unavaiable

Procured
arts

Figure 7.8 — An example of a stand-alone Process (Orchestration) diagram

Business Process Model and Notation (BPMN), v2.0.2

45

46

Business Process Model and Notation (BPMN), v2.0.2

8 BPMN Core Structure

8.1 General

NOTE: The content of this clause is REQUIRED for all BPMN conformance types. For more information about BPMN
conformance types, see page 1.

The technical structuring of BPMN is based on the concept of extensibility layers on top of a basic series of simple
elements identified as Core Elements of the International Standard. From this core set of constructs, layering is used to
describe additional elements that extend and add new constructs to the International Standard and relies on clear
dependency paths for resolution. The XML Schema model lends itself particularly well to the structuring model with
formalized import and resolution mechanics that remove ambiguities in the definitions of elements in the outer layers of
the International Standard.

Co "
Ve /5
Q[,b

Ns

Collaboration

A Ctivi tj (=X

Figure 8.1 — A representation of the BPMN Core and Layer Structure

Figure 8.1 shows the basic principles of layering that can be composed in well defined ways. The approach uses
formalization constructs for extensibility that are applied consistently to the definition.

The additional effect of layering is that compatibility layers can be built, allowing for different levels of compliance
among vendors, and also enabling vendors to add their own layers in support of different vertical industries or target
audiences. In addition, it provides a mechanism for the redefinition of previously existing concepts without affecting
backwards compatibility, but defining two or more non-composable layers, the level of compliance with the International
Standard and backwards compatibility can be achieved without compromising clarity.

Business Process Model and Notation (BPMN), v2.0.2 47

The BPMN International Standard is structured in layers, where each layer builds on top of and extends lower layers.
Included is a Core or kernel that includes the most fundamental elements of BPMN, which are REQUIRED for
constructing BPMN diagrams: Process, Choreography, and Collaboration. The Core is intended to be simple,
concise, and extendable with well defined behavior.

The Core contains four sub-packages (see Figure 8.2):

1.

2.

Infrastructure: Two elements that are used for both abstract syntax models and diagram models.
Foundation: The fundamental constructs needed for BPMN modeling.
Service: The fundamental constructs needed for modeling services and interfaces.

Common: Those classes which are common to the layers of Process, Choreography, and Collaboration.

Fo Core

£33 Foundation

£ Common

£ Service

Figure 8.2 — Class diagram showing the core packages

NOTE: To simplify the diagram, the Infrastructure package is not shown in Figure 8.2.

Figure 8.3 displays the organization of the main set of BPMN core model elements.

48

Business Process Model and Notation (BPMN), v2.0.2

Deefimitions
{from infyssbructure]

= nooiDementy’ *

4+ dafingion

0.1

+ defiriton

+ dafirahon

=

RoatHensent
(froem Fundstioe

i supportedinterfacefofs

+ Calablellemens
Callabar ation | Callablethenrent
[Picrs Crllabwen abwant] o Corem
= & colabon 2on
+ -+ chersagrapnyital
| Chatirecniar gy ElohalCorversation Proceds
[Frae Choresagr spiy] (Teem Corvverationg] {From Frocess |
1= EobalChareogr el Tk
o Ehadsaaraphy |
. & 0.1 -
{Freem Carmenen) i (Froste Crlsher afiean)
& messageief
& b ITDONS
= Tigroel
{Fresm Irfr mitrisctun s
* = relatiorshcn
| Helatiansdeg
[Fram Foundaten]

Figure 8.3 — Class diagram showing the organization of the core BPMN elements

8.2 Infrastructure

The BPMN Infrastructure package contains two elements that are used for both abstract syntax models and diagram

models.

8.2.1 Definitions

Interface

-

(o Ramviw

w mbfaceies

-

| Participant
T -

odal Tk
(From Frocess)

Baseblement

[T w Frourelaliond

The Definitions class is the outermost containing object for all BPMN elements. It defines the scope of visibility and the
namespace for all contained elements. The interchange of BPMN files will always be through one or more Definitions.

Business Process Model and Notation (BPMN), v2.0.2

49

=

g id : String

] Definitions
(From Infrastructure)
[Eg name : 5tring
[Eg, targetMamespace : Stiing

[Eg expressionLanguage : Stiing

[Eg typeLanguage : String
[Eg exporter : String
[Eg exporterversion @ String

+ definition

0.1

+ definitions

1

+ definition

1

+ definition

1

+ rootElements

2
+ diagrams 2

-

+ imports

| BaseElement

(from Foundation)

= RootElement

(From Foundation)

] BPMNDiagram
(from BPMMDI)

= Import

(From Infrastructure)

[importType © 5ting
- [Eg location : String
[Eg namespace : String

]}
+ relationships

1

=
+ documentation | *

2] Documentation
(From Foundation)

[text : String

[Eg textFormat : String

] Relationship
(From Foundation)

- £ type @ String

[Eg, direction : RelationshipDirection

+ extensions [F

_

Figure 8.4 — Definitions class diagram

= Extension
(From Foundation)

[Eg mustUnderstand : Boolean

The Definitions element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 8.1 presents
the additional attributes and model associations of the Definitions element.

Table 8.1 — Definitions attributes and model association

Attribute Name

Description/Usage

name: string

The name of the Definition.

targetNamespace: string

This attribute identifies the namespace associated with the
Definition and follows the convention established by XML Schema.

expressionLanguage: string [0..1]

This attribute identifies the formal Expression language used in
Expressions within the elements of this Definition. The Default is
“http://www.w3.0rg/1999/XPath”. This value MAY be overridden on
each individual formal Expression. The language MUST be specified
in a URI format.

50

Business Process Model and Notation (BPMN), v2.0.2

Table 8.1 — Definitions attributes and model association

typeLanguage: string [0..1]

This attribute identifies the type system used by the elements of this
Definition. Defaults to http://www.w3.0rg/2001/XMLSchema. This
value can be overridden on each individual TtemDefinition. The
language MUST be specified in a URI format.

rootElements: RootElement [0..*]

This attribute lists the root elements that are at the root of this
Definitions. These elements can be referenced within this
Definitions and are visible to other Definitions.

diagrams: BPMNDiagram [0..*]

This attribute lists the BPMNDiagrams that are contained within this
Definitions (see page 367 for more information on
BPMNDiagrams).

imports: Import [0..%]

This attribute is used to import externally defined elements and make
them available for use by elements within this Definitions.

extensions: Extension [0..%]

This attribute identifies extensions beyond the attributes and model
associations in the base BPMN International Standard. See page 55 for
additional information on extensibility.

relationships: Relationship [0..*]

This attribute enables the extension and integration of BPMN models
into larger system/development Processes.

exporter: string [0..1]

This attribute identifies the tool that is exporting the bpmn model file.

exporterVersion: string [0..1]

This attribute identifies the version of the tool that is exporting the bpmn
model file.

8.2.2 Import

The Import class is used when referencing external element, either BPMN elements contained in other BPMN
Definitions or non-BPMN elements. Tmports MUST be explicitly defined.

Table 8.2 presents the attributes of Import.

Business Process Model and Notation (BPMN), v2.0.2

51

Table 8.2 — Import attributes

Attribute Name Description/Usage

importType: string Identifies the type of document being imported by providing an absolute URI that
identifies the encoding language used in the document.The value of the importType
attribute MUST be set to http://www.w3.0rg/2001/XMLSchema when importing XML
Schema 1.0 documents, to http://www.w3.org/TR/wsdI20/ when importing WSDL 2.0
documents, and http://www.omg.org/spec/BPMN/20100524/MODEL when importing
BPMN 2.0 documents. Other types of documents MAY be supported.

Importing Xml Schema 1.0, WSDL 2.0 and BPMN 2.0 types MUST be supported.

location: string [0..1] Identifies the location of the imported element.

namespace: string Identifies the namespace of the imported element.

8.2.3 Infrastructure Package XML Schemas

Table 8.3 — Definitions XML schema

<xsd:element name="definitions" type="tDefinitions"/>
<xsd:complexType name="tDefinitions">
<xsd:sequence>
<xsd:element ref="import" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="extension" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="rootElement" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="bpmndi:BPMNDiagram" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="relationship" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID" use="optional"/>
<xsd:attribute name="targetNamespace" type="xsd:anyURI" use="required"/>
<xsd:attribute name="expressionLanguage" type="xsd:anyURI" use="optional" default="http://
www.w3.0rg/1999/XPath"/>
<xsd:attribute name="typeLanguage" type="xsd:anyURI" use="optional" default="http://www.w3.org/
2001/XMLSchema"/>
<xsd:anyAttribute name="exporter" type="xsd:ID"/>
<xsd:anyAttribute name="exporterVersion" type="xsd:ID"/>

<xsd:anyAttribute namespace="##other" processContents="lax"/>
</xsd:complexType>

52 Business Process Model and Notation (BPMN), v2.0.2

Table 8.4 — Import XML schema

<xsd:element name="import" type="tImport"/>
<xsd:complexType name="timport">

<xsd:attribute name="namespace" type="xsd:anyURI" use="required"/>
<xsd:attribute name="location" type="xsd:string" use="required"/>
<xsd:attribute name="importType" type="xsd:anyURI" use="required"/>

</xsd:complexType>

8.3 Foundation

The Foundation package contains classes that are shared among other packages in the Core (see Figure 8.5) of an

abstract syntax model.

] RootElement
(From Foundation)

+ rootElements |
=

+ definition ©0..1
=] Definitions
(From Infrastructure)
[Eg name : 5tring
[Eg targetNamespace © String
g expressionLanguage : String
g typelanguage @ Stiing
g exporter 1 String
[Eg exporterversion : String

= ExtensionAttributeValue
(From Foundation)

+ extensionValues | *

1
. 1 .
+ definition 1 + definition 1 | BaseElement] Documentation
& &= (From Foundation) (From Foundation)
5gid @ String + documentation | Eg text : String
& * + relationships . . [Eg, textFormat : String
= Relationship "
(from Foundation)
W 't Eg type : String
+ Imports [E direction : RelationshipDirection
& «“enumeration»
&l =] import [RelationshipDirection
(from Infrastructure) + extensionDefinitions (From Foundation)
[Eg importType : String - — =1 Mone
Eg location : String £ ExtensionDefinition = Forward
. . Gty From Foundation) loward
[E& namespace : String . (= Backwal
e + definition 53 name : Stiing = Both
! 1
+ extensions | *
 Extensi * |+ extensionAttributeDefinitions
xtension

(fram Foundation)
g mustUnderstand : Boolean

Figure 8.5 — Classes in the Foundation package

Business Process Model and Notation (BPMN), v2.0.2

| ExtensionAttributeDefinition
(from Foundation)

[Eg name : 5tring

[Eg type @ Stiing

g isReference : Boolean

53

8.3.1 Base Element

BaseElement is the abstract super class for most BPMN elements. It provides the attributes id and documentation, which
other elements will inherit.

Table 8.5 presents the attributes and model associations for the BaseElement.

Table 8.5 — BaseElement attributes and model associations

Attribute Name Description/Usage

id: string This attribute is used to uniquely identify BPMN elements. The id is
REQUIRED if this element is referenced or intended to be referenced by
something else. If the element is not currently referenced and is never
intended to be referenced, the id MAY be omitted.

documentation: This attribute is used to annotate the BPMN element, such as descriptions
Documentation [0..%] and other documentation.

extensionDefinitions: This attribute is used to attach additional attributes and associations to any
ExtensionDefinition [0..*] BaseElement. This association is not applicable when the XML schema

interchange is used, since the XSD mechanisms for supporting
anyAttribute and any element already satisfy this requirement. See page
57 for additional information on extensibility.

extensionValues: This attribute is used to provide values for extended attributes and model
ExtensionAttributeValue [0.."] associations. This association is not applicable when the XML schema
interchange is used, since the XSD mechanisms for supporting
anyAttribute and any element already satisfy this requirement. See page
55 for additional information on extensibility.

8.3.2 Documentation

All BPMN elements that inherit from the BaseElement will have the capability, through the Documentation
element, to have one (1) or more text descriptions of that element.

The Documentation element inherits the attributes and model associations of BaseElement (see Table 8.5). Table
8.6 presents the additional attributes of the Documentation element.

Table 8.6 — Documentation attributes

Attribute Name Description/Usage

text: string This attribute is used to capture the text descriptions of a BPMN element.

textFormat: string This attribute identifies the format of the text. It MUST follow the mime-type
format. The default is "text/plain."

In the BPMN schema, the tDocumentation complexType does not contain a text attribute or element. Instead, the
documentation text is expected to appear in the body of the documentation element. For example:

54 Business Process Model and Notation (BPMN), v2.0.2

<documentation>An example of how the documentation text i1s entered.</documentation>

8.3.3 Extensibility

The BPMN metamodel is aimed to be extensible. This allows BPMN adopters to extend the specified metamodel in a
way that allows them to be still BPMN-compliant.

It provides a set of extension elements, which allows BPMN adopters to attach additional attributes and elements to
standard and existing BPMN elements.

This approach results in more interchangeable models, because the standard elements are still intact and can still be
understood by other BPMN adopters. It’s only the additional attributes and elements that MAY be lost during interchange.

Ll | Definitions
(From Infrastructure)
[E& name : 5tring
[targethameaspace : 5tring
[Eg expressionLanguage : String | 1
[typelanguage : String
[Eg exporter : String 1
[Eg exporterVersion : Stiing

+ extensions £ Extension
2 (From Foundation)
g mustUnderstand : Boolean

53]
1 .| + definition
+ extensionDefinitions = ExtensionDefinition
(From Foundation)
[Eg name : 5tring
1

] BaseElement
(From Foundation)
Egid : String *

+ extensionAttributeDefinitions | *
= ExtensionAttributeDefinition
(from Foundation)
[Eg name : 5tring
g type @ String
g isReference ; Boolean
+ extensionAttributeDefinition 1

-

+ extensionValues [pxtensionAttributeValue
(From Foundation)
l -

1
M

+ documentation + valueRef| 0..1 0.1 4 yalue

| Documentation
(From Foundation) & =] Element
3 text : String (from CMOF)

Figure 8.6 — Extension class diagram

A BPMN Extension basically consists of four different elements:
1. Extension
2. ExtensionDefinition
3. ExtensionAttributeDefinition

4. ExtensionAttributeValue

Business Process Model and Notation (BPMN), v2.0.2 55

The core elements of an Extension are the ExtensionDefinition and ExtensionAttributeDefinition. The
latter defines a list of attributes that can be attached to any BPMN element. The attribute list defines the name and type
of the new attribute. This allows BPMN adopters to integrate any meta model into the BPMN meta model and reuse
already existing model elements.

The ExtensionDefinition itself can be created independent of any BPMN element or any BPMN definition.

In order to use an ExtensionDefinition within a BPMN model definition (Definitions element), the
ExtensionDefinition MUST be associated with an Extension element that binds the
ExtensionDefinition to a specific BPMN model definition. The Extension element itself is contained within
the BPMN element Definitions and therefore available to be associated with any BPMN element making use of the
ExtensionDefinition.

Every BPMN element which subclasses the BPMN BaseElement can be extended by additional attributes. This works
by associating a BPMN element with an ExtensionDefinition, which was defined at the BPMN model definitions
level (element Definitions).

Additionally, every “extended” BPMN element contains the actual extension attribute value. The attribute value, defined
by the element ExtensionAttributeValue contains the value of type Element. It also has an association to the
corresponding attribute definition.

Extension

The Extension element binds/imports an ExtensionDefinition and its attributes to a BPMN model definition.

Table 8.7 presents the attributes and model associations for the Extension element.

Table 8.7 — Extension attributes and model associations

Attribute Name Description/Usage
mustUnderstand: boolean [0..1] = | This flag defines if the semantics defined by the extension definition and its
False attribute definition MUST be understood by the BPMN adopter in order to

process the BPMN model correctly. Defaults to False.

definition: ExtensionDefinition Defines the content of the extension.
Note that in the XML schema, this definition is provided by an external XML
schema file and is simply referenced by QName.

ExtensionDefinition

The ExtensionDefinition class defines and groups additional attributes. This type is not applicable when the XML
schema interchange is used, since XSD Complex Types already satisfy this requirement.

Table 8.8 presents the attributes and model associations for the ExtensionDefinition element.

56 Business Process Model and Notation (BPMN), v2.0.2

Table 8.8 — ExtensionDefinition attributes and model associations

Attribute Name

Description/Usage

name: string

The name of the extension. This is used as a namespace to
uniquely identify the extension content.

extensionAttributeDefinitions:
ExtensionAttributeDefinition [0..*]

The specific attributes that make up the extension.

ExtensionAttributeDefinition

The ExtensionAttributeDefinition defines new attributes. This type is not applicable when the XML schema
interchange is used; since the XSD mechanisms for supporting “AnyAttribute” and “Any” type already satisfy this

requirement.

Table 8.9 presents the attributes for the ExtensionAttributeDefinition element.

Table 8.9- ExtensionAttributeDefinition attributes

Attribute Name

Description/Usage

name: string

The name of the extension attribute.

type: string

The type that is associated with the attribute.

isReference: boolean [0..1] = False

Indicates if the attribute value will be referenced or contained.

ExtensionAttributeValue

The ExtensionAttributeValue contains the attribute value. This type is not applicable when the XML schema
interchange is used; since the XSD mechanisms for supporting “AnyAttribute” and “Any” type already satisfy this

requirement.

Table 8.10 presents the model associations for the ExtensionAttributeValue element.

Table 8.10 — ExtensionAttributeValue model associations

Attribute Name

Description/Usage

value: [Element [0..1]

The contained attribute value, used when the associated
ExtensionAttributeDefinition.isReference is false.

The type of this Element MUST conform to the type specified in the
associated ExtensionAttributeDefinition.

valueRef: [Element [0..1]

The referenced attribute value, used when the associated
ExtensionAttributeDefinition.isReference is true.
The type of this Element MUST conform to the type specified in the
associated ExtensionAttributeDefinition.

extensionAttributeDefinition:
ExtensionAttributeDefinition

Defines the extension attribute for which this value is being
provided.

Business Process Model and Notation (BPMN), v2.0.2 57

Extensibility XML Schemas

Table 8.11 — Extension XML schema

<xsd:element name="extension" type="tExtension"/>
<xsd:complexType name="tExtension">

<xsd:sequence>

<xsd:element ref="documentation" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="definition" type="xsd:QName"/>

<xsd:attribute name="mustUnderstand" type="xsd:boolean" use="optional"/>
</xsd:complexType>

XML Example

This example shows a Task, defined the BPMN Core, being extended with Inputs and Outputs defined outside of the
Core.

Table 8.12 — Example Core XML schema

<xsd:schema ...>

<xsd:element name="task" type="tTask"/>
<xsd:complexType name="tTask">
<xsd:complexContent>
<xsd:extension base="tActivity"/>
</xsd:complexContent>
</xsd:complexType>

</xsd:schema>

58 Business Process Model and Notation (BPMN), v2.0.2

Table 8.13 — Example Extension XML schema

<xsd:schema ...>

<xsd:group name="dataRequirements">
<xsd:sequence>
<xsd:element ref="datalnput" minOccurs="0" maxOccurs="unbounded" />
<xsd:element ref="dataOutput" minOccurs="0" maxOccurs="unbounded" />
<xsd:element ref="inputSet" minOccurs="0" maxOccurs="unbounded" />
<xsd:element ref="outputSet" minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:group>

</xsd:schema>

Table 8.14 — Sample XML instance

<bpmn:definitions id="ID_1" ...>

<bpmn:extension mustUnderstand="true" definition="bpmn:dataRequirements"/>

<bpmn:task name="Retrieve Customer Record" id="ID_2">
<bpmn:datalnput name="Order Input" id="ID_3">
<bpmn:typeDefinition typeRef="bo:Order" id="ID_4"/>
</bpmn:datalnput>
<bpmn:dataOutput name="Customer Record Output" id="ID_5">
<bpmn:typeDefinition typeRef="bo:CustomerRecord" id="ID_6"/>
</bpmn:dataOutput>
<bpmn:inputSet name="Inputs" id="ID_7" datalnputRefs="ID_3"/>
<bpmn:outputSet name="Outputs" id="ID_8" dataOutputRefs="ID 5"/>
</bpmn:task>

</bpmn:definitions>

8.3.4 External Relationships

It is the intention of this International Standard to cover the basic elements necessary for the construction of semantically
rich and syntactically valid Process models to be used in the description of Processes, Choreographies, and
business operations in multiple levels of abstraction. As the International Standard indicates, extension capabilities enable
the enrichment of the information described in BPMN and supporting models to be augmented to fulfill particularities of
a given usage model. These extensions’ intention is to extend the semantics of a given BPMN Artifact to provide

specialization of intent or meaning.

Business Process Model and Notation (BPMN), v2.0.2

Process models do not exist in isolation and generally participate in larger, more complex business and system
development Processes. The intention of the following element is to enable BPMN Artifacts to be integrated in
these development Processes via the specification of a non-intrusive identity/relationship model between BPMN
Artifacts and elements expressed in any other addressable domain model.

The ‘identity/relationship’ model is reduced to the creation of families of typed relationships that enable BPMN and non-
BPMN Artifacts to be related in non intrusive manner. By simply defining ‘relationship types’ that can be associated
with elements in the BPMN Artifacts and arbitrary elements in a given addressable domain model, it enables the
extension and integration of BPMN models into larger system/development Processes.

It is that these extensions will enable, for example, the linkage of ‘derivation’ or ‘definition’ relationships between UML
artifacts and BPMN Artifacts in novel ways. So, a UML use case could be related to a Process element in the
BPMN International Standard without affecting the nature of the Artifacts themselves, but enabling different
integration models that traverse specialized relationships.

Simply, the model enables the external specification of augmentation relationships between BPMN Artifacts and
arbitrary relationship classification models, these external models, via traversing relationships declared in the external
definition allow for linkages between BPMN elements and other structured or non-structured metadata definitions.

The UML model for this International Standard follows a simple extensible pattern as shown below; where named
relationships can be established by referencing objects that exist in their given namespaces.

] BaseFlement + documentation !

{From Foundation) = [?Ocumentgtlon
g id : String 1 * (from Foundation)
o g text © String

@

[Eg textFormat @ String

=/ Relationship
(From Foundation)
& type © String
5 direction : RelationshipDirection «enumeration»
[RelationshipDirection
(From Foundation)
=IMNone
=Forward
= Backward
= Both
+ SOUMCEs 1.* 1.* | + targets
=] Element
(From CMOF)

Figure 8.7 — External Relationship Metamodel

The Relationship element inherits the attributes and model associations of BaseElement (see Table 8.5). Table
8.15 presents the additional attributes for the Relationship element.

60 Business Process Model and Notation (BPMN), v2.0.2

Table 8.15 — Relationship attributes

Attribute Name Description/Usage

type: string The descriptive name of the element.

direction: RelationshipDirection {None | This attribute specifies the direction of the relationship.

Forward | Backward | Both}

sources: [Element [1..*] This association defines artifacts that are augmented by the
relationship.

targets: [Element[1..*] This association defines artifacts used to extend the semantics of the

source element(s).

In this manner you can, for example, create relationships between different artifacts that enable external annotations used
for traceability, derivation, arbitrary classifications, etc.

An example where the ‘reengineer’ relationship is shown between elements in a Visio ™ artifact and a BPMN
Artifact.

Table 8.16 — Reengineer XML schema

<?xml version="1.0" encoding="UTF-8"7>
<definitions targetNamespace=""
typeLanguage=""id="a123" expressionLanguage=""

xsi:schemalLocation="http://www.omg.org/spec/BPMN/20100524/MODEL Core-Common.xsd"
xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"

xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:src="http://www.example.org/Processes/OId"
xmins:tgt="http://www.example.org/Processes/New">

<import importType="http://office.microsoft.com/visio" location="OrderConfirmationProcess.vsd"
namespace="http://www.example.org/Processes/Old"/>

<import importType="http://www.omg.org/spec/BPMN/20100524/MODEL"
location="OrderConfirmationProcess.xml"
namespace="http://www.example.org/Processes/New"/>

<relationship type="reengineered" id="a234" direction="both">
<documentation>An as-is and to-be relationship. The as-is model is expressed as a Visio dia-
gram. The re-engineered process has been split in two and is captured in BPMN 2.0 for-
mat.</documentation>
<source ref="src:OrderConfirmation"/>
<target ref="tgt:OrderConfirmation_Partl"/>
<target ref="tgt:OrderConfirmation_Partll"/>

</relationship>
</definitions>

Business Process Model and Notation (BPMN), v2.0.2 61

8.3.5 Root Element

RootElement is the abstract super class for all BPMN elements that are contained within Definitions. When
contained within Definitions, these elements have their own defined life-cycle and are not deleted with the deletion
of other elements. Examples of concrete RootElements include Collaboration, Process, and Choreography.
Depending on their use, RootElements can be referenced by multiple other elements (i.e., they can be reused). Some
RootElements MAY be contained within other elements instead of Definitions. This is done to avoid the
maintenance overhead of an independent life-cycle. For example, an EventDefinition would be contained in a
Process since it is used only there. In this case the EventDefinition would be dependent on the tool life-cycle of
the Process.

The RootElement element inherits the attributes and model associations of BaseElement (see Table 8.5), but does
not have any further attributes or model associations.

8.3.6 Foundation Package XML Schemas

Table 8.17 — BaseElement XML schema

<xsd:element name="baseElement" type="tBaseElement"/>
<xsd:complexType name="tBaseElement" abstract="true">
<xsd:sequence>
<xsd:element ref="documentation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="extensionElements" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID" use="optional"/>
<xsd:anyAttribute namespace="##other" processContents="lax"/>
</xsd:complexType>

<xsd:element name="baseElementWithMixedContent" type="tBaseElementWithMixedContent"/>
<xsd:complexType name="tBaseElementWithMixedContent" abstract="true" mixed="true">
<xsd:sequence>
<xsd:element ref="documentation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="extensionElements" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID" use="optional"/>
<xsd:anyAttribute namespace="##other" processContents="lax"/>
</xsd:complexType>

<xsd:element name="extensionElements" type="tExtensionElements"/>
<xsd:complexType name="tExtensionElements">
<xsd:sequence>
<xsd:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

<xsd:element name="documentation" type="tDocumentation"/>
<xsd:complexType name="tDocumentation" mixed="true">

62 Business Process Model and Notation (BPMN), v2.0.2

<xsd:sequence>
<xsd:any namespace="##any" processContents="lax" minOccurs="0"/>

</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID" use="optional"/>
<xsd:attribute name="textFormat" type="xsd:string" default="textplain"/>

</xsd:complexType>

Table 8.18 — RootElement XML schema

<xsd:element name="rootElement" type="tRootElement"/>
<xsd:complexType name="tRootElement" abstract="true">
<xsd:complexContent>
<xsd:extension base="tBaseElement"/>
</xsd:complexContent>
</xsd:complexType

Table 8.19 — Relationship XML schema

<xsd:element name="relationship" type="tRelationship"/>
<xsd:complexType name="tRelationship">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element name="source" type="xsd:QName" minOccurs="1" maxOccurs="unbounded"/>
<xsd:element name="target" type="xsd:QName" minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="type" type="xsd:string" use="required"/>
<xsd:attribute name="direction" type="tRelationshipDirection"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="tRelationshipDirection">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="None"/>
<xsd:enumeration value="Forward"/>
<xsd:enumeration value="Backward"/>
<xsd:enumeration value="Both"/>
</xsd:restriction>
</xsd:simpleType>

Business Process Model and Notation (BPMN), v2.0.2

8.4 Common Elements

The following sub clauses define BPMN elements that MAY be used in more than one type of diagram (e.g., Process,
Collaboration, and Choreography).

8.4.1 Artifacts

BPMN provides modelers with the capability of showing additional information about a Process that is not directly
related to the Sequence Flows or Message Flows of the Process.

At this point, BPMN provides three standard Artifacts: Associations, Groups, and Text Annotations.
Additional Artifacts MAY be added to the BPMN International Standard in later versions. A modeler or modeling
tool MAY extend a BPMN diagram and add new types of Artifacts to a Diagram. Any new Artifact MUST
follow the Sequence Flow and Message Flow connection rules (listed below). Associations can be used to link
Artifacts to Flow Objects (see page 67).

Figure 8.8 shows the Artifacts class diagram. When an Artifact is defined it is contained within a Collaboration
ora FlowElementsContainer (a Process or Choreography).

=] Collaboration =] subChoreography =] SubProcess = Process
(from Collaboration) (From ChoreographyActivities) (From Activities) (From Process)
[Eg name : 5tring |_qjt|'iggeredByE\rent : Boolean [Eg processType : ProcessType
[Eg isClosed : Boolean [Eg isClosed : Boolean
[Eg isExecutable ; Boolean
0.1 0.1 0.1 0.1
* |, 4 artifacts * v artifacts w . artifacts 0.1+ artifact
& Artifact = BaseElement
(From ArtiFacts) (From Foundation)
g id : String
1
+ documentation
] Association = Group] TextAnnotation =] Documentation
(From Artifacts) (from Artifacts) (From Artifacts) (From Foundation)
[Eg associationDirection : AssociationDirection [Eg text : String [Eg text : String

[Eg textFormat : String [Eg textFormat : String

«enumeration»
[E] AssociationDirection
(From Artifacts)
= Mone
= One
=l Both

Figure 8.8 — Artifacts Metamodel

Common Artifact Definitions

The following sub clauses provide definitions that are common to all Artifacts.

Artifact Sequence Flow Connections

See “Sequence Flow Connections Rules” on page 40 for the entire set of objects and how they MAY be source or targets
of a Sequence Flow.

64 Business Process Model and Notation (BPMN), v2.0.2

€ AnArtifact MUST NOT be a target for a Sequence Flow.
€ AnArtifact MUST NOT be a source for a Sequence Flow.

Artifact Message Flow Connections
See “Message Flow Connection Rules” on page 41 for the entire set of objects and how they MAY be source or targets of

a Message Flow.
€ AnArtifact MUST NOT be a target for a Message Flow.
€ AnArtifact MUST NOT be a source for a Message Flow.

Association

An Association is used to associate information and Artifacts with Flow Objects. Text and graphical non-Flow
Objects can be associated with the Flow Objects and Flow. An Association is also used to show the Activity used for

compensation. More information about compensation can be found on page 300.
€ An Association is line that MUST be drawn with a dotted single line (see Figure 8.9).
@ The use of text, color, size, and lines for an Association MUST follow the rules defined in “Use of Text, Color, Size,
and Lines in a Diagram” on page 39.

Figure 8.9 — An Association

| BaseElement
(From Foundation)
g id : String
+ sourceRef 1 + targetRef
+ outgoing - + incoming| =
=] Association «enumeration»
(From Artifacts) 5] AssuuathnDlrectmn
Eg associationDirection : AssociationDirection (from Artifacts)
-) ') = None
= Cne
=1 Both

] Artifact
(from Artifacts)

Figure 8.10 — The Association Class Diagram

If there is a reason to put directionality on the Association then:
€ A line arrowhead MAY be added to the Association line (see Figure 8.11).

@ The directionality of the Association can be in one (1) direction or in both directions.

Business Process Model and Notation (BPMN), v2.0.2 65

.............................. >

Figure 8.11 — A Directional Association

Note that directional Associations were used in BPMN 1.2 to show how Data Objects were inputs or outputs to
Activities. In BPMN 2.0.2, a Data Association connector is used to show inputs and outputs (see page 220). A Data
Association uses the same notation as a directed Association (as in Figure 8.11, above).

An Association is used to connect user-defined text (an Annotation) with a Flow Object (see Figure 8.12).

Announce

Issues for
Discussion

Allow 1 week for the
discussion of the
Issues — through e-
mail or calls

Figure 8.12 — An Association of Text Annotation

The Association element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 8.20
presents the additional attributes and model associations for an Association.

Table 8.20 — Association attributes and model associations

Attributes Description

associationDirection: associationDirection is an attribute that defines whether or not the
AssociationDirection = None {None | | Association shows any directionality with an arrowhead. The default is
One | Both} None (no arrowhead). A value of One means that the arrowhead SHALL

be at the Target Object. A value of Both means that there SHALL be an
arrowhead at both ends of the Association line.

sourceRef: BaseElement The BaseElement that the Association is connecting from.
targetRef: BaseElement The BaseElement that the Association is connecting to.
Group

The Group object is an Artifact that provides a visual mechanism to group elements of a diagram informally. The
grouping is tied to the CategoryValue supporting element. That is, a Group is a visual depiction of a single
CategoryValue. The graphical elements within the Group will be assigned the CategoryValue of the Group.
(NOTE - categoryValues can be highlighted through other mechanisms, such as color, as defined by a modeler or a
modeling tool).

€ A Group is a rounded corner rectangle that MUST be drawn with a solid dashed line (as seen in Figure 8.13).

66 Business Process Model and Notation (BPMN), v2.0.2

@ The use of text, color, size, and lines for a Group MUST follow the rules defined in “Use of Text, Color, Size,

and Lines in a Diagram” on page 39.

|
|
|
|
|
)

- S « EE— e

Figure 8.13 — A Group Artifact

As an Artifact, a Group is not an Activity or any Flow Object, and, therefore, cannot connect to Sequence
Flows or Message Flows. In addition, Groups are not constrained by restrictions of Pools and Lanes. This means

that a Group can stretch across the boundaries of a Pool to surround Diagram elements (see Figure 8.14), often to

identify Activities that exist within a distributed business-to-business transaction.

= [Send [.
ko) Send Doctor Receive Medicine Receive
© Request Appt. Medicine
é_u lliness g PP Request
Occurs T ~
I want to Tee doctor Go seJdoctor I need mylmedicine Here is yOLIr medicine |
l l
= v J\ v J\ |
c EReceive SReceive Send .
2 Doctor Send Appt. Doctor o
5 Medicine
Q Request Request
8 .
& —_— s —_— s — s — s — s —

Figure 8.14 — A Group around Activities in different Pools

Groups are often used to highlight certain sub clauses of a Diagram without adding additional constraints for
performance, as a Sub-Process would. The highlighted (grouped) sub clause of the Diagram can be separated for

reporting and analysis purposes. Groups do not affect the flow of the Process.

Figure 8.15 shows the Group class diagram.

Business Process Model and Notation (BPMN), v2.0.2

67

| Artifact
(From Artifacts)

= Group = RootElement
(From ArtiFacts) (From Foundation)

+ categoryValueRef
| BaseElement
(From Foundation)

[id : String

] categoryValue * 1] category
(From Artifacts) (From Artif acts)

|_|.—C}\ralue 1 String + categoryValue [Eg name : String

* L categoryValueRef

* | + [categorizedFlowElements

| FlowEfement
(From Common)
[Eg name : 5tring

Figure 8.15 — The Group class diagram

The Group element inherits the attributes and model associations of BaseElement (see Table 8.5), through its
relationship to Artifact. Table 8.21 presents the additional model associations for a Group.

Table 8.21 — Group model associations

Attributes Description

categoryValueRef: CategoryValue [0..1] | The categoryValueRef attribute specifies the Categoryvalue
that the Group represents. (Further details about the definition of a
Category and CategoryValue can be found on page 70.) The
name of the Category and the value of the Categoryvalue
separated by delineator "." provides the label for the Group. The
graphical elements within the boundaries of the Group will be

assigned the CategoryValue.

Category

Categories, which have user-defined semantics, can be used for documentation or analysis purposes. For example,
FlowElements can be categorized as being customer oriented vs. support oriented. Furthermore, the cost and time of
Activities per Category can be calculated.

Groups are one way in which Categories of objects can be visually displayed on the diagram. That is, a Group is a
visual depiction of a single CategoryValue. The graphical elements within the Group will be assigned the
CategoryValue of the Group. The value of the CategoryValue, optionally prepended by the Category name
and delineator ":", appears on the diagram as the Group label. (NOTE - Categories can be highlighted through other
mechanisms, such as color, as defined by a modeler or a modeling tool). A single Category can be used for multiple
Groups in a diagram.

68 Business Process Model and Notation (BPMN), v2.0.2

The Category element inherits the attributes and model associations of BaseElement (see Table 8.5) through its
relationship to RootElement. Table 8.22 displays the additional model associations of the Category element.

Table 8.22 — Category model associations

Attributes Description
name: string The descriptive name of the element.
categoryValue: CategoryValue [0..*] The categoryValue attribute specifies one or more values of the

Category. For example, the category is “Region” then this
Category could specify values like “North,” “South,” “West,” and
“East.”

The CategoryValue element inherits the attributes and model associations of BaseElement (see Table 8.5). Table
8.23 displays the attributes and model associations of the CategoryValue element.

Table 8.23 — CategoryValue attributes and model associations

Attributes Description
value: string This attribute provides the value of the Categoryvalue element.
category: Category [0..1] The category attribute specifies the Category representing the

Category as such and contains the Categoryvalue (Further details
about the definition of a Category can be found on page 70).

categorizedFlowElements: The FlowElements attribute identifies all of the elements (e.g., Events,
FlowElement [0..”] Activities, Gateways, and Artifacts) that are within the
boundaries of the Group.

Text Annotation
Text Annotations are a mechanism for a modeler to provide additional information for the reader of a BPMN Diagram.
€ A Text Annotation is an open rectangle that MUST be drawn with a solid single line (as seen in Figure 8.16).

€ The use of text, color, size, and lines for a Text Annotation MUST follow the rules defined in “Use of Text,
Color, Size, and Lines in a Diagram” on page 39.

The Text Annotation object can be connected to a specific object on the Diagram with an Association, but does not
affect the flow of the Process. Text associated with the Annotation can be placed within the bounds of the open
rectangle.

‘Text Annotation allows
"+ a modeler to provide
additional information

Figure 8.16 — A Text Annotation

Business Process Model and Notation (BPMN), v2.0.2 69

The Text Annotation clement inherits the attributes and model associations of BaseElement (see Table 8.5). Table
8.24 presents the additional attributes for a Text Annotation.

Table 8.24 —Text Annotation attributes

Attributes Description

text: string Text is an attribute that is text that the modeler wishes to communicate
to the reader of the Diagram.

textFormat: string This attribute identifies the format of the text. It MUST follow the mime-
type format. The default is "text/plain."

XML Schema for Artifacts

Table 8.25 — Artifact XML schema

<xsd:element name="artifact" type="tArtifact"/>
<xsd:complexType name="tArtifact" abstract="true">
<xsd:complexContent>
<xsd:extension base="tBaseElement"/>
</xsd:complexContent>
</xsd:complexType>

Table 8.26 — Association XML schema

<xsd:element name="association" type="tAssociation" substitutionGroup="artifact"/>
<xsd:complexType name="tAssociation">
<xsd:complexContent>
<xsd:extension base="tArtifact">
<xsd:attribute name="sourceRef" type="xsd:QName" use="required"/>
<xsd:attribute name="targetRef" type="xsd:QName" use="required"/>
<xsd:attribute name="associationDirection" type="tAssociationDirection" default="None"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="tAssociationDirection">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="None"/>
<xsd:enumeration value="One"/>
<xsd:enumeration value="Both"/>
</xsd:restriction>
</xsd:simpleType>

Table 8.27 — Category XML schema

<xsd:element name="category" type="tCategory" substitutionGroup="rootElement"/>

70 Business Process Model and Notation (BPMN), v2.0.2

<xsd:complexType name="tCategory">
<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:sequence>
<xsd:element ref="categoryValue" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>|
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.28 — CategoryValue XML schema

<xsd:element name="categoryValue" type="tCategoryValue"/>
<xsd:complexType name="tCategoryValue">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:attribute name="value" type="xsd:string" use="optional"/>)
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.29 — Group XML schema

<xsd:element name="group" type="tGroup" substitutionGroup="artifact"/>
<xsd:complexType name="tGroup">
<xsd:complexContent>
<xsd:extension base="tArtifact">
<xsd:attribute name="categoryValueRef" type="xsd:QName" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.30— Text Annotation XML schema

<xsd:element name="textAnnotation" type="tTextAnnotation" substitutionGroup="artifact"/>
<xsd:complexType name="tTextAnnotation">
<xsd:complexContent>
<xsd:extension base="tArtifact">
<xsd:sequence>
<xsd:element ref="text" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="textFormat" type="xsd:string" default="textplain"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Business Process Model and Notation (BPMN), v2.0.2

71

<xsd:element name="text" type="tText"/>
<xsd:complexType name="tText" mixed="true">
<xsd:sequence>
<xsd:any namespace="##any" processContents="lax" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

8.4.2 Correlation

Business Processes typically can run for days or even months, requiring asynchronous communication via
Message. Also, many instances of a particular Process will typically run in parallel, e.g., many instances of an order
process, each representing a particular order. Correlation is used to associate a particular Message to an ongoing
Conversation between two particular Process instances. BPMN allows using existing Message data for correlation
purposes, e.g., for the order process, a particular instance can be identified by means of its orderID and/or
customerID, rather than requiring the introduction of technical correlation data.

The concept of Correlation facilitates the association of a Message to a Send Task or Receive Task! often in the
context of a Conversation, which is also known as instance routing. It is a particular useful concept where there is no
infrastructure support for instance routing. Note that this association can be viewed at multiple levels, namely the
Collaboration (Conversation), Choreography, and Process level. However, the actual correlation happens during
runtime (e.g., at the Process level). Correlations describe a set of predicates on a Message (generally on the
application payload) that need to be satisfied in order for that Message to be associated to a distinct Send Task or
Receive Task. By the same token, each Send Task and each Receive Task participates in one or many
Conversations. Furthermore, it identifies the Message it sends or receives and thereby establishes the relationship to
one (or many) CorrelationKeys.

There are two, non-exclusive correlation mechanisms in place:

1. Inplain, key-based correlation, Messages that are exchanged within a Conversation are logically correlated by
means of one or more common CorrelationKeys. Thatis, any Message that is sent or received within this
Conversation needs to carry the value of at least one of these CorrelationKey instances within its payload. A
CorrelationKey basically defines a (composite) key. The first Message that is initially sent or received
initializes one or more CorrelationKey instances associated with the Conversation, i.e., assigns values to its
CorrelationProperty instances that are the fields (partial keys) of the CorrelationKey. A
CorrelationKey is only considered valid for use, if the Message has resulted in all
CorrelationProperty fields within the key being populated with a value. If a follow-up Message derives a
CorrelationKey instance, where that CorrelationKey had previously been initialized within the
Conversation, then the CorrelationKey value in the Message and Conversation MUST match. If the
follow-up Message derives a CorrelationKey instance associated with the Conversation, that had not
previously been initialized, then the CorrelationKey value will become associated with the Conversation. As
a Conversation can comprise different Messages that can be differently structured, each
CorrelationProperty comes with as many extraction rules
(CorrelationPropertyRetrievalExpression) for the respective partial key as there are different
Messages.

1. All references to Send or Receive Tasks in this sub clause also include message catch or throw Events; they
behave identically with respect to correlation.

72 Business Process Model and Notation (BPMN), v2.0.2

2. In context-based correlation, the Process context (i.e., its Data Objects and Properties) can dynamically
influence the matching criterion. That is, a CorrelationKey can be complemented by a Process-specific
CorrelationSubscription. A CorrelationSubscription aggregates as many
CorrelationPropertyBindings asthere are CorrelationProperties inthe CorrelationKey. A
CorrelationPropertyBinding relates to a specific CorrelationProperty and also links to a
FormalExpression that denotes a dynamic extraction rule atop the Process context. At runtime, the
CorrelationKey instance for a particular Conversation is populated (and dynamically updated) from the
Process context using these FormalExpressions. In that sense, changes in the Process context can alter the
correlation condition.

Correlation can be applied to Message Flows in Collaboration and Choreography, as described in Clause 9,
’Collaboration’ and 11, *Choreography’. The keys applying to a Message Flow are the keys of containers or groupings
of the Message Flow, such as Collaborations, Choreographies, and Conversation Nodes, and Choreography
Activities. This might result in multiple CorrelationKeys applying to the same Message Flow, perhaps due to
multiple layers of containment. In particular, calls of Collaborations and Choreographies are special kinds of
Conversation Nodes and Choreography Activities, respectively, and are considered a kind of containment for the
purposes of correlation. The CorrelationKeys specified in the caller apply to Message Flow in a called
Collaboration or Choreography.

Business Process Model and Notation (BPMN), v2.0.2 73

| choreography - GlobalChoreographyTask
(From Choreography) (From Choreography)

+ choreographyRef|" *

+ collaboration
] collaboration] GlobalConversation
(From Collaboration) (From Conversations)
[Eg name : 5tring
[Eg isClosed : Boolean

+ collaboration + conversations | conversationNode
1 N (From Conversations)
1 [Eg name : String

+ collaboration
0.1 4 collaboration

+ correlationkeys " 0.1
| CorrelationKey "
- (From Comman) 4+ carrelationkeys
[Eg hame : String + conversationNode "
1| + correlationkeyRef + messageFlowRefs
+ messageFlows I MessageFlow
7 from Callaborati
= CorrelationSubscription I . * (from Cola m? ion)
g + correlationSubscriptions [5g name : 5tring
(From Common) -
* 1 + messageRef | 0..1
| Process —|Message
(from Process) (From Common)
0.1 [Eg processType : ProcessType [5g name : 5tring
g isClosed : Boolean + messageRef/ |\ 1
[Eg IsExecutable ; Boolean
* 4+ correlationPropertyRef *
1.* Q CorrelationPropertyRetrievalExpression
Q CorrelationProperty 1 {From Common)
(from Comman) + correlationproparty
[Eg name : String + correlationPropertyRetrievalExpression + correlationset 0.1

+ cofelationProparorrelationPropertyRef) o
* + correlationPropertyBinding

= correlationPropertyBinding + messagePath 1 .
. (From Common) 0.1 + dataPath Q FnrmaIExpressmn
(from Common)

[language : String
| itemDefinition 1 [Eg body : Element
(From Common)
[£g itemkind @ Ttemkind
[Eg structureRef : Elernent
g isCollection : Boolean

o1t type

Figure 8.17 — The Correlation Class Diagram

CorrelationKey

A CorrelationKey represents a composite key out of one or many CorrelationProperties that essentially
specify extraction Expressions atop Messages. As a result, each CorrelationProperty acts as a partial key
for the correlation. For each Message that is exchanged as part of a particular Conversation, the
CorrelationProperties need to provide a CorrelationPropertyRetrievalExpression which
references a FormalExpression to the Message payload. That is, for each Message (that is used in a
Conversation) there is an Expression, which extracts portions of the respective Message’s payload.

The CorrelationKey element inherits the attributes and model associations of BaseElement (see Table 8.5). Table
8.31 displays the additional model associations of the CorrelationKey element.

74 Business Process Model and Notation (BPMN), v2.0.2

Table 8.31 — CorrelationKey model associations

Attribute Name Description/Usage

name: string [0..1] Specifies the name of the CorrelationKey.

correlationPropertyRef: The CorrelationProperties, representing the partial keys of this
CorrelationProperty [0..*] CorrelationKey.

Key-based Correlation

Key-based correlation is a simple and efficient form of correlation, where one or more keys are used to identify a
Conversation. Any incoming Message can be matched against the CorrelationKey by extracting the
CorrelationProperties from the Message according to the corresponding
CorrelationPropertyRetrievalExpression and comparing the resulting composite key with the
CorrelationKey instance for this Conversation. The idea is to use a joint Conversation “token” which is used
(passed to and received from) and outgoing and incoming Message. Messages are associated to a particular
Conversation if the composite key extracted from their payload matches the CorrelationKey initialized for this
Conversation.

At runtime the first Send Task or Receive Task in a Conversation MUST populate at least one of the
CorrelationKey instances by extracting the values of the CorrelationProperties according to the
CorrelationPropertyRetrievalExpression from the initially sent or received Message. Later in the
Conversation, the populated CorrelationKey instances are used for the described matching procedure where from
incoming Messages a composite key is extracted and used to identify the associated Conversation. Where these non-
initiating Messages derive values for CorrelationKeys, associated with the Conversation but not yet populated,
then the derived value will be associated with the Conversation instance.

The CorrelationProperty element inherits the attributes and model associations of BaseElement (see Table 8.5)
through its relationship to RootElement. Table 8.32 displays the additional model associations of the
CorrelationProperty element.

Table 8.32 — CorrelationProperty model associations

Attribute Name Description/Usage

name: string [0..1] Specifies the name of the CorrelationProperty.

type: string [0..1] Specifies the type of the CorrelationProperty.

correlationPropertyRetrieval- The CorrelationPropertyRetrievalExpressions for

Expression: ' ' this CorrelationProperty, representing the associations of

CorrelationPropertyRetrievalExpression [1.."] FormalExpressions (extraction paths) to specific Messages
occurring in this Conversation.

The CorrelationPropertyRetrievalExpression element inherits the attributes and model associations of
BaseElement (see Table 8.5). Table 8.33 displays the additional model associations of the
CorrelationPropertyRetrievalExpression element.

Business Process Model and Notation (BPMN), v2.0.2 75

Table 8.33 — CorrelationPropertyRetrievalExpression model associations

Attribute Name Description/Usage

messagePath: FormalExpression The FormalExpression that defines how to extract a
CorrelationProperty from the Message payload.

messageRef: Message The specific Message the FormalExpression extracts the
CorrelationProperty from.

Context-based Correlation

Context-based correlation is a more expressive form of correlation on top of key-based correlation. In addition to
implicitly populating the CorrelationKey instance from the first sent or received Message, another mechanism
relates the CorrelationKey to the Process context. That is, a Process MAY provide a
CorrelationSubscription that acts as the Process-specific counterpart to a specific CorrelationKey. In this
way, a Conversation MAY additionally refer to explicitly updateable Process context data to determine whether or
not a Message needs to be received. At runtime, the CorrelationKey instance holds a composite key that is
dynamically calculated from the Process context and automatically updated whenever the underlying Data Objects or
Properties change.

CorrelationPropertyBindings represent the partial keys of a CorrelationSubscription where each
relates to a specific CorrelationProperty in the associated CorrelationKey. A FormalExpression defines
how that CorrelationProperty instance is populated and updated at runtime from the Process context (i.e., its
Data Objects and Properties).

The CorrelationSubscription element inherits the attributes and model associations of BaseElement (see
Table 8.5). Table 8.34 displays the additional model associations of the CorrelationSubscription element.

Table 8.34 — CorrelationSubscription model associations

Attribute Name Description/Usage

correlationKeyRef: CorrelationKey The CorrelationKey this CorrelationSubscription refers
to.

correlationPropertyBinding: The bindings to specific CorrelationProperties and

CorrelationPropertyBinding [0.."] FormalExpressions (extraction rules atop the Process context).

The CorrelationPropertyBinding element inherits the attributes and model associations of BaseElement (see
Table 8.5). Table 8.35 displays the additional model associations of the CorrelationPropertyBinding element.

76 Business Process Model and Notation (BPMN), v2.0.2

Table 8.35 — CorrelationPropertyBinding model associations

Attribute Name Description/Usage

dataPath: FormalExpression The FormalExpression that defines the extraction rule atop the Process
context.

correlationPropertyRef: The specific CorrelationProperty, this

CorrelationProperty CorrelationPropertyBinding refers to.

At runtime, the correlation mechanism works as follows: When a Process instance is created the CorrelationKey
instances of all Conversations are initialized with some initial values that specify to correlate any incoming Message
for these Conversations. A SubscriptionProperty is updated whenever any of the Data Objects or
Properties changes that are referenced from the respective FormalExpression. As a result, incoming Messages
are matched against the now populated CorrelationKey instance. Later in the Process run, the
SubscriptionProperties can again change and implicitly change the correlation criterion. Alternatively, the
established mechanism of having the first Send Task or Receive Task populate the CorrelationKey instance
applies.

XML Schema for Correlation

Table 8.36 — Correlation Key XML schema

<xsd:element name="correlationKey" type="tCorrelationKey"/>
<xsd:complexType name="tCorrelationKey">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element name="correlationPropertyRef" type="xsd:QName" minOccurs="0" maxOc-
curs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:String" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.37 — Correlation Property XML schema

<xsd:element name="correlationProperty" type="tCorrelationProperty" substitutionGroup="rootElement"/>
<xsd:complexType name="tCorrelationProperty">
<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:sequence>
<xsd:element ref="correlationPropertyRetrievalExpression" minOccurs="1" maxOc-
curs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:String" use="optional"/>
<xsd:attribute name="type" type="xsd:QName"/>
</xsd:extension>

Business Process Model and Notation (BPMN), v2.0.2 77

</xsd:complexContent>
</xsd:complexType>

Table 8.38 — Correlation Property Binding XML schema

<xsd:element name="correlationPropertyBinding" type="tCorrelationPropertyBinding"/>
<xsd:complexType name="tCorrelationPropertyBinding">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element name="dataPath" type="tFormalExpression" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="correlationPropertyRef" type="xsd:QName" use="required"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.39 — Correlation Property Retrieval Expression XML schema

<xsd:element name="correlationPropertyRetrievalExpression" type="tCorrelationPropertyRetrievalExpression"/>
<xsd:complexType name="tCorrelationPropertyRetrievalExpression">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element name="messagePath" type="tFormalExpression" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="messageRef" type="xsd:QName" use="required"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.40 — Correlation Subscription XML schema

<xsd:element name="correlationSubscription" type="tCorrelationSubscription"/>
<xsd:complexType name=" tCorrelationSubscription ">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element name="process" type="xsd:QName" use="required"/>
<xsd:element ref="correlationKeyRef" minOccurs="1" maxOccurs="1"/>
<xsd:element name="correlationPropertyBinding" type="xsd:QName" minOccurs="0" maxOc-
curs="unbounded"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

78 Business Process Model and Notation (BPMN), v2.0.2

8.4.3 Error

An Error represents the content of an Error Event or the Fault of a failed Operation. An ITtemDefinition is
used to specify the structure of the Error. An Error is generated when there is a critical problem in the processing of
an Activity or when the execution of an Operation failed.

=] RootElement
(From Foundation)

= Error

(from Common)

0..1.+ structureRef

| itemDefinition
(from Common)
5 itemkind : Ttemkind
53 structureRef : Element
55 isCollection : Boolean

Figure 8.18 — Error class diagram

The Error element inherits the attributes and model associations of BaseElement (see Table 8.5), through its
relationship to RootElement. Table 8.41 presents the additional attributes and model associations of the Error

element.

Business Process Model and Notation (BPMN), v2.0.2 79

Table 8.41 — Error attributes and model associations

Attribute Name Description/Usage

structureRef : ItemDefinition [0..1] An TtemDefinition is used to define the “payload” of the Error.
name : string The descriptive name of the Error.

errorCode: string For an End Event:

If the resultis an Error, then the errorCode MUST be supplied
(if the processType attribute of the Process is set to execut-
able) This “throws” the Error.

For an Intermediate Event within normal flow:

If the trigger is an Error, then the errorCode MUST be entered
(if the processType attribute of the Process is set to execut-
able). This “throws” the Error.

For an Intermediate Event attached to the boundary of an Activity:
If the trigger is an Error, then the errorCode MAY be entered.
This Event “catches” the Error. If there is no errorCode, then
any error SHALL trigger the Event. If there is an errorCode, then
only an Error that matches the errorCode SHALL trigger the
Event.

8.4.4 Escalation

An Escalation identifies a business situation that a Process might need to react to. An ItemDefinition is used
to specify the structure of the Escalation.

=] EscalationEventDefinition
(From Events)

-

0..1, + escalationRef
= Escalation
(From Events)
[Eg name : 5tring
[Eg escalationCode : String
M

0.1+ structureRef
= TtemDefinition
(From Common)
[Eg fternkind : Ttemkind
Eg structureRef : Element
g isCollection : Boolean

Figure 8.19 — Escalation class diagram

80 Business Process Model and Notation (BPMN), v2.0.2

The Escalation element inherits the attributes and model associations of BaseElement (see Table 8.5), through its
relationship to RootElement. Table 8.41 presents the additional model associations of the Error element.

Table 8.42 — Escalation attributes and model associations

Attribute Name

Description/Usage

structureRef : ItemDefinition [0..1]

An ItemDefinition is used to define the “payload” of the
Escalation.

name : string

The descriptive name of the Escalation.

escalationCode: string

For an End Event:
If the Resultis an Escalation, then the escalationCode
MUST be supplied (if the processType attribute of the Process
is set to executable). This “throws” the Escalation.

For an Intermediate Event within normal flow:

If the triggeris an Escalation, then the escalationCode
MUST be entered (if the processType attribute of the Process is
set to executable). This “throws” the Escalation.

For an Intermediate Event attached to the boundary of an Activity:

If the triggeris an Escalation, then the escalationCode MAY
be entered. This Event “catches” the Escalation. If there is no
escalationCode, then any Escalation SHALL trigger the
Event. If there is an escalationCode, thenonly an Escala-
tion that matches the escalationCode SHALL trigger the
Event.

8.4.5 Events

An Event is something that happens during the course of a Process. These Events affect the flow of the Process and
usually have a cause or an impact. The term event is general enough to cover many things in a Process. The start of an
Activity, the end of an Activity, the change of state of a document, a Message that arrives, etc., all could be considered
Events. However, BPMN has restricted the use of Events to include only those types of Events that will affect the
sequence or timing of Activities of a Process.

Business Process Model and Notation (BPMN), v2.0.2 81

(Frem Foumdation)
L5 ; Surg

Mawlement
{Fiam Comman)
£ Name | Shng

L HowNode

[From Crmmen |

= Evinit
(o Evenin]

Dooumentation
e Found ation)
g texl : Sing
v'.wLF'.'lnm Ehirwg

+ documantation

1 -

= ¥
[Fram Duska}

L N 1 Bhing

+ proparbed

+ datalutputissociation

|| DatalmpustAssodation + Sitalnoutisiociaton | DataDutputAssociation
[Frosem Piska) (i em Ehat a)
- -
o1 0.1
. ThrawEvent = - = CatehEvent
(frem Events) v e friner®ef | * + eveniDannionfety {from Eventz)
0.1 | =g rputset ¢ Inputiet i . 0,1 = paalebupls | Bogkan b1
Evventidefindtion Cg OUtplitSet © CutputSat i
* L dstsincuts [froem Everts) + datalnspuss *
4 - + everitDurhritions & i fraliors ;
= Dt gt = Dt aDulgmit
(oo i) {frem Bata)
o e : Shing & N | SUTE)
g BColsrtion & Boolsan g BLolertion ¢ Booksan
= Imiplicit Mwrowvent = IntesmediateThrowDvenl = EndEvent | Slarlvent = IntermediateCatchiBvent 1 venl
{lncws Erenila) {lvom Ewenla)] {Tem Everda) [Fiem Everia) v Eweana] {lroem Evenila)

Figure 8.20 — Event class diagram

& ainterupting : Boclean & carcelic ity - Bodlean

+ bowrdarybventials *

+ atchedToRel
= Aty
[Hrom Badivitiea]
& BForCompesation | Bockean
& YA tCuantity @ Inbape
5 CompletenCuantty ¢ Irteger

The Event element inherits the attributes and model associations of FlowElement (see Table 8.44), but adds no
additional attributes or model associations.

The details for the types of Events (Start, Intermediate, and End) are defined in “Event Definitions” on page 258.
8.4.6 Expressions

The Expression class is used to specify an Expression using natural-language text. These Expressions are not
executable. The natural language text is captured using the documentation attribute, inherited from BaseElement.

Expression inherits the attributes and model associations of BaseElement (see Table 8.5), but adds no additional
attributes or model associations.

82 Business Process Model and Notation (BPMN), v2.0.2

Expressions are used in many places within BPMN to extract information from the different elements, normally data
elements. The most common usage is when modeling decisions, where conditional Expressions are used to direct the
flow along specific paths based on some criteria.

BPMN supports underspecified Expressions, where the logic is captured as natural-language descriptive text. It also
supports formal Expressions, where the logic is captured in an executable form using a specified Expression
language.

| BaseElement | Documentation
(From Foundation) . (From Foundation)
- = + documentation =
|_qj|d 1 String [text © String
1 * | g textFormat @ String
| Expression

(from Commaon)

=] FormalExpression & ItemDefinition
(from Common) + evaluatesToTypeRef (from Comman)
[Eg itemkind © Ttemkind
* 1 | EgstructureRef : Element
[Eg isCollection ; Boolean

[language : String
[Eg body : Element

Figure 8.21 — Expression class diagram

Expression

The Expression class is used to specify an Expression using natural-language text. These Expressions are not
executable and are considered underspecified.

The definition of an Expression can be done in two ways: it can be contained where it is used, or it can be defined at
the Process level and then referenced where it is used.

The Expression element inherits the attributes and model associations of BaseElement (see Table 8.5), but does not
have any additional attributes or model associations.

Formal Expression

The FormalExpression class is used to specify an executable Expression using a specified Expression
language. A natural-language description of the Expression can also be specified, in addition to the formal
specification.

The default Expression language for all Expressions is specified in the Definitions element, using the
expressionLanguage attribute. It can also be overridden on each individual FormalExpression using the same
attribute.

The FormalExpression element inherits the attributes and model associations of BaseElement (see Table 8.5),
through the Expression element. Table 8.43 presents the additional attributes and model associations of the
FormalExpression.

Business Process Model and Notation (BPMN), v2.0.2 83

Table 8.43 — FormalExpression attributes and model associations

Attribute Name Description/Usage

language: string [0..1] Overrides the Expression language specified in the Definitions. The language
MUST be specified in a URI format.

body: Element The body of the Expression.

Note that this attribute is not relevant when the XML Schema is used for

interchange. Instead, the FormalExpression complex type supports mixed

content. The body of the Expression would be specified as element content.

For example:

<formalExpression id=“ID_2">
count(../dataObject[id="CustomerRecord_1"]/emailAddress) > 0
<evaluatesToType id="ID_3" typeRef="xsd:boolean"/>

</formalExpression>

evaluatesToTypeRef: The type of object that this Expression returns when evaluated. For example,
ItemDefinition conditional Expressions evaluate to a boolean.

8.4.7 Flow Element

FlowElement is the abstract super class for all elements that can appear in a Process flow, which are FlowNodes
(see page 99, which consist of Activities (see page 149), Choreography Activities (sce page 319) Gateways (see
page 285), and Events (see page 231), Data Objects (see page 204), Data Associations (see page 220), and
Sequence Flows (see page 97).

84 Business Process Model and Notation (BPMN), v2.0.2

— Drcummentation =

= Dasellerment
{Fr o Fonursdation) {lvem Foundation)
£ tout : Strng of 1 | Egid:swng
i3 teutFormat : Sting + docamenkation
\= FlowilementsContainer | Busditineg | Manitoring | | CategoryValue
{roe Coamman) [From Process] (o Process) {From et acts)
g valie ! Sng
0.1
i + Mmaniton
1§ & contane) H - + tafegoryValeret
+ [eategmipedowllements
= |, + flowBements 0.1 0.1 -
{From Commen)
g Name 1 Sting
'l -
|| DataObject | FlowNode tagetial | Sequenceflow | DataStoreReference
(e Dak {Feam Comman) + NCCMIng! {Fram Comman]) [Frem Data)
% Bl on ;| Bookean S Elmwmediate | Bookean
1
+ sourcefel + oustigong
0.1
.1 + conditionE xpresson
| Activily | Eventt Cl Gat | Faparesssion
| Gateway cl
(From Actibees) [From Events) {from Gateways) {Fram Commen)
..:::;caﬂpw&m g atewayDrecton | GatewayDrection
,,wmmmmu = Ilises
1 trily
[Froem Chide&odr sty Actvitees)

eg lopTyes | ChorecgaphyloopType
Figure 8.22 — FlowElement class diagram

The FlowElement element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 8.44
presents the additional attributes and model associations of the FlowElement element.

Business Process Model and Notation (BPMN), v2.0.2 85

Table 8.44 — FlowElement attributes and model associations

Attribute Name Description/Usage

name: string [0..1] The descriptive name of the element.

categoryValueRef: CategoryValue | A reference to the Category Values that are associated with this Flow
[0..%] Element.

auditing: Auditing [0..1] A hook for specifying audit related properties. Auditing can only be

defined for a Process.

monitoring: Monitoring [0..1] A hook for specifying monitoring related properties. Monitoring can only
be defined for a Process.

8.4.8 Flow Elements Container

FlowElementsContainer is an abstract super class for BPMN diagrams (or views) and defines the superset of
elements that are contained in those diagrams. Basically, a FlowElementsContainer contains FlowElements,
which are Events (see page 231), Gateways (see page 285), Sequence Flows (see page 97), Activities (sce page
149), and Choreography Activities (see page 319).

There are four (4) types of FlowElementsContainers (see Figure 8.23): Process, Sub-Process,
Choreography, and Sub-Choreography.

86 Business Process Model and Notation (BPMN), v2.0.2

] Documentation
(from Foundation)
[Eg text : Stiing
[Eg textFormat @ String
w
+ documentation
1
| BaseFlement
(from Foundation)
g id : String

FlowElement : FlowElementsContainer
Q{From Common) L + containey Q (From Common) + laneSets Q LaneSet
g name : String (From Process)
+ flowElements 1 0.1 * g name : String
=] Process | choreography
(from Process) (From Choreography)
Eg processType : ProcessType
g isClosed : Boolean
g isExecutable : Boolean
| subProcess | subChoreography
(From Activities) (from ChoreographyActivities)

[Eg triggeredByEvent ; Boolean
Figure 8.23 — FlowElementContainers class diagram

The FlowElementsContainer element inherits the attributes and model associations of BaseElement (see Table
8.5). Table 8.45 presents the additional model associations of the FlowElementsContainer element.

Table 8.45 — FlowElementsContainer model associations

Attribute Name Description/Usage

flowElements: Flow This association specifies the particular flow elements contained in a

Element [0..7] FlowElementContainer. Flow elements are Events, Gateways, Sequence
Flows, Activities, Data Objects, Data Associations, and Choreography
Activities.
Note that:

+ Choreography Activities MUST NOT be included as a flowElement for a
Process.

+ Activities, Data Associations, and Data Objects MUST NOT be included as
a flowElement for a Choreography.

laneSets: LaneSet [0.."] This attribute defines the list of LaneSets used in the FlowElementsContainer
LaneSets are not used for Choreographies or Sub-Choreographies.

Business Process Model and Notation (BPMN), v2.0.2 87

8.4.9 Gateways

Gateways are used to control how the Process flows (how Tokens flow) through Sequence Flows as they converge
and diverge within a Process. If the flow does not need to be controlled, then a Gateway is not needed. The term
“gateway” implies that there is a gating mechanism that either allows or disallows passage through the Gateway; that is,
as tokens arrive at a Gateway, they can be merged together on input and/or split apart on output as the Gateway
mechanisms are invoked.

Gateways, like Activities, are capable of consuming or generating additional control tokens, effectively controlling the
execution semantics of a given Process. The main difference is that Gateways do not represent ‘work’ being done and
they are considered to have zero effect on the operational measures of the Process being executed (cost, time, etc.).

The Gateway controls the flow of both diverging and converging Sequence Flows. That is, a single Gateway could
have multiple input and multiple output flows. Modelers and modeling tools might want to enforce a best practice of a
Gateway only performing one of these functions. Thus, it would take two sequential Gateways to first converge and
then to diverge the Sequence Flows.

BaseElement i
%‘om Foundation) S Documentation “enumeration»
idl : St + docurnentation| ("o Foundation) =] EventBasedGatewayType
Egd : sting " g text : String (From Gakeways)
1 [Eg textFormat : String = Parallel
= Exclusive
Q HowElement enumeration
{from Common) [GatewayDirection

[Eg name : 5tring
| FlowNode

(From Common)

[Eg datewayDirection : GatewayDirection

= ExclusiveGateway

(From Gateways) (From Gakeways)

+ exclusiveGateway

0.1, + default

| sequenceFlow
(From Common)
g isImmediate ; Boolean

Figure 8.24 — Gateway class diagram

= InclusiveGateway

0.1/, + default

(From Gateways)
= Linspecified
= Converging
= Diverging
=1 Mixed

] Gateway
(from Gateways)

] parallelGateway
(from Gateways)

LT inclusiveGateway

0.1

+ default

| EventBasedGateway
(From Gateways)
[instantiate : Boolean
[Eg eventGatewayType : EventBasedGatewayType

| ComplexGateway
(From Gateways)

+ complexGateway . * 0.1
+ complexGateway

+ activationCondition | 0..1

=] Expression

+ conditionExpression {From Common)

0.1

The details for the types of Gateways (Exclusive, Inclusive, Parallel, Event-Based, and Complex) is defined on
page 285 for Processes and on page 342 for Choreographies.

88 Business Process Model and Notation (BPMN), v2.0.2

The Gateway class is an abstract type. Its concrete subclasses define the specific semantics of individual Gateway
types, defining how the Gateway behaves in different situations.

The Gateway element inherits the attributes and model associations of F1lowElement (see Table 8.44). Table 8.46
presents the additional attributes of the Gateway element.

Table 8.46 — Gateway attributes

Attribute Name Description/Usage
gatewayDirection: GatewayDirection = An attribute that adds constraints on how the Gateway MAY be
Unspecified used

{ Unspecified | Converging | Diverging | Mixed }

* Unspecified: There are no constraints. The Gateway MAY
have any number of incoming and outgoing Sequence
Flows.

» Converging: This Gateway MAY have multiple incoming
Sequence Flows but MUST have no more than one (1)
outgoing Sequence Flow.

» Diverging: This Gateway MAY have multiple outgoing
Sequence Flows but MUST have no more than one (1)
incoming Sequence Flow.

* Mixed: This Gateway contains multiple outgoing and
multiple incoming Sequence Flows.

8.4.10 Item Definition

BPMN clements, such as DataObjects and Messages, represent items that are manipulated, transferred,
transformed, or stored during Process flows. These items can be either physical items, such as the mechanical part of a
vehicle, or information items such the catalog of the mechanical parts of a vehicle.

An important characteristics of items in Process is their structure. BPMN does not require a particular format for this
data structure, but it does designate XML Schema as its default. The structure attribute references the actual data
structure.

The default format of the data structure for all elements can be specified in the Definitions element using the
typeLanguage attribute. For example, a typeLanguage value of http://www.w3.0rg/2001/XMLSchema”
indicates that the data structures using by elements within that Definitions are in the form of XML Schema types. If
unspecified, the default is XML schema. An Import is used to further identify the location of the data structure (if
applicable). For example, in the case of data structures contributed by an XML schema, an Import would be used to
specify the file location of that schema.

Structure definitions are always defined as separate entities, so they cannot be inlined in one of their usages. You will see
that in every mention of structure definition there is a “reference” to the element. This is why this class inherits from
RootElement.

An ItemDefinition element can specify an import reference where the proper definition of the structure is defined.

Business Process Model and Notation (BPMN), v2.0.2 89

In cases where the data structure represents a collection, the multiplicity can be projected into the attribute
isCollection. If this attribute is set to “frue,” but the actual type is not a collection type, the model is considered as
invalid. BPMN compliant tools might support an automatic check for these inconsistencies and report this as an error.

The default value for this element is “false.”

The itemKind attribute specifies the nature of an item which can be a physical or an information item.

Figure 8.25 shows the ITtemDefinition class diagram. When an TtemDefinition is defined it is contained in

Definitions.
=] RootElement
(From Foundation)
2 O import] 1temDefinition
[importType ; String 0.1 . (From Common)
2 location : String 53 itemkind : Ttemkind
©) + import [Eg structureRef : Element

[E3 namespace : Strin : i
* & ? [Eg isCollection : Boolean

«enumeration»
[E] ItemKind
(From Common)
= Physical
=1 Information

Figure 8.25 — ItemDefinition class diagram

The ItemDefinition element inherits the attributes and model associations BaseElement (see Table 8.5) through
its relationship to RootElement. Table 8.47 presents the additional attributes and model associations for the

ItemDefinition element.

Table 8.47 — ItemDefinition attributes & model associations

Attribute Name Description/Usage

itemKind: IltemKind = Information
{ Information | Physical }

This defines the nature of the ltem. Possible values are physical or
information. The default value is information.

structureRef: [Element [0..1]

The concrete data structure to be used.

import: Import [0..1]

Identifies the location of the data structure and its format. If the
importType attribute is left unspecified, the t ypeLanguage specified
in the Definitions that contains this ItemDefinition is assumed.

isCollection: boolean = False

Setting this flag to frue indicates that the actual data type is a
collection.

90

Business Process Model and Notation (BPMN), v2.0.2

8.4.11 Message

A Message represents the content of a communication between two Participants. In BPMN 2.0.2, a Message is a
graphical decorator (it was a supporting element in BPMN 1.2). An ItemDefinition is used to specify the
Message structure.

When displayed in a diagram:

€ InaMessage is a rectangle with converging diagonal lines in the upper half of the rectangle to give the appearance
of an envelope (see Figure 8.26). It MUST be drawn with a single thin line.

€ The use of text, color, size, and lines for a Message MUST follow the rules defined in “Use of Text, Color,
Size, and Lines in a Diagram” on page 39.

Figure 8.26 — A Message

In addition, when used in a Choreography Diagram more than one Message MAY be used for a single
Choreography Task. In this case, it is important to know the first (initiating) Message of the interaction. For return
(non-initiating) Messages the symbol of the Message is shaded with a light fill (see Figure 8.27).

Figure 8.27 — A non-initiating Message
€ Any Message sent by the non-initiating Participant or Sub-Choreography MUST be shaded with a light fill.

In a Collaboration, the communication itself is represented by a Message Flow (see “Message Flow” below for more
details). The Message can be optionally depicted as a graphical decorator on a Message Flow in a Collaboration
(see Figure 8.28 and Figure 8.29).

Business Process Model and Notation (BPMN), v2.0.2 91

Customer

T
|
|
Order E]
|
|
|
|
|
|
\Z

A
|
|
|
|
|
|
|

Izl Confirmation
|

s

Supplier

Figure 8.28 — Messages Association overlapping Message Flows
In a Choreography, the communication is represented by a Choreography Task (see page 321). The Message can

be depicted as a decorator with a Choreography Task in a Choreography (see Figure 8.29).

Order

pr———
Customer

Place
Order

Supplier

Confirmation

Figure 8.29 — Messages shown Associated with a Choreography Task

Figure 8.30 displays the class diagram showing the attributes and model associations for the Message element.

92 Business Process Model and Notation (BPMN), v2.0.2

=] MessageFlow =] RootElement £ 1temDefinition
(from Collaboration) " (from Foundation) (From Common)
Egname : String &g itemkind : TtemKind
g structureRef ; Element
[Eg isCollection : Boolean

0.1 + itemRef

0.1 4+ messageRef + message
| Message Ref
o Recewe__Task + messageRef {From Common) + messageRe
(From Activities) g name : String 0.1
Eg implementation : String * 0.1

g instantiate : Boolean + messageRef'C..1 1 '+ inMessageRef 0..1' '+ outMessageRef

-
Q MessageEventDefinition
(from Events)

| sendTask = operation
(From Activities) (From Service) 0.1
g implementation : String * [Eg name: © String +operationRef

58 implementationRef : Element

0.1
+ operationRef
.

| ServiceTask
(From Activities)
g implementation : String

Figure 8.30 — The Message class diagram

The Message clement inherits the attributes and model associations of BaseElement (see Table 8.5) through its
relationship to RootElement. Table 8.48 presents the additional attributes and model associations for the Message
element.

Table 8.48 — Message attributes and model associations

Attribute Name Description/Usage

name: string Name is a text description of the Message.

itemRef : ItemDefinition [0..1] An TtemDefinition is used to define the “payload” of the
Message.

8.4.12 Resources

The Resource class is used to specify resources that can be referenced by Activities. These Resources can be
Human Resources as well as any other resource assigned to Activities during Process execution time.

The definition of a Resource is “abstract,” because it only defines the Resource, without detailing how e.g., actual
user IDs are associated at runtime. Multiple Activities can utilize the same Resource.

Business Process Model and Notation (BPMN), v2.0.2 93

Every Resource can define a set of ResourceParameters. These parameters can be used at runtime to define
query e.g., into an Organizational Directory. Every Activity referencing a parameterized Resource can bind values
available in the scope of the Activity to these parameters.

| RootElement] BaseElement | Documentation
(From Foundation) (From Foundation) . (From Foundation)
: - + documentation -
Eg id : String [Eg text : String
1 * [, textFormat : String

| Resource . | & ResourceParameter
(From Common) + resourceParametery (from Common) 0.1] 1temDefinition
£ name : String [Eg name : String h __ (from Common)
1 * | g isRequired : Boolean 5 temikind : Ttemkind

* + 1YPe 55 structureRef ; Element

g isCollection ; Boolean

Figure 8.31 — Resource class diagram

The Resource element inherits the attributes and model associations of BaseElement (see Table 8.5) through its
relationship to RootElement. Table 8.51 presents the additional model associations for the Resource element.

Table 8.49 — Resource attributes and model associations

Attribute Name Description/Usage

name: string This attribute specifies the name of the Resource.
resourceParameters: This model association specifies the definition of the parameters
ResourceParameter [0..*] needed at runtime to resolve the Resource.

As mentioned before, the Resource can define a set of parameters to define a query to resolve the actual resources
(e.g., user ids).

The ResourceParameter element inherits the attributes and model associations of BaseElement (see Table 8.5)
through its relationship to RootElement. Table 8.51 presents the additional model associations for the
ResourceParameter element.

94 Business Process Model and Notation (BPMN), v2.0.2

Table 8.50 — ResourceParameter attributes and model associations

Attribute Name Description/Usage

name: string Specifies the name of the query parameter.

type: ItemDefinition Specifies the type of the query parameter.
isRequired: boolean Specifies, if a parameter is optional or mandatory.

8.4.13 Sequence Flow

A Sequence Flow is used to show the order of Flow Elements in a Process or a Choreography. Each
Sequence Flow has only one source and only one target. The source and target MUST be from the set of the following
Flow Elements: Events (Start, Intermediate, and End), Activities (Task and Sub-Process; for Processes),
Choreography Activities (Choreography Task and Sub-Choreography; for Choreographies), and
Gateways.

€ A Sequence Flow is line with a solid arrowhead that MUST be drawn with a solid single line (as seen in Figure
8.32).

@ The use of text, color, size, and lines for a Sequence Flow MUST follow the rules defined in “Use of Text,
Color, Size, and Lines in a Diagram” on page 39.

>

Figure 8.32 — A Sequence Flow

A Sequence Flow can optionally define a condition Expression, indicating that the token will be passed down the
Sequence Flow only if the Expression evaluates to true. This Expression is typically used when the source of
the Sequence Flow is a Gateway or an Activity.

@ A conditional outgoing Sequence Flow from an Activity MUST be drawn with a mini-diamond marker at the
beginning of the connector (as seen in Figure 8.33).

@ Ifaconditional Sequence Flow is used from a source Activity, then there MUST be at least one other
outgoing Sequence Flow from that Activity.

@ Conditional outgoing Sequence Flows from a Gateway MUST NOT be drawn with a mini-diamond marker at
the beginning of the connector.

€ A source Gateway MUST NOT be of type Parallel or Event.

< >

Figure 8.33 — A Conditional Sequence Flow

Business Process Model and Notation (BPMN), v2.0.2 95

A Sequence Flow that has an Exclusive, Inclusive, or Complex Gateway or an Activity as its source can also be
defined with as default. Such a Sequence Flow will have a marker to show that it is a default flow. The default
Sequence Flow is taken (a token is passed) only if all the other outgoing Sequence Flows from the Activity or
Gateway are not valid (i.e., their condition Expressions are false).

€ A default outgoing Sequence Flow MUST be drawn with a slash marker at the beginning of the connector (as
seen in Figure 8.34).

\\ »

Figure 8.34 — A Default Sequence Flow

| FlowElement
(from Commaon)
[Eg name : 5tring

] sequenceFlow
(Fram Comman)
g isImmediate : Boolean

* |+ outgoing * + incoming 0.1
+default | 0.1
L sourceRef 1 * targetRef + conditionExpression| 0.1
| lowNode | Expression
(From Common) (From Common)
+ activity 1
] Gateway = Event] choreographyActivity =] Activity
(from Gateways) (from Events) (from ChoreographyActivities) (from Activities)
g datewayDirection | GatewayDirection mloupType . ChoreographyLoopType [Eg isForCompensation Boolean

[Eg startQuantity : Integer
[Eg completionQuantity : Integer

Figure 8.35 — SequenceFlow class diagram

The Sequence Flow clement inherits the attributes and model associations of FlowElement (see Table 8.44). Table
8.51 presents the additional attributes and model associations of the Sequence Flow element.

96 Business Process Model and Notation (BPMN), v2.0.2

Table 8.51 — SequenceFlow attributes and model associations

Attribute Name

Description/Usage

sourceRef: FlowNode

The FlowNode that the Sequence Flow is connecting from.

For a Process: Of the types of FlowNode, only Activities, Gateways, and Events
can be the source. However, Activities that are Event Sub-Processes are not
allowed to be a source.

For a Choreography: Of the types of FlowNode, only Choreography Activities,
Gateways, and Events can be the source.

targetRef: FlowNode

The FlowNode that the Sequence Flow is connecting to.

For a Process: Of the types of FlowNode, only Activities, Gateways, and Events
can be the target. However, Activities that are Event Sub-Processes are not
allowed to be a target.

For a Choreography: Of the types of FlowNode, only Choreography Activities,
Gateways, and Events can be the target.

Expression [0..1]

conditionExpression:

An optional boolean Expression that acts as a gating condition. A token will only
be placed on this Sequence Flow if this conditionExpression evaluates to
true.

isimmediate: boolean
[0..1]

An optional boolean value specifying whether Activities or Choreography
Activities not in the model containing the Sequence Flow can occur between the
elements connected by the Sequence Flow. If the value is true, they MAY NOT
occur. If the value is false, they MAY occur. Also see the isClosed attribute on
Process, Choreography, and Collaboration. When the attribute has no value, the
default semantics depends on the kind of model containing Sequence Flows:

» For non-executable Processes (public Processes and non-executable private
Processes) and Choreographies no value has the same semantics as if the
value were false.

* For an executable Processes no value has the same semantics as if the value
were frue.

« For executable Processes, the attribute MUST NOT be false.

Flow Node

The FlowNode element is used to provide a single element as the source and target Sequence Flow associations (see
Figure 8.35) instead of the individual associations of the elements that can connect to Sequence Flows (see above).
Only the Gateway, Activity, Choreography Activity, and Event clements can connect to Sequence Flows and
thus, these elements are the only ones that are sub-classes of FlowNode.

Since Gateway, Activity, Choreography Activity, and Event have their own attributes, model associations, and
inheritances; the F1owNode element does not inherit from any other BPMN element. Table 8.52 presents the additional
model associations of the FlowNode element.

Business Process Model and Notation (BPMN), v2.0.2

97

Table 8.52 — FlowNode model associations

Attribute Name Description/Usage

incoming: Sequence Flow [0..*] This attribute identifies the incoming Sequence Flow of the FlowNode.

outgoing: Sequence Flow [0..*] This attribute identifies the outgoing Sequence Flow of the FlowNode.
This is an ordered collection.

8.4.14 Common Package XML Schemas

Table 8.53 — Error XML schema

<xsd:element name="error" type="tError" substitutionGroup="rootElement"/>
<xsd:complexType name="tError">
<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="errorCode" type="xsd:string"/>
<xsd:attribute name="structureRef" type="xsd:QName"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.54 — Escalation XML schema

<xsd:element name="escalation" type="tEscalation" substitutionGroup="rootElement"/>
<xsd:complexType name="tEscalation">
<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="escalationCode" type="xsd:string"/>
<xsd:attribute name="structureRef" type="xsd:QName"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.55 — Expression XML schema

<xsd:element name="expression" type="tExpression"/>
<xsd:complexType name="tExpression">
<xsd:complexContent>
<xsd:extension base="tBaseElementWithMixedContent"/>
</xsd:complexContent>
</xsd:complexType>

98 Business Process Model and Notation (BPMN), v2.0.2

Table 8.56 — FlowElement XML schema

<xsd:element name="flowElement" type="tFlowElement"/>
<xsd:complexType name="tFlowElement" abstract="true">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element ref="auditing" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="monitoring" minOccurs="0" maxOccurs="1"/>
<xsd:element name="categoryValueRef" type="xsd:QName" minOccurs="0" maxOc-
curs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.57 — FlowNode XML schema

<xsd:element name="flowNode" type="tFlowNode"/>
<xsd:complexType name="tFlowNode" abstract="true">
<xsd:complexContent>
<xsd:extension base="tFlowElement">
<xsd:sequence>
<xsd:element name="incoming" type="xsd:QName" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="outgoing" type="xsd:QName" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.58— FormalExpression XML schema

<xsd:element name="formalExpression" type="tFormalExpression" substitutionGroup="expression"/>
<xsd:complexType name="tFormalExpression">
<xsd:complexContent>
<xsd:extension base="tExpression">
<xsd:attribute name="language" type="xsd:anyURI" use="optional"/>
<xsd:attribute name="evaluatesToTypeRef" type="xsd:QName"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.59 — InputOutputBinding XML schema

<xsd:element name="ioBinding" type="tinputOutputBinding"/>
<xsd:complexType name="tinputOutputBinding">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:attribute name="inputDataRef" type="xsd:IDREF"/>

Business Process Model and Notation (BPMN), v2.0.2 99

<xsd:attribute name="outputDataRef" type="xsd:IDREF"/>
<xsd:attribute name="operationRef" type="xsd:QName"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.60 — ItemDefinition XML schema

<xsd:element name="itemDefinition" type="tltemDefinition" substitutionGroup="rootElement"/>
<xsd:complexType name="tltemDefinition">
<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:attribute name="structureRef" type="xsd:QName"/>
<xsd:attribute name="isCollection" type="xsd:boolean" default="false"/>
<xsd:attribute name="itemKind" type="tltemKind" default="Information"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="tltemKind">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="Information"/>
<xsd:enumeration value="Physical"/>
</xsd:restriction>
</xsd:simpleType>

Table 8.61 — Message XML schema

<xsd:element name="message" type="tMessage" substitutionGroup="rootElement"/>
<xsd:complexType name="tMessage">
<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="itemRef" type="xsd:QName"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.62 — Resources XML schema

<xsd:element name="resource" type="tResource" substitutionGroup="rootElement"/>
<xsd:complexType name="tResource">
<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:sequence>
<xsd:element ref="resourceParameter" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:extension>

100 Business Process Model and Notation (BPMN), v2.0.2

</xsd:complexContent>
</xsd:complexType>

Table 8.63 — ResourceParameter XML schema

<xsd:element name="resourceParameter" type="tResourceParameter" />
<xsd:complexType name="tResourceParameter">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="type" type="xsd:QName"/>
<xsd:attribute name="isRequired" type="xsd:Boolean" />
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.64 — SequenceFlow XML schema

<xsd:element name="sequenceFlow" type="tSequenceFlow" substitutionGroup="flowElement"/>
<xsd:complexType name="tSequenceFlow">
<xsd:complexContent>
<xsd:extension base="tFlowElement">
<xsd:sequence>
<xsd:element name="conditionExpression" type="tExpression" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="sourceRef" type="xsd:IDREF" use="required"/>
<xsd:attribute name="targetRef" type="xsd:IDREF" use="required"/>
<xsd:attribute name="isImmediate" type="xsd:boolean" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

8.5 Services

The Service package contains constructs necessary for modeling services, interfaces, and operations.

Business Process Model and Notation (BPMN), v2.0.2 101

=] Message
(From Common)
[Eg name : String

£ operation
(From Service)
[Eg name : String
g implementationRef : Element

+ iNMessageRef

1
+ outMessageRef

0.1

+ errorRefs T

(From Common)
[Eg name : String

-

+ operations | 1..* Eg enorCode : String
] BaseElement
(from Foundation)
g id : String
1
* '+ documentation
=] Documentation
(From Foundation)
1 [Eg text : Stiing
[Eg, textFormat © String
] RootElement
| Interface (from Foundation)

(From Service)
[Eg name : String
[implementationRef : Element

+ supportedinterfaceRefs

+ calableElements | *

| callableElement
(from Commaon)
[Eg name : String

+ interfaceRefs

M

= EndPoint

(From Service)

=] participant + endPointRefs
(From Collabor ation)

[E name : String *

Figure 8.36 — The Service class diagram
8.5.1 Interface

An Interface defines a set of operations that are implemented by

Services.

The Interface inherits the attributes and model associations of BaseElement (see Table 8.5) through its relationship
to RootElement. Table 8.65 presents the additional attributes and model associations of the Interface.

102

Business Process Model and Notation (BPMN), v2.0.2

Table 8.65 — Interface attributes and model associations

Attribute Name Description/Usage
name: string The descriptive name of the element.
operations: Operation [1..%] This attribute specifies operations that are defined as part of the

Interface. An Interface has at least one Operation.

callableElements: CallableElement [0.."] The CallableElements that use this Interface.

implementationRef: Element [0..1] This attribute allows to reference a concrete artifact in the underly-
ing implementation technology representing that interface, such
as a WSDL porttype.

8.5.2 EndPoint

The actual definition of the service address is out of scope of BPMN 2.0. The EndPoint element is an extension point
and extends from RootElement. The EndPoint element MAY be extended with endpoint reference definitions
introduced in other specifications (e.g., WS-Addressing).

EndPoints can be specified for Participants.

8.5.3 Operation

An Operation defines Messages that are consumed and, optionally, produced when the Operation is called. It can
also define zero or more errors that are returned when operation fails. The Operation inherits the attributes and model
associations of BaseElement (see Table 8.5). Table 8.66 below presents the additional attributes and model associations
of the Operation.

Business Process Model and Notation (BPMN), v2.0.2 103

Table 8.66 — Operation attributes and model associations

Attribute Name Description/Usage
name: string The descriptive name of the element.
inMessageRef: Message This attribute specifies the input Message of the Operation. An Operation

has exactly one input Message.

outMessageRef: Message This attribute specifies the output Message of the Operation. An Operation
[0..1] has at most one input Message.

errorRef: Error [0..%] This attribute specifies errors that the Operation may return. An Operation
MAY refer to zero or more Error elements.

implementationRef: Element | Thjs attribute allows to reference a concrete artifact in the underlying implemen-
[0.1] tation technology representing that operation, such as a WSDL operation.

8.5.4 Service Package XML Schemas

Table 8.67 — Interface XML schema

<xsd:element name="interface" type="tInterface" substitutionGroup="rootElement"/>
<xsd:complexType name="tInterface">
<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:sequence>
<xsd:element ref="operation" minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="implementationRef" type="xsd:QName" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.68 — Operation XML schema

<xsd:element name="operation" type="tOperation"/>
<xsd:complexType name="tOperation">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element name="inMessageRef" type="xsd:QName" minOccurs="1" maxOccurs="1"/>
<xsd:element name="outMessageRef" type="xsd:QName" minOccurs="0" maxOccurs="1"/>
<xsd:element name="errorRef" type="xsd:QName" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="implementationRef" type="xsd:QName" use="optional"/>
</xsd:extension>

104 Business Process Model and Notation (BPMN), v2.0.2

</xsd:complexContent>
</xsd:complexType>

Table 8.69 — EndPoint XML schema

<xsd:element name="endPoint" type="tEndPoint"/>
<xsd:complexType name="tEndPoint">
<xsd:complexContent>
<xsd:extension base="tRootElement"/>
</xsd:complexContent>
</xsd:complexType>

Business Process Model and Notation (BPMN), v2.0.2

105

106 Business Process Model and Notation (BPMN), v2.0.2

9 Collaboration

9.1 General

NOTE: The contents of this clause are REQUIRED for BPMN Choreography Modeling Conformance, BPMN Process
Modeling Conformance, or for BPMN Complete Conformance. However, this clause is NOT REQUIRED for BPMN
Process Execution Conformance or BPMN BPEL Process Execution Conformance. For more information about BPMN
conformance types, see page 1.

The Collaboration package contains classes that are used for modeling Collaborations, which is a collection of
Participants shown as Pools, their interactions as shown by Message Flows, and MAY include Processes within the
Pools and/or Choreographies between the Pools (see Figure 9.1). A Choreography is an extended type of
Collaboration. When a Collaboration is defined it is contained in Definitions.

Business Process Model and Notation (BPMN), v2.0.2 107

= RootElemeant

(v Foundation)
+ messagaFlwARSeCiations 1 0.1 +part — [| Participant Association
" m Collahar ation
_ r + colabaration [Collaboration . L j
= {fmmtoluh:im:l o Uirom Colaboration] + collabior ation o participrldsocialon o pelcpanlAsociaton. *

[e Shing
I iClosed | Boolkean
* |4 messagaflowissociaton * [+ messageFlowAseciation ™ + InarParticipantiief 1 + outerPartiopantief 1
| Participant
(Froem Collsharatinn)
1 4 nremessagetios®al 1+ outerMessageriowief g hame ; 5ting 2.t
E Messagellow
{From Collsbor ation)
[Shing

- 1 + parlicipariRels
* e messageflow ¥+ messagerlows 1
+ processief ot + participantMulticlecity 0.1
0.1 massagaRef + colabaratian [Process [Participan iultiplicity
Message {Fram Pracess) {From Celdabhoration)
(Froem Crmsmen) L
‘alhln':s\“lllg 1t
1 + o sationLinks. »
= Conversationfssociation = ConversationLink

{hvem Cormrerialions)

I name : Sting
1 + ConWenstannissociabons

* *
1 + frcomingCorer salionlinks + foutgongComersationLins
— Choreography 1+ targatref 1 + sourceraf
{From Choreography) [Traterare biewaNersdes
{From Collsbor ation)
+ cherecgraphyfef .
-
: + colabaration 0.1 + collsboration + Conversations | ConversationNode
| | BlobalChoreography Task - (Froem Comeersations)
h -
(From Chorsngraphy} 0.1 g nama ; g
0.1
+ conrehiionksys =+ Comelabonkeys
-
= GlobalComversation = Correlationkey
{hem Cormereations) [lrem Commen) *
g name ! 5ting
subCormarsation .l
EAthm! - o.1 + cabeiCollaborationRe! E&.ﬂl_‘.ﬂrnuulﬁm
[Frowm Aatfacts) a1 [From Conversations]
+ atifacts
-
= CallConversation = Conversation
[From Conversationns) {hvem Cornrerialions)

Figure 9.1 — Classes in the Collaboration package
The Collaboration element inherits the attributes and model associations of BaseElement (see Table 8.5) through its

relationship to RootElement. Table 9.1 presents the additional attributes and model associations for the Collaboration
element.

Table 9.1 — Collaboration Attributes and Model Associations

Attribute Name Description/Usage

name: string

Name is a text description of the Collaboration.

108 Business Process Model and Notation (BPMN), v2.0.2

Table 9.1 — Collaboration Attributes and Model Associations

choreographyRef: The choreographyRef model association defines the Choreographies that
Choreography [0..%] can be shown between the Pools of the Collaboration. A Choreography
specifies a business contract (or the order in which messages will be
exchanged) between interacting Participants. See page 315 for more details
on Choreography.

The participantAssociations (see below) are used to map the
Participants of the Choreography to the Participants of the Collaboration.

The MessageFlowAssociations (see below) are used to map the
Message Flows of the Choreography to the Message Flows of the
Collaboration.

The conversationAssociations (see below) are used to map the
Conversations of the Choreography to the Conversations of the
Collaboration.

Note that this attribute is not applicable for Choreography or
GlobalConversation which are a subtypes of Collaboration. Thus, a
Choreography cannot reference another Choreography.

gorrellatt.ionlz(ey%: This association specifies CorrelationKeys used to associate Messages
orrelationKey [0..* . .
yio.7 to a particular Collaboration.

°°“Versat.i°“A55°Fi?ti°“s:* This attribute provides a list of mappings from the Conversations of a
ConversationAssociation [0.."] referenced Collaboration to the Conversations of another Collaboration.
It is used when:

« When a Choreography is referenced by a Collaboration.

conversations: . The conversations model aggregation relationship allows a
ConversationNode [0.] Collaboration to contain Conversation elements, in order to group
Message Flows of the Collaboration and associate correlation information,
as is REQUIRED for the definitional Collaboration of a Process model. The
Conversation elements will be visualized if the Collaboration is a
Collaboration, but not for a Choreography.

conversationLinks: This provides the Conversation Links that are used in the Collaboration.
ConversationLink [0..*]

artifacts: Artifact [0..] This attribute provides the list of Artifacts that are contained within the
Collaboration.

participants: Participant [0..*] This provides the list of Participants that are used in the Collaboration.
Participants are visualized as Pools in a Collaboration and as Participant
Bands in Choreography Activities in a Choreography.

Business Process Model and Notation (BPMN), v2.0.2 109

Table 9.1 — Collaboration Attributes and Model Associations

participantAssociations: This attribute provides a list of mappings from the Participants of a
ParticipantAssociations [0..*] referenced Collaboration to the Participants of another Collaboration. It is
used in the following situations

* When a Choreography is referenced by the Collaboration.

» When a definitional Collaboration for a Process is referenced through

a Call Activity (and mapped to definitional Collaboration of the
calling Process).

messageFlow: Message Flow This provides the list of Message Flows that are used in the Collaboration.
[0.7] Message Flows are visualized in Collaboration (as dashed line) and
hidden in Choreography.

messageFlowAssociations: This attribute provides a list of mappings for the Message Flows of the
Message Flow Association [0.."] Collaboration to Message Flows of a referenced model. It is used in the
following situation:

* When a Choreography is referenced by a Collaboration. This allows

the "wiring up" of the Collaboration Message Flows to the
appropriate Choreography Activities.

IsClosed: boolean = false A boolean value specifying whether Message Flows not modeled in the
Collaboration can occur when the Collaboration is carried out.

- If the value is true, they MAY NOT occur.
* If the value is false, they MAY occur.

A set of Messages Flow of a particular Collaboration MAY belong to a Conversation. A Conversation is a set of
Message Flows that share a particular purpose (i.e., they all relate to the handling of a single order - see page 123 for
more information about Conversations).

9.2 Basic Collaboration Concepts

A Collaboration usually contains two or more Pools, representing the Participants in the Collaboration. The
Message exchange between the Participants is shown by a Message Flow that connects two Pools (or the objects
within the Pools). The Messages associated with the Message Flows MAY also be shown. See 9.3, 9.4, and 9.5 for
examples of Collaborations.

A Pool MAY be empty, a “black box,” or MAY show a Process within. Choreographies MAY be shown “in
between” the Pools as they bisect the Message Flows between the Pools. All combinations of Pools, Processes,
and a Choreography are allowed in a Collaboration.

9.2.1 Use of BPMN Common Elements

Some BPMN elements are common to both Process and Choreography, as well as Collaboration; they are used in
these diagrams. The next few sub clauses will describe the use of Messages, Message Flows, Participants,
Sequence Flows, Artifacts, Correlations, Expressions, and Services in Choreography.

110 Business Process Model and Notation (BPMN), v2.0.2

9.3 Pool and Participant

A Pool is the graphical representation of a Participant in a Collaboration. A Participant (see page 113) can be a
specific PartnerEntity (e.g., a company) or can be a more general PartnerRole (e.g., a buyer, seller, or
manufacturer). A Pool MAY or MAY NOT reference a Process. A Pool is NOT REQUIRED to contain a Process,
i.e., it can be a “black box.”

€ A Pool is a square-cornered rectangle that MUST be drawn with a solid single line (see Figure 9.2).

@ The label for the Pool MAY be placed in any location and direction within the Pool, but MUST be separated
from the contents of the Pool by a single line.

€ Ifthe Pool is a black box (i.e., does not contain a Process), then the label for the Pool MAY be placed
anywhere within the Pool without a single line separator.

€ One, and only one, Pool in a diagram MAY be presented without a boundary. If there is more than one Pool in
the diagram, then the remaining Pools MUST have a boundary.

The use of text, color, size, and lines for a Pool MUST follow the rules defined in “Use of Text, Color, Size, and Lines
in a Diagram” on page 39.

Name

Figure 9.2 — A Pool

To help with the clarity of the Diagram, a Pool extends the entire length of the Diagram, either horizontally or vertically.
However, there is no specific restriction to the size and/or positioning of a Pool. Modelers and modeling tools can use
Pools in a flexible manner in the interest of conserving the “real estate” of a Diagram on a screen or a printed page.

A Pool acts as the container for the Sequence Flows between Activities (of a contained Process). The Sequence
Flows can cross the boundaries between Lanes of a Pool (see page 304 for more details on Lanes), but cannot cross
the boundaries of a Pool. That is, a Process is fully contained within the Pool. The interaction between Pools is
shown through Message Flows.

Another aspect of Pools is whether or not there is any Activity detailed within the Pool. Thus, a given Pool MAY be
shown as a “White Box,” with all details (e.g., a Process) exposed, or as a “Black Box,” with all details hidden. No
Sequence Flows are associated with a “Black Box” Pool, but Message Flows can attach to its boundaries (see
Figure 9.3).

Business Process Model and Notation (BPMN), v2.0.2 11

Financial
Institution

Credit Request

¢

Credit Response

Manufacturer

Figure 9.3 — Message Flows connecting to the boundaries of two Pools

For a “White Box” Pool, the Activities within are organized by Sequence Flows. Message Flows can cross the

Pool boundary to attach to the appropriate Activity (see Figure 9.4).

86§ Credit Card
€5 Authori-
£ B zation
L c
AN
|
|
| {
S |
E | |
= | Pack Goods Ship Goods
2]
5|6 o
_% l
55))| Av4
@ Authorize Process
= Payment Order
2 [+

Figure 9.4 — Message Flows connecting to Flow Objects within two Pools

A Collaboration can contain two (2) or more Pools (i.e., Participants). However, a Process that represents the work
performed from the point of view of the modeler or the modeler’s organization can be considered “internal” and is NOT
REQUIRED to be surrounded by the boundary of the Pool, while the other Pools in the Diagram MUST have their

boundary (see Figure 9.5).

112

Business Process Model and Notation (BPMN), v2.0.2

Financial Institution

Process

Figure 9.5 — Main (Internal) Pool without boundaries

BPMN specifies a marker for Pools: a multi-instance marker May be displayed for a Pool (see Figure 9.6). The marker
is used if the Participant defined for the Pool is a multi-instance Participant. See page 116 for more information on
Participant multiplicity.

€ The marker for a Pool that is a multi-instance MUST be a set of three vertical lines in parallel.
€ The marker, if used, MUST be centered at the bottom of the shape.

Supplier Supplier

Figure 9.6 — Pools with a Multi-Instance Participant Markers
9.3.1 Participants

A Participant represents a specific PartnerEntity (e.g., a company) and/or a more general PartnerRole (e.g., a
buyer, seller, or manufacturer) that are Participants in a Collaboration. A Participant is often responsible for the
execution of the Process enclosed in a Pool; however, a Pool MAY be defined without a Process.

Figure 9.7 displays the class diagram of the Participant and its relationships to other BPMN elements. When Participants
are defined they are contained within a Collaboration, which includes the sub-types of Choreography,
GlobalConversation, or GlobalChoreographyTask.

Business Process Model and Notation (BPMN), v2.0.2 113

|= Baseflament

= Documentation
oo Fineatican’ + doCUmantaton =y e i)
5 i 5ung 1 » | Eptent 3t
kg tewtFommat : Stiing
L EndPaint . i
(frcm Sarvice) L InteractionNode
+ endPontiefs (i Colladsasrakion]
-
-}
+ nalatngPaiopanthiet 1%131&““.::; - 1 =
|| i mremrgraatip Activity B e e | Collabowralion
{From Chorsographyactites) * 115 bl il + colabaration [From Colabor stion)
[y oopTvpe © ChareorachiLo.., + particinantiaty 1 g name | Sing
Y + InnerFarticipantief g ke Backean
" 2. 1 + colaboationigd. .1 a2
T o colldewalion
7 GlubalChwor + outerPartizipantlar
o "“J::’Tﬂ + nlatngParticpanial = ;:
- + 5 | P iciganil Associalbon
. [From Colabor stion) er bicigant Arsoc L lare
1 -
v pal oy
. .
+ parbopantief + parbicpantiaf + choreographyfief *
0.1+ partcpantMulbobcity « = jpartneriokaaf + & [partraEnbeyRef | Choreography
= = = Cha 1]
= Participantultiplicity L Partnerfole = PartnerEntity Jirosicharigrapny)
{From Culladses ation) [Frcm Coanmen) [T —
£ TR | Integes [name © Shng
£ maimum @ Integer

L name | Sy

+ interfacafafs

0.1 + processfaf
| Process
Dillatace (from Pracess]
i_Fmrn'.-emz'l _E RootClement ..npu.u-a.'.Tg.;:l' T ProcissT e
& Name © 5tmg {From Fosasdalion)
v rigdernentafionBul @ Birmrd

g wlioged | Bockean
.'_,;,isl:xl:t.utd.il:' : Doidean

Figure 9.7 — The Participant Class Diagram

The Participant element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 9.2
presents the additional attributes and model associations for the Participant element.

114

Business Process Model and Notation (BPMN), v2.0.2

Table 9.2 — Participant attributes and model associations

Attribute Name

Description/Usage

name: string [0..1]

Name is a text description of the Participant. The name of the
Participant can be displayed directly or it can be substituted by the
associated PartnerRole or PartnerEntity. Potentially, both the
PartnerEntity name and PartnerRole name can be displayed for
the Participant.

processRef: Process [0..1]

The processRef attribute identifies the Process that the
Participant uses in the Collaboration. The Process will be
displayed within the Participant’s Pool.

partnerRoleRef: PartnerRole [0..*]

The partnerRoleRef attribute identifies a PartnerRole that the
Participant plays in the Collaboration. Both a PartnerRole and a
PartnerEntity MAY be defined for the Participant. This attribute is
derived from the participantRefs of PartnerRole.

partnerEntityRef: PartnerEntity [0..*]

The partnerEntityRef attribute identifies a PartnerEntity that

the Participant plays in the Collaboration. Both a PartnerRole and a
PartnerEntity MAY be defined for the Participant. This attribute is

derived from the participantRefs of PartnerEntity.

interfaceRef: Interface [0..”]

This association defines Interfaces that a Participant supports. The
definition of Interfaces is provided on page 102.

participantMultiplicity:
participantMultiplicity [0..1]

The participantMultiplicityRef model association is used to
define Participants that represent more than one (1) instance of the

Participant for a given interaction. See the next sub clause for more

details on ParticipantMultiplicity.

endPointRefs: EndPoint [0..*]

This attribute is used to specify the address (or endpoint reference) of
concrete services realizing the Participant.

PartnerEntity
A PartnerEntity is one of the possible types of Participant (see above).

The PartnerEntity element inherits the attributes and model associations of BaseElement (see Figure 8.5). Table

9.3 presents the additional attributes and model associations for the PartnerEntity element.

Table 9.3 — PartnerEntity attributes

Attribute Name Description/Usage

name: string Name is a text description of the PartnerEntity.

participantRef. Participant [0.."] Specifies how the PartnerEntity participates in Collaborations and
Choreographies.

Business Process Model and Notation (BPMN), v2.0.2

115

PartnerRole

A PartnerRole is one of the possible types of Participant (see above).

The PartnerRole element inherits the attributes and model associations of BaseElement (see Figure 8.5). Table 9.4
presents the additional attributes and model associations for the PartnerRole element.

Table 9.4 — PartnerRole attributes

Attribute Name Description/Usage

name: string Name is a text description of the PartnerRole.

participantRef: Participant [0.."] Specifies how the PartnerRole participates in Collaborations and

Choreographies.

Participant Multiplicity
ParticipantMultiplicity is used to define the multiplicity of a Participant.

For example, a manufacturer can request a quote from multiple suppliers in a Collaboration.

Manufacturer

1
fi
st ope

L

Supplier

Figure 9.8 — A Pool with a Multiple Participant

The following figure shows the Participant class diagram.

| participant
(From Collaboration)
[Eg name : 5tring

= participantMultiplicity
(From Collabor ation)
+ participantMultiplicity_| Eg minimum @ Integer

0.1 [Eg maximum : Integer

Figure 9.9 — The Participant Multiplicity class diagram

116

Business Process Model and Notation (BPMN), v2.0.2

The multi-instance marker will be displayed in bottom center of the Pool (Participant - see Figure 9.9, above), or the
Participant Band of a Choreography Activity (see page 321), when the ParticipantMultiplicity is
associated with the Participant, and the maximum attribute is either not set, or has a value of two or more.

Table 9.5 presents the attributes for the ParticipantMultiplicity element.

Table 9.5 — ParticipantMultiplicity attributes

Attribute Name Description/Usage

minimum: integer = 0 The minimum attribute defines minimum number of Participants that

MUST be involved in the Collaboration. If a value is specified in the
maximum attribute, it MUST be greater or equal to this minimum value.

maximum: integer [0..1] = 1 The maximum attribute defines maximum number of Participants that MAY

be involved in the Collaboration. The value of maximum MUST be one or
greater, AND MUST be equal or greater than the minimum value.

Table 9.6 presents the Instance attributes of the ParticipantMultiplicity element.

Table 9.6 — ParticipantMultiplicity /nstance attributes

Attribute Name Description/Usage

numParticipants: integer [0..1] The current number of the multiplicity of the Participant for this

Choreography or Collaboration /nstance.

ParticipantAssociation

These elements are used to do mapping between two elements that both contain Participants. There are situations where
the Participants in different diagrams can be defined differently because they were developed independently, but
represent the same thing. The ParticipantAssociation provides the mechanism to match up the Participants.

A ParticipantAssociation is used when an (outer) diagram with Participants contains an (inner) diagram that
also has Participants. There are four usages of ParticipantAssociation. It is used when:

1.

A Collaboration references a Choreography for inclusion between the Collaboration’s Pools (Participants).
The Participants of the Choreography (the inner diagram) need to be mapped to the Participants of the
Collaboration (the outer diagram).

A Call Conversation references a Collaboration or GlobalConversation. Thus, the Participants of the
Collaboration or G1obalConversation (the inner diagram) need to be mapped to the Participants referenced
by the Call Conversation (the outer element). Each Call Conversation contains its own set of
ParticipantAssociations.

A Call Choreography references a Choreography or G1obalChoreographyTask. Thus, the Participants of
the Choreography or GlobalChoreographyTask (the inner diagram) need to be mapped to the Participants
referenced by the Call Choreography (the outer element). Each Call Choreography contains its own set of
ParticipantAssociations.

Business Process Model and Notation (BPMN), v2.0.2 117

4. A Call Activity within a Process that has a definitional Collaboration references another Process that also has
a definitional Collaboration. The Participants of the definitional Collaboration of the called Process (the inner
diagram) need to be mapped to the Participants of the definitional Collaboration of the calling Process (the outer

diagram).

A ParticipantAssociation can be owned by the outer diagram
diagram for the ParticipantAssociation element.

] BaseElement Q Documentation
(From Foundation)

{from Foundation) .
Egid : String + documentation = text : String
1 " [Eg textFormat : String
+ participantAssociations
] participantAssociation * 0.1] callconversation
(From Collaboration) (From Conwersations)
+ callConversation
* + collaboration K& collaboration
(From Collaboration)
0.1 = TGt
+ participantAssociations F‘? rwame) S.tl ng
. - [Eg isClosed : Boolean
* + participantAssociations 1 + collaboration *

+ collaboration
+ outerParticipantRef 1 1 + innerParticipantRef

] Participant
(from Collaboration) o

[E3 name : String + participants + choreographyRef| *
| choreography
0.1 + calChoreographyActivity (from Choreography)

| callchoreography
(from ChoreographyActivities)

Figure 9.10 — ParticipantAssociation class diagram

or one its elements. Figure 9.10 shows the class

The ParticipantAssociation element inherits the attributes and model associations of BaseElement (see Table
8.5). Table 9.7 presents the additional model associations for the ParticipantAssociation element.

118

Business Process Model and Notation (BPMN), v2.0.2

Table 9.7 — ParticipantAssociation model associations

Attribute Name Description/Usage

innerParticipantRef: Participant This attribute defines the Participant of the referenced element (e.g., a
Choreography to be used in a Collaboration) that will be mapped to the
parent element (e.g., the Collaboration).

outerParticipantRef: Participant This attribute defines the Participant of the parent element (e.g., a
Collaboration references a Choreography) that will be mapped to the
referenced element (e.g., the Choreography).

9.3.2 Lanes

A Lane is a sub-partition within a Process (often within a Pool) and will extend the entire length of the Process level,
either vertically (see Figure 10.123) or horizontally (see Figure 10.124). See page 304 for more information on Lanes.

9.4 Message Flow

A Message Flow is used to show the flow of Messages between two Participants that are prepared to send and
receive them.

€ A Message Flow MUST connect two separate Pools. They connect either to the Pool boundary or to Flow
Objects within the Pool boundary. They MUST NOT connect two objects within the same Pool.

€ A Message Flow is a line with an open circle line start and an open arrowhead line end that MUST be drawn with
a dashed single line (see Figure 9.11).

€ The use of text, color, size, and lines for a Message Flow MUST follow the rules defined in “Use of
Text, Color, Size, and Lines in a Diagram” on page 39.

Figure 9.11 — A Message Flow

In Collaboration Diagrams (the view showing the Choreography Process Combined with Orchestration Processes),
a Message Flow can be extended to show the Message that is passed from one Participant to another (see Figure

9.12).

Business Process Model and Notation (BPMN), v2.0.2 119

Customer

T
|
|
Order EZI
|
|
|
|
|
|
\Z

A
|
|
|
I
|
|
|

EI Confirmation
|

l

Supplier

Figure 9.12 — A Message Flow with an Attached Message

If a Choreography is included in the Collaboration, then the Message Flow will “pass-through” a Choreography
Task as it connects from one Participant to another (see Figure 9.13).

Customer

- —————

@ontinued...

() Place -
—>.
Order

|
|
|
|
EI Confirmation
|

Supplier

Figure 9.13 — A Message Flow passing through a Choreography Task

120 Business Process Model and Notation (BPMN), v2.0.2

Figure 9.14 displays the class diagram of a Message Flow and its relationships to other BPMN elements. When a

Message Flow is defined it is contained either within a Collaboration, a Choreography, or a

GlobalChoreographyTask.

| Documentation
(From Foundation)
[Eg text : String
g textFormat @ String

-

+ documentation

+ collaboration
=] collaboration
(From Collaboration) 1
[Eg name : 5tring
[Eg isClosed : Boolean

+roiaboration

* 4 participants

] Participant
(from Collaboration)
[Eg name : 5tring

| BaseElement] Message
(From Foundation) (From Common)
1 =1 id 1 String [Eg name : 5tring

+ messageRef '|0..1

+ messageFlows
=] MessageFlow
(From Collaboration)
[5g name: : 5tring

-

- - 1. 2
+ sourceRef | 1 1 | + targetRef
] InteractionNode

(From Collaboration)

+ participantRefs

2

+ initiatingParticipantRef
1 2..*+ participantRefs

®

| conversationNode = Task | Event
(From Conversations) (From Activities) (From Events)
[Eg name : String

- -
] choreographyActivity
(from ChoreographyActivities)
[Eg loopType : ChoreographyLoopType

+ choreographyTask 0.1

] choreographyTask
(From ChoreographyActivities)

Figure 9.14 — The Message Flow Class Diagram

The Message Flow clement inherits the attributes and model associations of BaseElement (see Table 8.5). Table 9.8

presents the additional attributes

and model associations for the Message Flow element.

Business Process Model and Notation (BPMN), v2.0.2

121

Table 9.8 — Message Flow attributes and model associations

Attribute Name Description/Usage
name: string Name is a text description of the Message Flow.
sourceRef: InteractionNode The InteractionNode that the Message Flow is connecting from. Of

the types of InteractionNode, only Pools/Participants, Activities, and
Events can be the source of a Message Flow.

targetRef: InteractionNode The InteractionNode that the Message Flow is connecting to. Of the
types of InteractionNode, only Pools/Participants, Activities, and
Events can be the target of a Message Flow.

messageRef: Message [0..1] The messageRef model association defines the Message that is passed
via the Message Flow (see page 91 for more details).

9.4.1 Interaction Node

The InteractionNode element is used to provide a single element as the source and target Message Flow
associations (see Figure 9.14, above) instead of the individual associations of the elements that can connect to Message
Flows (see above). Only the Pool/Participant, Activity, and Event elements can connect to Message Flows. The
InteractionNode element is also used to provide a single element for source and target of Conversation Links, see
page 131.

The InteractionNode element does not have any attributes or model associations and does not inherit from any other
BPMN clement. Since Pools/Participants, Activities, and Events have their own attributes, model associations, and
inheritances, additional attributes and model associations for the InteractionNode element are not necessary.

9.4.2 Message Flow Associations

These elements are used to do mapping between two elements that both contain Message Flows. The
MessageFlowAssociation provides the mechanism to match up the Message Flows.

A MessageFlowAssociation is used when an (outer) diagram with Message Flows contains an (inner) diagram
that also has Message Flows. It is used when:

« A Collaboration references a Choreography for inclusion between the Collaboration’s Pools (Participants).
The Message Flows of the Choreography (the inner diagram) need to be mapped to the Message Flows of the
Collaboration (the outer diagram).

+ A Collaboration references a Conversation that contains Message Flows. The Message Flows of the
Conversation can serve as a partial requirement for the Collaboration. Thus, the Message Flows of the
Conversation (the inner diagram) need to be mapped to the Message Flows of the Collaboration (the outer
diagram).

+ A Choreography references a Conversation that contains Message Flows. The Message Flows of the
Conversation can serve as a partial requirement for the Choreography. Thus, the Message Flows of the
Conversation (the inner diagram) need to be mapped to the Message Flows of the Choreography (the outer
diagram).

122 Business Process Model and Notation (BPMN), v2.0.2

Figure 9.15 shows the class diagram for the MessageFlowAssociation element.

| BaseElement] Documentation
(From Foundation) + documentation (fram Foundation)
== id 1 String g text : String
1 * [textFormat @ String

= MessageFlowAssociation
(From Collabaration) E choreography
(From Choreography)

+ choreographyRef|.

+ collaboration |,

* 1] collaboration
(From Collaboration)
+ messageFlowAssociations [Eg name : 5tring
[Eg isClosed : Boolean

+ innerMessageFlowRef ! + outerMessageFlowR.ef

=] MessageFlow
(From Collaboration)
[Eg, name : String

Figure 9.15 — MessageFlowAssociation class diagram

The MessageFlowAssociation element inherits the attributes and model associations of BaseElement (see Table
8.5). Table 9.9 presents the additional model associations for the MessageFlowAssociation element.

Table 9.9 — MessageFlowAssociation attributes and model associations

Attribute Name Description/Usage

innerMessageFlowRef: Message Flow This attribute defines the Message Flow of the referenced
element (e.g., a Choreography to be used in a Collaboration)
that will be mapped to the parent element (e.g., the
Collaboration).

outerMessageFlowRef: Message Flow This attribute defines the Message Flow of the parent element
(e.g., a Collaboration references a Choreography) that will be
mapped to the referenced element (e.g., the Choreography).

9.5 Conversations

The Conversation diagram is particular usage of and an informal description of a Collaboration diagram. In general,
it is a simplified version of Collaboration, but Conversation diagrams do maintain all the features of a
Collaboration. In particular, Processes can appear within the Participants (Pools) of Conversation diagrams, to
show how Conversation and Activities are related.

The view includes two additional graphical elements that do not exist in other BPMN views:
1. Conversation Node eclements (Conversation, Sub-Conversation, and Call Conversation)

2. A Conversation Link

Business Process Model and Notation (BPMN), v2.0.2 123

A Conversation is a logical grouping of Message exchanges (Message Flows) that can share a Correlation. A
Conversation is the logical relation of Message exchanges. The logical relation, in practice, often concerns a business
object(s) of interest, e.g., “Order,” “Shipment and Delivery,” and “Invoice.” Hence, a Conversation is associated with a
set of name-value pairs, or a Correlation Key (e.g., “Order Identifier,” “Delivery Identifier”), which is recorded in
the Messages that are exchanged. In this way, a Message can be routed to the specific Process instance responsible
for receiving and processing the Message.

Figure 9.16 shows a simple example of a Conversation diagram.

Participant A Participant B

Conversation

— =
\/

Figure 9.16 — A Conversation diagram

Figure 9.17 shows a variation of the example above where the Conversation node has been expanded into its
component Message Flows. Note that the diagram looks the same as a simple Collaboration diagram (as in Figure
9.3, above).

Participant A Participant B
(0} >
< 0}
< 0}
(0} >

Figure 9.17 — A Conversation diagram where the Conversation is expanded into Message Flows

Message exchanges are related to each other and reflect distinct business scenarios. The relation is sometimes simple,
for example, a request followed by a response, and can be described as part of a structural interface of a service (e.g., as
a WSDL operation definition). However for commercial business transactions managed through Business Processes,
the relation can be complex, involving long-running, reciprocal Message exchanges, and that could extend beyond
bilateral to complex, multilateral Collaborations. For example, in logistics, stock replenishments involve the following
types scenarios: creation of sales orders, assignment of carriers for shipments combining different sales orders, crossing
customs/quarantine, processing payment, and investigating exceptions.

124 Business Process Model and Notation (BPMN), v2.0.2

In addition to an orchestration Process, Conversations are relevant to a Choreography, but the Conversations are
not visualized in a Choreography. The difference is that a Choreography provides a multi-party perspective of a
Conversation. This is because the Message exchanges modeled using Choreography Activities concern multiple
Participants, unlike an orchestration Process where the Message sending and receiving elements relate to one
Participant only. Other than the difference in perspective, the notion of Conversation remains the same across
Choreography and orchestration, and the Message exchanges of a Conversation will be executed ultimately through
an orchestration Process.

Since Collaboration provides a top-down, design-time modeling perspective for Message exchanges and their
Conversations, an abstracted view of the all Conversations pertaining to a domain being modeled is available
through a Conversation diagram. A Conversation diagram, as depicted in Figure 9.18, shows Conversations (as
hexagons) between Participants. This provides a “bird’s eye” perspective of the different Conversations that relate to
the domain.

. Delivery Supplier
Retailer Negotiations
Deliven’; l/ali])ispatch Consignee Shipment Schedule
_/ _/
(7
Delivery /~ /JL <: FI?lelivel;ry
Monitoring _/ anning
Detailed Shipment
Schedule
Delivery / Dispatch . .
Consolidator Plan Carrier Planning Shipper
Carrier /\
< > (Land, Sea, Rail, or Air) _/
Clearance
Monitoring
Clearance Pre- Coverage
Customs/ Notification Notification Insurance
Quarantine {)
— 1] —

Breakdown L —J Locative Service
Service

Truck Breakdown Arrival/Pickup Traffic Optimizatiory
Provision Confirmation Guidance

Figure 9.18 — Conversation diagram depicting several conversations between Participants in a related domain

Figure 9.18 depicts 13 distinct Conversations between collaborating Participants in a logistics domain. As examples,
Retailer and Supplier are involved in a Delivery Negotiations Conversation, and Consignee converses with Retailer and
Supplier through Delivery/Dispatch Plan and Shipment Schedule Conversations respectively. More than two
participants MAY be involved in a Conversation, e.g., Consignee, Consolidator and Shipper in Detailed Shipment

Business Process Model and Notation (BPMN), v2.0.2 125

Schedule. The association of Participants to a Conversation are constrained to indicate whether one or many of
Participants are involved. For example, one instance of Retailer converses with one instance of Supplier for Deliver
Negotiations. However, one instance of Shipper converses with multiple instances of Carrier (indicated by the multi-
instance symbol of the Pool for Carrier) for Carrier Planning. Note, multiplicity in constraints of Conversation
diagrams means one or more (not zero or more).

The behavior of different Conversations is modeled through separate Choreographies, detailing the Message
exchange sequences. In practice, Conversations which are closely related could be combined in the same
Choreography models. For example, a Message exchange in the Delivery Negotiation leads to Shipment Schedule,
Delivery Planning, and Delivery/Dispatch Conversations and these could be combined together in the same
Choreography. Alternatively, they could be separated in different models.

Figure 9.19 shows a subset of the larger Conversation diagram of Figure 9.18, above. Figure 9.20 and Figure 9.21 show
the drill down into the “Delivery Negotiations” Sub-Conversation. This expands the Conversation with the
Message Flows, providing a structural view of a Conversation without the “clutter” of sequencing details in the same
diagram. Figure 9.19 also indicates the CorrelationKey involved in the Message Flows of the Conversation. For
example, Order Id is necessary for in all Messages of Message Flows in Delivery Negotiation. In addition, some
Message Flows also require Variation Id (for dealing with shipment variations on a per line item basis).

Retailer Delivery Supplier
Negotiations
(Order ID)

— =

Figure 9.19 — An example of a Sub-Conversation

Figure 9.20 shows how the Sub-Conversation of Figure 9.19, above, is expanded into a set of Message Flows and a
lower-level Conversation.

Retailer Supplier

Variations
(Variation ID)

N
& _ _ Delivery CheckpointReguest_ __
1 _ Delivery Checkpoint RequestAck |
| Updated PO and Delivery Schedule Order_ |

Figure 9.20 — An example of a Sub-Conversation expanded to a Conversation and Message Flow

126 Business Process Model and Notation (BPMN), v2.0.2

Figure 9.21 shows how the Conversation of Figure 9.20 is also expanded into a set of Message Flows, combined with
the previous Message Flows. Note that the newly exposed Message Flows of the lower-level Conversation will be
correlated by the CorrelationKey of both the lower-level Conversation (Variation Id) and the higher-level Sub-
Conversations (Order Id).

Retailer o Supplier
Planned Order Variations

Figure 9.21 — An example of a Sub-Conversation that is fully expanded

In Figure 9.19 a hierarchical structure of Conversations can be seen with one set of Message Flows occurring within
another in a parent-child relationship. In particular, after Planned Order Variations (keyed on Order 1d) at the parent, a
number of Message Flows of the child follow till Retailer Order and Delivery Variations Ack (keyed on Variation Id
and Order Id). The remaining Message Flows (keyed on Order Id) are at the parent level. The child Conversation, as
such, is part of the parent Conversation. Nesting is indicated graphically on a Conversation symbol (by a “+”),
indicating a Sub-Conversation or a Call Conversation calling a Collaboration. Nesting can go to an arbitrary
number of levels.

A common dependency between Conversations is overlap. Overlap occurs when two or more Conversations have
some Message exchanges in common but not others. As an example in Figure 9.18, a Message is sent as part of
Detailed Shipment Schedule (keyed on Carrier Schedule Id) to trigger Delivery Monitoring (keyed on Shipment Id).
During Delivery Monitoring, Message could be sent to Detailed Shipment Schedule (to request modifications when
transportation exceptions occur).

Splits and joins are special types of overlap scenarios. A Conversation split arises when, as part of a Conversation, a
message is exchanged between two or more Participants that at the same time spawns a new, distinct Conversation
(either between the same set of Participants or another set). Additionally, no further Message exchanges are shared by
the split Conversations as well as no subsequent merges of them occur. An example is Delivery Planning which leads
to Carrier Planning and Special Cover. A Conversation join occurs when several Conversations are merged into one
Conversation and no further Message exchanges occur in the original Conversations, i.c., these Conversations
are finalized. The generalization of a split and join is a Conversation refactor where Conversations are split into
parallel Conversations and then are merged at a later point in time.

9.5.1 Conversation Node

ConversationNode is the abstract super class for all elements that can comprise the Conversation clements of a
Collaboration diagram, which are Conversation (see page 129), Sub-Conversation (see page 129), and Call
Conversation (sce page 130).

Business Process Model and Notation (BPMN), v2.0.2 127

] GlobalConversation
(From Conversations)

] Choreography
(from Choreography)

+ choreographyRef | *

+ collaboration|

] collaboration
(From Collaboration)

Q ParticipantAssociation
(from Collaboration)

+ participantAssociations /*

0.1

] callConversation
(from Conversations)

[Eg name : String

[isClosed : Boolean

+ calledCollaborationRef

0.1
1 0.1 0.1 + correlationkeys *
1 " 2
+ collahoratiof collaboration Q Bangement = l':grrelatmnl(ev
+ collabaration Egid : String (From Common)
[Eg name : 5tring
* /4 correlationkKeys
* 0.1

* |+ messageFlows

= MessageFlow
(from Collaboration)
[Eg name : String

* | + participants

] Participant
(from Collaboration)
[Eg name : 5tring

| conversationNode
(From Conversations)

+ conversations

+ messageFlowR.efs

®

+ participantRefs * "+ conversationModes

0.1 /. + subConversation

] conversation
(From Conversations)

[subConversation
(from Conversations)

Figure 9.22 — Metamodel of ConversationNode Related Elements

ConversationNodes are linked to and from Participants using Conversation Links (see page 131).

The ConversationNode element inherits the attributes and model associations of BaseElement (see Table 8.5).
Table 9.10 presents the additional attributes and model associations for the ConversationNode element.

128

Business Process Model and Notation (BPMN), v2.0.2

Table 9.10 — ConversationNode Model Associations

Attribute Name Description/Usage
name: string [0..1] Name is a text description of the ConversationNode element.
|[02arf]icipantRefSi Participant This provides the list of Participants that are used in the ConversationNode

from the list provided by the ConversationNode’s parent Conversation. This
reference is visualized through a Conversation Link (see page 131).

messageFIowReIs: A reference to all Message Flows (and consequently Messages) grouped by a
MessageFlow [0."] Conversation clement.

correlationKeys: This is a list of the ConversationNode’s CorrelationKeys, which are used to
CorrelationKey [0..%] .
group Message Flows for the ConversationNode.

9.5.2 Conversation

A Conversation is an atomic element for a Conversation (Collaboration) diagram. It represents a set of Message
Flows grouped together based on a concept and/or a CorrelationKey. A Conversation will involve two or more
Participants.

€ A Conversation is a hexagon that MUST be drawn with a single thin line (see Figure 9.23).

Figure 9.23 — A Communication element

The Conversation clement inherits the attributes and model associations of ConversationNode (see Table 9.10),
but does not contain any additional attributes or model associations.

9.5.3 Sub-Conversation

A Sub-Conversation is a ConversationNode that is a hierarchical division within the parent Collaboration. A
Sub-Conversation is a graphical object within a Collaboration, but it also can be “opened up” to show the lower-level
details of the Conversation, which consist of Message Flows, Conversations, and/or other Sub-Conversations.
The Sub-Conversation shares the Participants of its parent Conversation.

€ A Sub-Conversation is a hexagon that MUST be drawn with a single thin line (see Figure 9.24).

€ The Sub- Conversation marker MUST be a small square with a plus sign (+) inside. The square MUST be
positioned at the bottom center of the shape.

Business Process Model and Notation (BPMN), v2.0.2 129

Figure 9.24 — A compound Conversation element

The Sub-Conversation element inherits the attributes and model associations of ConversationNode (see Table
9.10). Table 9.11 presents the additional model associations for the Sub-Conversation element.

Table 9.11 — Sub-Conversation Model Associations

Attribute Name Description/Usage

conversationNodes: The ConversationNodes model aggregation relationship allows a Sub-
ConversationNode [0.] Conversation to contain other ConversationNodes, in order to group
Message Flows of the Sub-Conversation and associate correlation
information.

9.5.4 Call Conversation

A Call Conversation identifies a place in the Conversation (Collaboration) where a global Conversation or a
GlobalConversation is used.

& Ifthe Call Conversation calls a GlobalConversation, then the shape will be the same as a Conversation,
but the boundary of the shape will MUST have a thick line (see Figure 9.25).

€ Ifthe Call Conversation calls a Collaboration, then the shape will be the same as a Sub-Conversation, but
the boundary of the shape will MUST have a thick line (see Figure 9.26).

Figure 9.25 — A Call Conversation calling a GlobalConversation

Figure 9.26 — A Call Conversation calling a Collaboration

The Call Conversation element inherits the attributes and model associations of ConversationNode (see Table
9.10). Table 9.12 presents the additional model associations for the Call Conversation element.

130 Business Process Model and Notation (BPMN), v2.0.2

Table 9.12 — Call Conversation Model Associations

Attribute Name Description/Usage

calledCollaborationRef: The element to be called, which MAY be either a Collaboration or a
Collaboration [0.1] GlobalConversation. The called element MUST NOT be a
Choreography or a GlobalChoreographyTask (which are sub-
types of Collaboration)

participantAssociations: Participant

This attribute provides a list of mappings from the Participants of a
Association [0..]

referenced GlobalConversation or Conversation to the
Participants of the parent Conversation.

NOTE: The ConversationNode attribute messageFlowRef doesn’t apply to Call Conversations.
9.5.5 Global Conversation

A GlobalConversation is a reusable, atomic Conversation definition that can be called from within any
Collaboration by a Call Conversation.

The GlobalConversation element inherits the attributes and model associations and Collaboration (see Table 9.1),
but does not have any additional attributes or model associations.

A GlobalConversation is a restricted type of Collaboration, it is an “empty Collaboration.”

€ AGlobalConversation MUST NOT contain any ConversationNodes.

Since a GlobalConversation does not have any Flow Elements, it does not require
MessageFlowAssociations, ParticipantAssociations, or ConversationAssociations or Artifacts.
It is basically a set of Participants, Message Flows, and CorrelationKeys intended for reuse. Also, the
Collaboration attribute choreographyRef is not applicable to GlobalConversation.

9.5.6 Conversation Link

Conversation Links are used to connect ConversationNodes to and from Participants (Pools -- see Figure 9.27).

€ Conversation Links MUST be drawn with double thin lines.

Procurement RFQ Supplier

A Conversation Link: the
connection between a
Participantand a
Conversation Node

Figure 9.27 — A Conversation Link element

Business Process Model and Notation (BPMN), v2.0.2 131

Processes can appear in the Participants (Pools) of Conversation diagrams, as shown in Figure 9.28. The invoicing
and ordering Conversations have links into Activities and Events of the Process in the Order Processor. The other
two Conversations do not have their links “expanded.” Conversation Links into Activities that are not Send or
Receive Tasks indicate that the Activity will send or receive Messages of the Conversation at some level of

nesting.
Invoicer
|| Invoicing
(\ ; 3\
[ﬁti te Pri E Price Process
— ate i ce Calculations Invoice
Calculations Complete
—
o) J
[)]
Q
O {
o foce]
o ecelve(‘) N ’ Request Process Send Shipping Send
E Order g Assignment Shipping Schedule Schedule Invoice
-e N——/ \
o
 EEEE—
Scheduling
— Product
Request
\——
Sheduling Shipping
Scheduler Ordering Shipper
\ /\ /)
Customer

Figure 9.28 — Conversation links to Activities and Events

132 Business Process Model and Notation (BPMN), v2.0.2

| BaseElement
(From Foundation)
Egid : String

=] collaboration
(From Collaboration)

Egname ; String] conversationLink
[Eg isClosed : Boolean + conversationLinks (Fram Conwversations)

1 « | Egname ! 5tring

+1rcllaboration
« + conversations

* "

H Conversati nez + fincomingConversationLinks + foutgoingConversationLinks

(From Conversations)
[Eg name : String

. + targetRef + sourceRef
» + conversationNode 1 1
] InteractionNode
" (from Collaboration)
+ participants ~ = + participantRefs
= participant
(From Collaboration)
[Eg name : 5tring
=] Task £ Event
(From Activities) (From Events)

Figure 9.29 — Metamodel of Conversation Links related elements

The Conversation Link eclement inherits the attributes and model associations of BaseElement (see Table 8.5). Table
9.13 presents the additional attributes and model associations for the Conversation Link element.

Table 9.13 — Conversation Link Attributes and Model Associations

Attribute Name Description/Usage
name: string [0..1] This attribute specifies the name of the Conversation Link.
sourceRef: InteractionNode The InteractionNode that the Conversation Link is connecting

from. A Conversation Link MUST connect to exactly one
ConversationNode. If the sourceRef is not a
ConversationNode, then the targetRef MUST be a
ConversationNode.

targetRef. InteractionNode The InteractionNode that the Conversation Link is connecting
to. A Conversation Link MUST connect to exactly one
ConversationNode. If the targetRef is not a
ConversationNode, then the sourceRef MUST be a

ConversationNode.

Conversation Links for Call Conversations show the names of Participants in nested Collaboration or global
Collaborations, as identified by ParticipantAssociations. For example, Figure 9.30 has a Collaboration on
the left with a Call Conversations to a Collaboration on the right. The Conversation Links on the left indicate

Business Process Model and Notation (BPMN), v2.0.2 133

which Participants in the called Collaboration on the right correspond to which Participants in the calling
Collaboration on the left. For example, the Credit Agency Participants on the right corresponds to the Financial
Company Participant on the left. ParticipantAssociations (not shown) tie each Participant in the
Collaboration on the left to a Participant in the Collaboration on the right. They can be used to show the names of
Participants in nested Collaboration or global Collaborations.

Financial Credit Agency
Company
Credit Agency T ?
Credit Credit
Score Credit EI Response
Purchase Request
Buyer é 1
Retailer Buyer

Figure 9.30 — Call Conversation Links
9.5.7 Conversation Association

A ConversationAssociation is used within Collaborations and Choreographies to apply a reusable
Conversation to the Message Flows of those diagrams.

A ConversationAssociation is used when a diagram references a Conversation to provide Message
correlation information and/or to logically group Message Flows. It is used when:

« A Collaboration references a Choreography for inclusion between the Collaboration’s Pools (Participants).
The ConversationNodes of the Choreography (the inner diagram) need to be mapped to the
ConversationNodes of the Collaboration (the outer diagram).

134 Business Process Model and Notation (BPMN), v2.0.2

] BaseElement

Q ConversationAssociation

=] collaboration

- 1 1
[Eg name : String
+ converstaionAssociations

"+ colaboration

Ll -
+ conversationAssociation + conversationAssociation
* + choreographyRef + innerConversationModeRef| 1 + outerConversationNodeRef 1
=] choreography | conversationNode
(From Choreography) (From Conversations)

[Eg name : 5tring

Figure 9.31 — The ConversationAssociation class diagram

The ConversationAssociation element inherits the attributes and model associations of BaseElement (see
Table 8.5). Table 9.14 presents the additional model associations for the ConversationAssociation element.

Table 9.14 — ConversationAssociation Model Associations

Attribute Name Description/Usage

innerConversationNodeRef: This attribute defines the ConversationNodes of the referenced

ConversationNode [0..1] element (e.g., a Choreography to be used in a Collaboration) that will
be mapped to the parent element (e.g., the Collaboration).

outerConversationNodeRef: This attribute defines the ConversationNodes of the parent element

ConversationNode [0..%] (e.g., a Collaboration references a Choreography) that will be mapped

to the referenced element (e.g., the Choreography).

9.5.8 Correlations

Correlations are the mechanism that is used to assign the Messages to the proper Process instance, and can be defined
for the Message Flows that belong to the Conversation. Correlations can be used to specify Conversations between
Processes that follow a fairly simple Conversation pattern in the sense that:

+ The conceptual data of the Conversation is well known and defined by the participating Processes. However this
doesn’t mandate that underlying type systems are identical. It is sufficient that the data is known “conceptually” on a
(potentially very high) business level.

« A Conversation takes place by means of simple Message exchange between Processes, no additional
agreements MUST be considered.

+ There exists send and receive Tasks accepting the conceptual data of the Conversation. (An Order send by a Task
of a Process should be received by at least one Task of the participating Process).

Business Process Model and Notation (BPMN), v2.0.2 135

» The correlation itself is defined in terms of correlation fields, which denote a subset of the conceptual data that should
be used for the correlation. (For example, if the conceptual data comprises an order, then the correlation field might be
denoted by the order ID).

In some applications it is useful to allow more Messages to be sent between Participants when a Collaboration is
carried out than are contained in the Collaboration model. This enables Participants to exchange other Messages as
needed without changing the Collaboration. If the 1sClosed attribute of a Collaboration has a value of false or no
value, then Participants MAY send Messages to each other without additional Message Flows in the Collaboration.
If the i sClosed attribute of a Collaboration has a value of true, then Participants MAY NOT send Messages to each
other without additional Message Flows in the Collaboration. If a Collaboration contains a Choreography, then
the value of the isClosed attribute MUST be the same in both. Restrictions on unmodeled messaging specified with
isClosed apply only under the Collaboration containing the restriction. PartnerEntities and PartnerRoles
of the Participants MAY send Messages to each other under other Choreographies, Collaborations, and
Conversations.

9.6 Process within Collaboration

Processes can be included in a Collaboration diagram. A Participant/Pool within the Collaboration can contain a
Process (but they are NOT REQUIRED). An example of this is shown in Figure 9.4.

When a Lane (in a Process) represents a Conversation, the Flow Elements in the Lane (or elements nested or called
in them) that send or receive Messages MUST do so as part of the Conversation represented by the Lane.

9.7 Choreography within Collaboration

Choreographies can be included in a Collaboration diagram. A Collaboration specifies how the Participants and
Message Flows in the Choreography are matched up with the Participants and Message Flows in the
Collaboration. A Collaboration uses ParticipantAssociations and MessageFlowAssociations for this

purpose.

To handle the Participants, the innerParticipant of a ParticipantAssociation refers to a Participant in the
Choreography, while the outerParticipant refers to a Participant in the Collaboration containing the
Choreography. This mapping matches the Participant Bands of the Choreography Activities in the
Choreography to the Pools in the Collaboration. Thus, the names in the Participant Bands are NOT REQUIRED
(see Figure 9.32).

136 Business Process Model and Notation (BPMN), v2.0.2

Credit Agency

O

Credit

JA T
I
I
I

Response

7

() Request Credit
Score

Provide Credit
Score

|
Credit |
Request |
I l
ﬁ ... } ﬁ
Culsr:?cr?er : . Do | : Customer
IS = [Updated]
3 . Generate Request Receive Cﬂgt% ?:fer
Credit ID Credit Score Credit Score Info

Figure 9.32 — An example of a Choreography within a Collaboration

To handle Message Flows, the innerMessageFlow of a MessageFlowAssociation refers to a Message Flow
in the Choreography, while the outerMessageF1low refers to a Message Flow in the Collaboration containing
the Choreography. This mapping matches the Message Flows of the Choreography (which are not visible) to the
Message Flows in the Collaboration (which are visible). This allows the Message Flows of the Collaboration to
be “wired up” through the appropriate Choreography Activity in the Choreography (see Figure 9.32).

The ParticipantAssociations might be derived from the partnerEntities or partnerRoles of the
Participants. For example, if a Choreography Activity has a Participant with the same partnerEntity as a
Participant in the Collaboration containing the Choreography, then these two Participants could be assumed to be
the inner and outerParticipants of a ParticipantAssociation. Similarly, Message Flows that reference
the same Message in a Call Choreography Activity and the Collaboration, could be automatically synchronized by
a MessageFlowAssociation, if only one Message Flow has that Message.

Business Process Model and Notation (BPMN), v2.0.2 137

=] choreographyActivity
(From ChoreographyActivities)
g loopType : ChoreographyLoopType

=] MessageFlow
(From Collaboration)
g name : String

- -

+ innerMessageFlowRef " 1 1 7+ outerMessageFlowRef

+ messageFlows

+ participantRefs - "
=] MessageFlowAssociation
(From Collaboration)

+ initiatingParticipantRef 1 2.

= Participant -
(From Collaboration)
g name : string + participants + messageFlowAssociations -

+ outerParticipantRef 1 1 + innerParticipantRef

+ collaboration + collaboration

1 1
=] collaboration
(From Collaboration)
[Eg name : Stiing
[t isClosed : Boolean

- *

] participantAssociation

(From Collaboration) * 0.1

+ participantAssociations

+ + colaboration

+ choreographyRef *

= choreography
(From Choreography)

Figure 9.33 — Choreography within Collaboration class diagram

9.8 Collaboration Package XML Schemas

Table 9.15 — Call Conversation XML schema

<xsd:element name="callConversation" type="tCallConversation" substitutionGroup="conversationNode"/>
<xsd:complexType name="tCallConversation">
<xsd:complexContent>
<xsd:extension base="tConversationNode">
<xsd:sequence>
<xsd:element ref="participantAssociation" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="calledCollaborationRef" type="xsd:QName" use="optional"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 9.16 — Collaboration XML schema

<xsd:element name="collaboration" type="tCollaboration" substitutionGroup="rootElement"/>
<xsd:complexType name="tCollaboration">
<xsd:complexContent>
<xsd:extension base="tRootElement">

<xsd:sequence>
<xsd:element name="choreography" minOccurs="0" maxOccurs="unbounded"/>

138 Business Process Model and Notation (BPMN), v2.0.2

<xsd:element ref="participant" minOccurs="0" maxOccurs="unbounded"/>

<xsd:element ref="messageFlow" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="artifact" minOccurs="0" maxOccurs="unbounded"/>

<xsd:element ref="conversationNode" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="conversationLink" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="conversationAssociation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="participantAssociation" minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="MessageFlowAssociation" type="tMessageFlowAssociation" minOccurs="0" maxOc-

curs="unbounded"/>
<xsd:element ref="correlationKey" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:string"/>

<xsd:attribute name="isClosed" type="xsd:boolean" default="false"/>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 9.17 — Conversation XML schema

<xsd:element name="conversation" type="tConversation" substitutionGroup="conversationNode"/>
<xsd:complexType name="tConversation">

<xsd:complexContent>
<xsd:extension base="tConversationNode"/>
</xsd:complexContent>
</xsd:complexType>

Table 9.18 — ConversationAssociation XML schema

<xsd:element name="conversationAssociation" type="tConversationAssociation"/>
<xsd:complexType name="tConversationAssociation">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:attribute name="innerConversationNodeRef" type="xsd:QName" use="required"/>
<xsd:attribute name="outerConversationNodeRef" type="xsd:QName" use="required"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 9.19 — ConversationAssociation XML schema

<xsd:element name="conversationLink" type="tConversationLink"/>
<xsd:complexType name="tConversationLink">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:attribute name="name" type="xsd:string" use="optional"/>
<xsd:attribute name="sourceRef" type="xsd:QName" use="required"/>
<xsd:attribute name="targetRef" type="xsd:QName" use="required"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Business Process Model and Notation (BPMN), v2.0.2

139

Table 9.20 — ConversationNode XML schema

<xsd:element name="conversation" type="tConversation" substitutionGroup="rootElement"/>
<xsd:complexType name="tConversation">
<xsd:complexContent>
<xsd:extension base="tCallableElement">
<xsd:sequence>
<xsd:element ref="conversationNode" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="participant" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="artifact" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="messageFlow" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="messageFlowRef" type="xsd:QName" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="correlationKey" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 9.21 — Conversation Node XML schema

<xsd:element name="conversationNode" type="tConversationNode"/>
<xsd:complexType name="tConversationNode" abstract="true">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element name="messageFlowRef" type="xsd:QName" minOccurs="0" maxOc-
curs="unbounded"/>
<xsd:element name="participantRef" type="xsd:QName" minOccurs="0" maxOc-
curs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="conversationRef" type="xsd:QName"/>
<xsd:attribute name="correlationKeyRef" type="xsd:QName"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 9.22 — Global Conversation XML schema

<xsd:element name="globalConversation" type="tGlobalConversation" substitutionGroup="collaboration"/>
<xsd:complexType name="tGlobalConversation">
<xsd:complexContent>
<xsd:extension base="tCollaboration"/>

</xsd:complexContent>
</xsd:complexType>

Table 9.23 — MessageFlow XML schema

<xsd:element name="messageFlow" type="tMessageFlow"/>
<xsd:complexType name="tMessageFlow">
<xsd:complexContent>
<xsd:extension base="tBaseElement">

140 Business Process Model and Notation (BPMN), v2.0.2

<xsd:attribute name="name" type="xsd:string" use="optional"/>
<xsd:attribute name="sourceRef" type="xsd:QName" use="required"/>
<xsd:attribute name="targetRef" type="xsd:QName" use="required"/>
<xsd:attribute name="messageRef" type="xsd:QName"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 9.24 — MessageFlowAssociation XML schema

<xsd:element name="messageFlowAssociation" type="tMessageFlowAssociation"/>
<xsd:complexType name="tMessageFlowAssociation">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:attribute name="innerMessageFlowRef" type="xsd:QName" use="required"/>
<xsd:attribute name="outerMessageFlowRef" type="xsd:QName" use="required"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 9.25 — Participant XML schema

<xsd:element name="participant" type="tParticipant"/>
<xsd:complexType name="tParticipant">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element name="interfaceRef" type="xsd:QName" minOccurs="0" maxOccurs="unbounded"/
>

<xsd:element name="endPointRef" type="xsd:QName" minOccurs="0" maxOccurs="unbounded"/
>
<xsd:element ref="participantMultiplicity" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="processRef" type="xsd:QName" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 9.26 — ParticipantAssociation XML schema

<xsd:element name="participantAssociation" type="tParticipantAssociation"/>
<xsd:complexType name="tParticipantAssociation">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element name="innerParticipantRef" type="xsd:QName" use="required"/>
<xsd:element name="outerParticipantRef" type="xsd:QName" use="required"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

Business Process Model and Notation (BPMN), v2.0.2 141

</xsd:complexType>

Table 9.27 — ParticipantMultiplicity XML schema

<xsd:element name="participantMultiplicity" type="tParticipantMultiplicity"/>
<xsd:complexType name="tParticipantMultiplicity">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:attribute name="minimum" type="xsd:int"/>
<xsd:attribute name="maximum" type="xsd:int"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 9.28 — PartnerEntity XML schema

<xsd:element name="partnerEntity" type="tPartnerEntity" substitutionGroup="rootElement"/>
<xsd:complexType name="tPartnerEntity">
<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:attribute name="name" type="xsd:string"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 9.29 — PartnerRole XML schema

<xsd:element name="partnerRole" type="tPartnerRole" substitutionGroup="rootElement"/>
<xsd:complexType name="tPartnerRole">
<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:attribute name="name" type="xsd:string"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 9.30 — Sub-Conversation XML schema

<xsd:element name="subConversation" type="tSubConversation" substitutionGroup="conversationNode"/>
<xsd:complexType name="tSubConversation">
<xsd:complexContent>
<xsd:extension base="tConversationNode">
<xsd:sequence>
<xsd:element ref="conversationNode" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

142 Business Process Model and Notation (BPMN), v2.0.2

10 Process

10.1 General

NOTE: The content of this clause is REQUIRED for BPMN Process Modeling Conformance or for BPMN Complete
Conformance. However, this clause is NOT REQUIRED for BPMN Process Choreography Conformance, BPMN Process
Execution Conformance, or BPMN BPEL Process Execution Conformance. For more information about BPMN

conformance types, see page 1.

A Process describes a sequence or flow of Activities in an organization with the objective of carrying out work. In
BPMN a Process is depicted as a graph of Flow Elements, which are a set of Activities, Events, Gateways, and
Sequence Flows that define finite execution semantics (see Figure 10.1). Processes can be defined at any level from
enterprise-wide Processes to Processes performed by a single person. Low-level Processes can be grouped
together to achieve a common business goal.

(@)=

Two
Weeks q‘
equest
,—p@—p Hold Hold Reply
Hold
Book

Cancel
Request

Receive
et Book
O-’[E Book H Esl.atus }—»
Request
Available

A= Ny
Checkout Checkout
Book Reply

J

Note that BPMN uses the term Process specifically to mean a set of flow elements. It uses the terms Collaboration and
Choreography when modeling the interaction between Processes.

Decline
Hold

Figure 10.1 — An Example of a Process

The Process package contains classes that are used for modeling the flow of Activities, Events, and Gateways, and
how they are sequenced within a Process (see Figure 10.2). When a Process is defined it is contained within
Definitions.

Business Process Model and Notation (BPMN), v2.0.2 143

= collaboration
(From Collaboration)
[E& name : 5tring
[Eg isClosed : Boolean
0.1

-

g processType : ProcessType
[Eg, isClosed : Boolean
[Eg isExecutable : Boolean

[Eg name : 5tring

] Activity
(from Activities)
[Eg isForCompensation Boolean
[Eg startQuantity : Integer
g}completionQuantity : Integer

«enumerations

[ProcessType

(From Process)
=i None] Event
= Public (From Events)
=l Private

+ definitionalCollaborationRef

=] ResourceRole
(From Activities)

[Eg name : 5tring

+ resources’| *

+ proce 8..1 * + supports

| Process
(From Process)

] FlowElementsContainer

(From Common)

1 ¢ + container

* + flowElernents

| FlowElement
(From Comman)

| FlowNode 1

(From Common)

N | sequenceFlow

+ sourceRef {From Common)
+ outgoing g isimmediate : Boolean
1

-

+ targetRef
+ incoming

] Gateway
(From Gateways)
[Eg gatewayDirection : GatewayDirection

| GlobalTask

(from Process)

] callableElement
(From Commen)
[Eghame : 5tring

| RootElement

(From Foundation)

| BaseElement
(from Foundation)
[Egid : String

* | + documentation

=] Documentation
(From Foundation)
[Eg text : String
[Eg textFormat : String

0.1 + conditionExpression

| Expression
(From Common)

Figure 10.2 — Process class diagram

A Process isa CallableElement, allowing it to be referenced and reused by other Processes via the Call Activity
construct. In this capacity, a Process MAY reference a set of Interfaces that define its external behavior.

A Process is a reusable element and can be imported and used within other Definitions.

Figure 10.3 shows the details of the attributes and model associations of a Process.

144 Business Process Model and Notation (BPMN), v2.0.2

= collaboration | callableElement
(From Collabor ation) (From Common)
[Eg name : String [Eg name : String
g isClosed : Boolean

0.1 /4 definitionalCollaborationR.ef

-

* + supports
| Process
(from Process)
g processType : ProcessType
[Eg isClosed : Boolean
[Eg isExecutable : Boolean
0.1 0.1 0.1 0.1 0.1 1
0.1, + auditing 0..1 | + monitoring * 4 properties % resources p..1 t+ artifact * + corelationSubscriptions
=] Auditing = Monitoring = Property | ResourceRole = Artifact = correlationSubscription
(from Process) (From Process) (from Data) (From Activities) (From Common)
[Eg name : 5tring [Eg name : 5tring

| FlowElementsContainer
(From Common)

+ laneSets | Laneset
(From Process)
0.1 * | Egname : String

Figure 10.3 — Process Details class diagram

The Process clement inherits the attributes and model associations of CallableElement (see Table 10.24) and of
FlowElementContainer (see Table 8.45). Table 10.1 presents the additional attributes and model associations of the

Process clement:

Table 10.1 — Process Attributes & Model Associations

Attribute Name

Description/Usage

processType: ProcessType = none
{ None | Private | Public }

The processType attribute Provides additional information about the
level of abstraction modeled by this Process.

A public Process shows only those flow elements that are relevant to
external consumers. Internal details are not modeled. These
Processes are publicly visible and can be used within a
Collaboration. Note that the public processType was named
abstract in BPMN 1.2.

A private Process is one that is internal to a specific organization.

By default, the processType is “none,” meaning undefined.

Business Process Model and Notation (BPMN), v2.0.2 145

Table 10.1 — Process Attributes & Model Associations

isExecutable: boolean [0..1] An optional Boolean value specifying whether the Process is execut-
able.

An executable Process is a private Process that has been modeled for
the purpose of being executed according to the semantics of Clause
14. Of course, during the development cycle of the Process, there will
be stages where the Process does not have enough detail to be “exe-
cutable.”

A non-executable Process is a private Process that has been modeled
for the purpose of documenting Process behavior at a modeler-defined
level of detail. Thus, information needed for execution, such as formal
condition expressions are typically not included in a non-executable
Process.

For public Processes, no value has the same semantics as if the value
were false. The value MAY not be true for public Processes.

auditing: Auditing [0..1] This attribute provides a hook for specifying audit related properties.

monitoring: Monitoring [0..1] This attribute provides a hook for specifying monitoring related proper-
ties.

artifacts: Artifact [0.."] This attribute provides the list of Artifacts that are contained within the
Process.

IsClosed: boolean = false A boolean value specifying whether interactions, such as sending and

receiving Messages and Events, not modeled in the Process can
occur when the Process is executed or performed. If the value is true,
they MAY NOT occur. If the value is false, they MAY occur.

supports: Process [0..] Modelers can declare that they intend all executions or performances
of one Process to also be valid for another Process. This means they
expect all the executions or performances of the first Processes to also
follow the steps laid out in the second Process.

properties: Property [0.."] Modeler-defined properties MAY be added to a Process. These
properties are contained within the Process. All Tasks and Sub-
Processes SHALL have access to these properties.

resources: ResourceRole [0.."] Defines the resource that will perform or will be responsible for the
Process. The resource, e.g., a performer, can be specified in the form
of a specific individual, a group, an organization role or position, or an
organization.

Note that the assigned resources of the Process does not determine
the assigned resources of the Activities that are contained by the
Process. See more details about resource assignment on page 152.

146 Business Process Model and Notation (BPMN), v2.0.2

Table 10.1 — Process Attributes & Model Associations

correlationSubscriptions: correlationSubscriptions are a feature of context-based correlation
CorrelationSubscription [0..*] (cf. sub clause 8.3.3). CorrelationSubscriptions are used to
correlate incoming Messages against data in the Process context. A
Process MAY contain several correlationSubscriptions.

definitionalCollaborationRef: For Processes that interact with other Participants, a definitional
Collaboration [0..1] Collaboration can be referenced by the Process. The definitional
Collaboration specifies the Participants the Process interacts with,
and more specifically, which individual service, Send or Receive Task,
or Message Event, is connected to which Participant through
Message Flows. The definitional Collaboration need not be
displayed.

Additionally, the definitional Collaboration can be used to include
Conversation information within a Process.

In addition, a Process instance has attributes whose values MAY be referenced by Expressions (see Table 10.2).
These values are only available when the Process is being executed.

Table 10.2 — Process instance attributes

Attribute Name Description/Usage

state: string = None See Figure 13.2 ("The Lifecycle of a BPMN Activity") in
Section 13.3.2 for permissible values.

10.2 Basic Process Concepts

10.2.1 Types of BPMN Processes

Business Process modeling is used to communicate a wide variety of information to a wide variety of audiences.
BPMN is designed to cover many types of modeling and allows the creation of end-to-end Business Processes. There
are three basic types of BPMN Processes:

1. Private Non-executable (internal) Business Processes
2. Private Executable (internal) Business Processes

3. Public Processes

10.2.1.1 Private (Internal) Business Processes

Private Business Processes are those internal to a specific organization. These Processes have been generally
called workflow or BPM Processes (see Figure 10.4). Another synonym typically used in the Web services area is the
Orchestration of services. There are two types of private Processes: executable and non-executable. An executable
Process is a Process that has been modeled for the purpose of being executed according to the semantics defined in
Clause 14. Of course, during the development cycle of the Process, there will be stages where the Process does not

Business Process Model and Notation (BPMN), v2.0.2 147

have enough detail to be “executable.” A non-executable Process is a private Process that has been modeled for the
purpose of documenting Process behavior at a modeler-defined level of detail. Thus, information needed for execution,
such as formal condition Expressions are typically not included in a non-executable Process.

If a swimlanes-like notation is used (e.g., a Collaboration, see below), then a private Business Process will be
contained within a single Pool. The Process flow is therefore contained within the Pool and cannot cross the
boundaries of the Pool. The flow of Messages can cross the Pool boundary to show the interactions that exist between
separate private Business Processes.

Determine Check etermine Approve A l\::Z:t;fr{t of

Order is Record of Premium of or Reject PP

Complete Applicant Polic Polic Approval or
P PP y y Rejection

Figure 10.4 — Example of a private Business Process

10.2.1.2 Public Processes

A public Process represents the interactions between a private Business Process and another Process or
Participant (see Figure 10.5). Only those Activities that are used to communicate to the other Participant(s), plus the
order of these Activities, are included in the public Process. All other “internal” Activities of the private Business
Process are not shown in the public Process. Thus, the public Process shows to the outside world the Messages,
and the order of these Messages, that are needed to interact with that Business Process. Public Processes can be
modeled separately or within a Collaboration to show the flow of Messages between the public Process Activities
and other Participants. Note that the public type of Process was named “abstract” in BPMN 1.2.

Patient

T ‘r | feeTsick Pickup yo% medicine T Here is yo?r medicine

and you can leave
I want to yee doctor .
1 Go se%doctor | | need mylﬂedlcme I

Recelve Receive Send Recelve Send
Doctor Send Appt. Svymptoms Prescription Medicine Medicine
Request ymp Pickup Request

Figure 10.5 — Example of a public Process

10.2.2 Use of BPMN Common Elements

Some BPMN elements are common to both Process and Choreography, as well as Collaboration; they are used in
these diagrams. The next few sub clauses will describe the use of Messages, Message Flows, Participants,
Sequence Flows, Artifacts, Correlations, Expressions, and Services in Choreography.

The key graphical elements of Gateways and Events are also common to both Choreography and Process. Since
their usage has a large impact, they are described in major sub clauses of this clause (see page 232 for Events and page
286 for Gateways).

148 Business Process Model and Notation (BPMN), v2.0.2

10.3 Activities

An Activity is work that is performed within a Business Process. An Activity can be atomic or non-atomic
(compound). The types of Activities that are a part of a Process are: Task, Sub-Process, and Call Activity, which
allows the inclusion of re-usable Tasks and Processes in the diagram. However, a Process is not a specific graphical
object. Instead, it is a set of graphical objects. The following sub clauses will focus on the graphical objects Sub-
Process and Task.

Activities represent points in a Process flow where work is performed. They are the executable elements of a BPMN
Process.

The Activity class is an abstract element, sub-classing from FlowElement (as shown in Figure 10.6).

Concrete sub-classes of Activity specify additional semantics above and beyond that defined for the generic Activity.

Tt Dok Speecilicalion
[Frizen Gk} HowNode | FlowClament
Datalngut Association {Frdem Cimman) e Comman)
[frem Diata) g NamE 1 StTNg

0.1 » kaSpecication
* '+ fowElements

* | + datalnoutAssociations
DataDulpart Association

[from Dika) . Property | SequenceFlow
. {from Dats) {Fram Comman}
4+ CatFCUtDUTASSCCTIoNS & MM SHing 2 immedate - Rockean
=] =
+ prope les .+ v dafadt 0.1
.1 0.1
0.1 0.1 1 1 + OV
i: L Activity FlowElement sCovlainer
[Fram Btikizs] flrem Commen)]

& BFOrCOME=neEation | Boosean
& S tCuantiny | Integer
g complstionCuantity © Intege

0.1 ol + attachedToRef 1
Callactivity - Task - SubProcess
. R— [Fram Activies) (Froem Activies) (from Artivities)
- & UigperediyDvent | Doskan
ResourceRcle
(Freen Brtrvities] =
& Name ; String 0.1 '+ koptharactenistcs 0.1 4 codBomontol .
boundaryEventfeds
LoopCharac beristics CalldeElervert * !1: anit
Perlormer (From Acthitics) w":ﬁm:) {Freen Everis)
{frem Process) i@ rame : Shing & carcelActvity : Boclean
= StandardLoopCharactenstics Multilnstancel sopCharacteristics
{irem Botiviies] [Froem Ackrabees)
I testBefore @ Doclean & Eseguentia @ Bockean

& beharion ; MultiiretanceBehavion

Figure 10.6 — Activity class diagram

The Activity class is the abstract super class for all concrete Activity types.

The Activity element inherits the attributes and model associations of FlowElement (see Table 8.44). Table 10.3
presents the additional attributes and model associations of the Activity element.

Business Process Model and Notation (BPMN), v2.0.2 149

Table 10.3 — Activity attributes and model associations

Attribute Name Description/Usage

isForCompensation: boolean =false | A flag that identifies whether this Activity is intended for the purposes of
compensation.

If false, then this Activity executes as a result of normal execution flow.
If true, this Activity is only activated when a Compensation Event is
detected and initiated under Compensation Event visibility scope (see
page 280 for more information on scopes).

loopCharacteristics: An Activity MAY be performed once or MAY be repeated. If repeated,
LoopCharacteristics [0..1] the Activity MUST have loopCharacteristics that define the repe-
tition criteria (if the i sExecutable attribute of the Process is set to
true).

resources: ResourceRole [0.."] Defines the resource that will perform or will be responsible for the
Activity. The resource, e.g., a performer, can be specified in the form of
a specific individual, a group, an organization role or position, or an orga-
nization.

default: SequenceFlow [0..1] The Sequence Flow that will receive a token when none of the
conditionExpressions on other outgoing Sequence Flows evalu-
ate to frue. The default Sequence Flow should not have a
conditionExpression. Any such Expression SHALL be ignored.

ioSpecification: Input The InputOutputSpecification defines the inputs and outputs and
OutputSpecification [0..1] ..

the InputSets and OutputSets for the Activity. See page 210 for
more information on the InputOutputSpecification.

properties: Property [0.."] Modeler-defined properties MAY be added to an Activity. These
properties are contained within the Activity.

boundaryEventRefs: This references the Intermediate Events that are attached to the

BoundaryEvent [0.7] boundary of the Activity.

datalnputAssociations: An optional reference to the DataInputAssociations. A

DatalnputAssociation [0..7] DataInputAssociation defines how the Datalnput of the Activity’s

InputOutputSpecification will be populated.

dataOutputAssociations: An optional reference to the DataOutputAssociations.
DataOutputAssociation [0..*]

startQuantity: integer = 1 The default value is 1. The value MUST NOT be less than 1. This attri-
bute defines the number of fokens that MUST arrive before the

Activity can begin. Note that any value for the attribute that is greater
than 1 is an advanced type of modeling and should be used with caution.

150 Business Process Model and Notation (BPMN), v2.0.2

Table 10.3 — Activity attributes and model associations

completionQuantity: integer = 1 The default value is 1. The value MUST NOT be less than 1. This attri-
bute defines the number of tokens that MUST be generated from the
Activity. This number of tokens will be sent done any outgoing
Sequence Flow (assuming any Sequence Flow conditions are satis-
fied). Note that any value for the attribute that is greater than 1 is an
advanced type of modeling and should be used with caution.

In addition, an Activity instance has attributes whose values MAY be referenced by Expressions. These values are
only available when the Activity is being executed.

Table 10.4 presents the instance attributes of the Activity element.

Table 10.4 — Activity instance attributes

Attribute Name Description/Usage

state: string = None See Figure 13.2 ("The Lifecycle of a BPMN Activity") in Section 13.3.2
for permissible values.

Sequence Flow Connections

See “Sequence Flow Connections Rules” on page 40 for the entire set of objects and how they MAY be sources or targets
of Sequence Flows.

€ An Activity MAY be a target for Sequence Flows; it can have multiple incoming Sequence Flows. Incoming
Sequence Flows MAY be from an alternative path and/or parallel paths.

@ Ifthe Activity does not have an incoming Sequence Flow, then the Activity MUST be instantiated when the
Process is instantiated.

@ There are two exceptions to this: Compensation Activities and Event Sub-Processes.

NOTE: Ifthe Activity has multiple incoming Sequence Flows, then this is considered uncontrolled flow. This means that
when a token arrives from one of the Paths, the Activity will be instantiated. It will not wait for the arrival of tokens from the
other paths. If another foken arrives from the same path or another path, then a separate instance of the Activity will be created.
If the flow needs to be controlled, then the flow should converge on a Gateway that precedes the Activities (see “Gateways”
on page 286 for more information on Gateways).

€ An Activity MAY be a source for Sequence Flows; it can have multiple ouzgoing Sequence Flows. If there
are multiple outgoing Sequence Flows, then this means that a separate parallel path is being created for each
Sequence Flow (i.e., fokens will be generated for each outgoing Sequence Flow from the Activity).

€ If the Activity does not have an outgoing Sequence Flow, then the Activity marks the end of one or more
paths in the Process. When the Activity ends and there are no other parallel paths active, then the Process
MUST be completed.

@ There are two exceptions to this: Compensation Activities and Event Sub-Processes.

Message Flow Connections

See “Message Flow Connection Rules” on page 41 for the entire set of objects and how they MAY be sources or targets
of Message Flows.

Business Process Model and Notation (BPMN), v2.0.2 151

NOTE: All Message Flows MUST connect two separate Pools. They MAY connect to the Pool boundary or to Flow
Objects within the Pool boundary. They MUST NOT connect two objects within the same Pool.

€ An Activity MAY be the target of a Message Flow; it can have zero (0) or more incoming Message Flows.

€ An Activity MAY be a source of a Message Flow; it can have zero (0) or more outgoing Message Flows.

10.3.1 Resource Assignment

The following sub clauses define how Resources can be defined for an Activity. Figure 10.7 displays the class diagram
for the BPMN elements used for Resource assignment.

| Process | BaseElement
(Ffrom Process) (From Foundation)
[Eg processType : ProcessType T process |_q—}id 1 String
[Eg isClosed : Boolean 0.1

[Eg IsExecutable : Boolean

+ resources ./ *
=] ResourceRole
(From Activities)
[Eg name : 5tring
+ resources ™
E Activity 1
(From Activities)
[Eg isForCompensation ¢ Boolean
[Eg startQuantity : Integer 0.1
@completionQuantity : Integer

=] performer

(from Process)

=] HumanPerformer
(From HumanInteraction)

| ResourceParameter
(From Common)
+ resourceParameters [5g name : String
. [isRequired : Boolean

+ parameterRef 1

1
+ resourceRef =] Resource
(from Comman)
- 0.1 Egname : String
1
+ resourceParameterBindings -
Q ResourceParameterBinding
* (From Activities)

0.1

+ expression 1
=] Expression
(From Commen)

+ expression’|. 1

+ resourceAssignmentExpression

] potentialOwner
(From HumanInteraction)

0.1
Q ResourceAssignmentExpression
0.1 (From Activities)

Figure 10.7 — The class diagram for assigning Resources

Resource Role

The ResourceRole element inherits the attributes and model associations of BaseElement (see Table 8.5). Table
10.5 presents the additional model associations of the ResourceRole element.

152

Business Process Model and Notation (BPMN), v2.0.2

Table 10.5 — Resource Role model associations

Attribute Name Description/Usage

resourceRef: Resource [0..1] The Resource that is associated with Activity. Should not
be specified when resourceAssignmentExpression is
provided.

resourceAssignmentExpression: This defines the Expression used for the Resource

ResourceAssignmentExpression [0..1] assignment (see below). Should not be specified when a

resourceRef is provided.

resourceParameterBindings: Resource- This defines the Parameter bindings used for the
ParameterBinding [0..”] . . .

Resource assignment (see below). Is only applicable if a
resourceRef is specified.

Expression Assignment

Resources can be assigned to an Activity using Expressions. These Expressions MUST return Resource
entity related data types, like Users or Groups. Different Expressions can return multiple Resources. All of them
are assigned to the respective subclass of the ResourceRole element, for example as potential owners. The semantics
is defined by the subclass.

The ResourceAssignmentExpression element inherits the attributes and model associations of BaseElement
(see Table 8.5). Table 10.6 presents the additional model associations of the ResourceAssignmentExpression
element.

Table 10.6 — ResourceAssignmentExpression model associations

Attribute Name Description/Usage

expression: Expression The element ResourceAssignmentExpression MUST contain an
Expression which is used at runtime to assign resource(s) to a
ResourceRole element.

Parameterized Resource Assignment

Resources support query parameters that are passed to the Resource query at runtime. Parameters MAY refer to
Task instance data using Expressions. During Resource query execution, an infrastructure can decide which of the
Parameters defined by the Resource are used. It MAY use zero (0) or more of the Parameters specified. It MAY
also override certain Parameters with values defined during Resource deployment. The deployment mechanism for
Tasks and Resources is out of scope for this document. Resource queries are evaluated to determine the set of
Resources, e.g., people, assigned to the Activity. Failed Resource queries are treated like Resource queries that
return an empty result set. Resource queries return one Resource or a set of Resources.

The ResourceParameterBinding element inherits the attributes and model associations of BaseElement (see
Table 8.5). Table 10.7 presents the additional model associations of the ResourceParameterBinding element.

Business Process Model and Notation (BPMN), v2.0.2 153

Table 10.7 — ResourceParameterBinding model associations

Attribute Name Description/Usage

parameterRef. ResourceParameter Reference to the parameter defined by the Resource.

expression: Expression The Expression that evaluates the value used to bind the
ResourceParameter.

10.3.2 Performer

The Performer class defines the resource that will perform or will be responsible for an Activity. The performer can
be specified in the form of a specific individual, a group, an organization role or position, or an organization.

The Performer element inherits the attributes and model associations of BaseElement (see Table 8.5) through its
relationship to ResourceRole, but does not have any additional attributes or model associations.

10.3.3 Tasks

A Task is an atomic Activity within a Process flow. A Task is used when the work in the Process cannot be broken
down to a finer level of detail. Generally, an end-user and/or applications are used to perform the Task when it is
executed.

A Task object shares the same shape as the Sub-Process, which is a rectangle that has rounded corners (see Figure
10.8).

€ A Task is a rounded corner rectangle that MUST be drawn with a single thin line.

@ The use of text, color, size, and lines for a Task MUST follow the rules defined in “Use of Text, Color,
Size, and Lines in a Diagram” on page 39.

€ A boundary drawn with a thick line SHALL be reserved for Call Activity (Global Tasks)
(see page 186).

€ A boundary drawn with a dotted line SHALL be reserved for Event Sub-Processes (see page 174) and
thus are not allowed for Tasks.

€ A boundary drawn with a double line SHALL be reserved for Transaction Sub-Processes
(see page 176) and thus are not allowed for Tasks.

Figure 10.8 — A Task object

BPMN specifies three types of markers for Task: a Loop marker or a Multi-Instance marker and a Compensation
marker. A Task MAY have one or two of these markers (see Figure 10.9).

154 Business Process Model and Notation (BPMN), v2.0.2

@ The marker for a Task that is a standard /oop MUST be a small line with an arrowhead that curls back upon itself.
See page 188 for more information on loop Activities.

@ The loop Marker MAY be used in combination with the compensation marker.

@ The marker for a Task that is a multi-instance MUST be a set of three vertical lines. See page 190 for more
information on multi-instance Activities.

@ If the multi-instance instances are set to be performed in sequence rather than parallel, then the marker will be
rotated 90 degrees (see Figure 10.49).

€ The multi-instance marker MAY be used in combination with the compensation marker.

€ The marker for a Task that is used for compensation MUST be a pair of left facing triangles (like a tape player
“rewind” button). See page 301 for more information on compensation.

@ The Compensation Marker MAY be used in combination with the loop marker or the multi-instance marker.

All the markers that are present MUST be grouped and the whole group centered at the bottom of the shape.

Loop Multi-Instance Compensation

9,

Figure 10.9 — Task markers

Figure 10.10 displays the class diagram for the Task element.

=] Activity
(From Activities)

+ ioSpecification i i
[Eg IsForCompensation : Boolean Q InputOutputSpecification

from Dat
Eg startQuantity : Integer 0.1 0.1 {from Data)
== completionQuantity : Integer
| Task
(From Activities)
I sendTask £ ServiceTask] ManualTask] BusinessRuleTask
(From Activities) . (me_ Acmltle_s) (From HurnanInteraction) : (from ACt"'_'t'es) :
5 implementation : String = implernentation : String Eg implementation : String
® :
| ReceiveTask = userTask] scriptTask
(From Activities) (From HumanInteraction) (From Activities)
[Eg Implementation : String [Eg implementation : String g scriptFormat : String
[Eg instantiate : Boolean [script @ Sting

Figure 10.10 — The Task class diagram

The Task inherits the attributes and model associations of Activity (see Table 10.3). There are no further attributes or
model associations of the Task.

Business Process Model and Notation (BPMN), v2.0.2 155

10.3.3.1 Types of Tasks

There are different types of Tasks identified within BPMN to separate the types of inherent behavior that Tasks might
represent. The list of Task types MAY be extended along with any corresponding indicators. A Task which is not further
specified is called Abstract Task (this was referred to as the None Task in BPMN 1.2). The notation of the Abstract
Task is shown in Figure 10.8.

Service Task
A Service Task is a Task that uses some sort of service, which could be a Web service or an automated application.
A Service Task object shares the same shape as the Task, which is a rectangle that has rounded corners. However, there

is a graphical marker in the upper left corner of the shape that indicates that the Task is a Service Task (see Figure
10.11).

A Service Task is a rounded corner rectangle that MUST be drawn with a single thin line and includes a marker that
distinguishes the shape from other Task types (as shown in Figure 10.11).

\. J

Figure 10.11 — A Service Task Object

The Service Task inherits the attributes and model associations of Activity (see Table 10.3). In addition the following
constraints are introduced when the Service Task references an Operation: The Service Task has exactly one
inputSet and at most one outputSet. It has a single Data Input with an TtemDefinition equivalent to the one
defined by the Message referenced by the inMessageRef attribute of the associated Operation. If the
Operation defines output Messages, the Service Task has a single Data Output that has an TtemDefinition
equivalent to the one defined by the Message referenced by the outMessageRef attribute of the associated
Operation.

The actual Participant whose service is used can be identified by connecting the Service Task to a Participant using a
Message Flows within the definitional Collaboration of the Process — see Table 10.1.

156 Business Process Model and Notation (BPMN), v2.0.2

] Activity

(From Activities)
[Eg isForCompensation Boolean
[Eg startQuantity : Integer
== completionQuantity : Integer

=|Message
(From Common)

[E¢ name : 5tring

+ outMessageRef (0.1 1 |+ inMessageRef
= Task
(From Activities)
- -
=] ServiceTask _ =] operation
(From Activities) + operationRef (From Service)
g implermentation : String " [Eg name : 5tring

[Eg implementationRef ;| Element
+ operations | 1..*

1
| Interface

(From Service)
[Eg name : String
Eg implementationRef | Element

Figure 10.12 — The Service Task class diagram

The Service Task inherits the attributes and model associations of Activity (see Table 10.3). Table 10.8 presents
additional the model associations of the Service Task.

Table 10.8 — Service Task model associations

Attribute Name Description/Usage

implementation: string = ##webService This attribute specifies the technology that will be used to
send and receive the Messages. Valid values are "##unspec-
ified" for leaving the implementation technology open,
"#H#WebService" for the Web service technology or a URI
identifying any other technology or coordination protocol. A
Web service is the default technology.

operationRef: Operation [0..1] This attribute specifies the operation that is invoked by the
Service Task.

Send Task

A Send Task is a simple Task that is designed to send a Message to an external Participant (relative to the
Process). Once the Message has been sent, the Task is completed.

The actual Participant which the Message is sent can be identified by connecting the Send Task to a Participant using
a Message Flows within the definitional Collaboration of the Process (see Table 10.1).

A Send Task object shares the same shape as the Task, which is a rectangle that has rounded corners. However, there is
a filled envelope marker (the same marker as a throw Message Event) in the upper left corner of the shape that
indicates that the Task is a Send Task.

Business Process Model and Notation (BPMN), v2.0.2 157

A Send Task is a rounded corner rectangle that MUST be drawn with a single thin line and includes a filled envelope
marker that distinguishes the shape from other Task types (as shown in Figure 10.13).

(.)

\ 7

Figure 10.13 — A Send Task Object

] Activity
(From Activities)

[Eg startQuantity : Integer
Eg completionQuantity : Integer

| Task

(From Activities)

| sendTask £l ReceiveTask
(From Activities) (From Activities)
Eg implernentation @ String ==Y implementation @ String
[Eg instantiate : Boolean
* ®
- -
+ messageRef /0.1 0..1 |4 messageRef
] Message

(From Common)
[Eg name @ String

+ outMessageRef (0.1 1 + inMessageRef

- -

=] operation
(From Service)

0..1 't pperationRef 0..1'/+ pperationRef

[Eg name : 5tring
Eg implementationRef : Element

Figure 10.14 — The Send Task and Receive Task class diagram

The Send Task inherits the attributes and model associations of Activity (see Table 10.3). In addition the following
constraints apply when the Send Task references a Message: The Send Task has at most one inputSet and one
Data Input. If the Data Input is present, it MUST have an TtemDefinition equivalent to the one defined by the
associated Message. At execution time, when the Send Task is executed, the data automatically moves from the Data
Input on the Send Task into the Message to be sent. If the Data Input is not present, the Message will not be
populated with data from the Process.

Table 10.9 presents the additional model associations of the Send Task.

158 Business Process Model and Notation (BPMN), v2.0.2

Table 10.9 — Send Task model associations

Attribute Name Description/Usage

messageRef. Message [0..1] A Message for the messageRef attribute MAY be entered. This indicates that
the Message will be sent by the Task. The Message in this context is
equivalent to an out-only message pattern (Web service). One or more
corresponding outgoing Message Flows MAY be shown on the diagram.
However, the display of the Message Flows is NOT REQUIRED. The Message
is applied to all outgoing Message Flows and the Message will be sent down
all outgoing Message Flows at the completion of a single instance of the Task.

operationRef: Operation This attribute specifies the operation that is invoked by the Send Task.
implementation: string = This attribute specifies the technology that will be used to send and receive the
##webService

Messages. Valid values are "##unspecified" for leaving the implementation
technology open, "##WebService" for the Web service technology or a URI
identifying any other technology or coordination protocol A Web service is the
default technology.

Receive Task

A Receive Task is a simple Task that is designed to wait for a Message to arrive from an external Participant
(relative to the Process). Once the Message has been received, the Task is completed.

The actual Participant from which the Message is received can be identified by connecting the Receive Task to a
Participant using a Message Flows within the definitional Collaboration of the Process — see Table 10.1.

A Receive Task is often used to start a Process. In a sense, the Process is bootstrapped by the receipt of the
Message. In order for the Receive Task to instantiate the Process its instantiate attribute MUST be set to true
and it MUST NOT have any incoming Sequence Flow.

A Receive Task object shares the same shape as the Task, which is a rectangle that has rounded corners. However, there
is an unfilled envelope marker (the same marker as a catch Message Event) in the upper left corner of the shape that
indicates that the Task is a Receive Task.

A Receive Task is a rounded corner rectangle that MUST be drawn with a single thin line and includes an unfilled
envelope marker that distinguishes the shape from other Task types (as shown in Figure 10.15). If the instantiate
attribute is set to frue, the envelope marker looks like a Message Start Event (as shown in Figure 10.16).

™

Figure 10.15 — A Receive Task Object

Business Process Model and Notation (BPMN), v2.0.2 159

Figure 10.16 — A Receive Task Object that instantiates a Process

The Receive Task inherits the attributes and model associations of Activity (see Table 10.3). In addition the following
constraints apply when the Receive Task references a Message: The Receive Task has at most one outputSet and
at most one Data output. If the Data output is present, it MUST have an TtemDefinition equivalent to the one
defined by the associated Message. At execution time, when the Receive Task is executed, the data automatically
moves from the Message to the Data Output on the Receive Task. If the Data Output is not present, the payload
within the Message will not flow out of the Receive Task and into the Process.

Table 10.10 presents the additional attributes and model associations of the Receive Task.

Table 10.10 — Receive Task attributes and model associations

Attribute Name Description/Usage

messageRef. Message [0..1] A Message for the messageRef attribute MAY be entered. This indicates
that the Message will be received by the Task. The Message in this context
is equivalent to an in-only message pattern (Web service). One (1) or more
corresponding incoming Message Flows MAY be shown on the diagram.
However, the display of the Message Flows is NOT REQUIRED. The
Message is applied to all incoming Message Flows, but can arrive for only
one (1) of the incoming Message Flows for a single instance of the Task.

instantiate: boolean = false Receive Tasks can be defined as the instantiation mechanism for the
Process with the instantiate attribute. This attribute MAY be set to true if
the Task is the first Activity (i.e., there are no incoming Sequence Flows).
Multiple Tasks MAY have this attribute set to true.

operationRef: Operation This attribute specifies the operation through which the Receive Task
receives the Message.

implementation: string = This attribute specifies the technology that will be used to send and receive
#iwebService the Messages. Valid values are "##unspecified" for leaving the implementa-
tion technology open, "##WebService" for the Web service technology or a
URI identifying any other technology or coordination protocol A Web service
is the default technology.

User Task

A User Task is a typical “workflow” Task where a human performer performs the Task with the assistance of a
software application and is scheduled through a task list manager of some sort.

160 Business Process Model and Notation (BPMN), v2.0.2

A User Task is a rounded corner rectangle that MUST be drawn with a single thin line and includes a human figure
marker that distinguishes the shape from other Task types (as shown in Figure 10.17).

= .

\. J/

Figure 10.17 — A User Task Object

See “User Task” on page 160 within the larger section of “Human Interactions” for the details of User Tasks.

Manual Task
A Manual Task is a Task that is expected to be performed without the aid of any business process execution engine or
any application. An example of this could be a telephone technician installing a telephone at a customer location.

A Manual Task is a rounded corner rectangle that MUST be drawn with a single thin line and includes a hand figure
marker that distinguishes the shape from other Task types (as shown in Figure 10.17).

=

. J

Figure 10.18 — A Manual Task Object

See “Manual Task” on page 163 within the larger section of “Human Interactions” for the details of Manual Tasks.

Business Rule

A Business Rule Task provides a mechanism for the Process to provide input to a Business Rules Engine and to get
the output of calculations that the Business Rules Engine might provide. The InputOutputSpecification of the
Task (see page 210) will allow the Process to send data to and receive data from the Business Rules Engine.

A Business Rule Task object shares the same shape as the Task, which is a rectangle that has rounded corners.
However, there is a graphical marker in the upper left corner of the shape that indicates that the Task is a Business
Rule Task (see Figure 10.11).

A Business Rule Task is a rounded corner rectangle that MUST be drawn with a single thin line and includes a marker
that distinguishes the shape from other Task types (as shown in Figure 10.19).

Business Process Model and Notation (BPMN), v2.0.2 161

=

\. J

Figure 10.19 — A Business Rule Task Object

The Business Rule Task inherits the attributes and model associations of Activity (see Table 10.3). Table 10.11
presents the additional attributes of the Business Rule Task.

Table 10.11 — Business Rule Task attributes and model associations

Attribute Name Description/Usage
implementation: string = This attribute specifies the technology that will be used to implement the
##unspecified Business Rule Task. Valid values are "##unspecified" for leaving the

implementation technology open, "##WebService" for the Web service
technology or a URI identifying any other technology or coordination protocol.
The default technology for this task is unspecified.

Script Task

A Script Task is executed by a business process engine. The modeler or implementer defines a script in a language that
the engine can interpret. When the Task is ready to start, the engine will execute the script. When the script is completed,
the Task will also be completed.

A Script Task object shares the same shape as the Task, which is a rectangle that has rounded corners. However, there
is a graphical marker in the upper left corner of the shape that indicates that the Task is a Script Task (see Figure
10.11).

A Script Task is a rounded corner rectangle that MUST be drawn with a single thin line and includes a marker that
distinguishes the shape from other Task types (as shown in Figure 10.20).

fS)
\. J

Figure 10.20 — A Script Task Object

The Script Task inherits the attributes and model associations of Activity (see Table 10.3). Table 10.12 presents the
additional attributes of the Script Task.

162 Business Process Model and Notation (BPMN), v2.0.2

Table 10.12 — Script Task attributes

Attribute Name Description/Usage

scriptFormat: string [0..1] Defines the format of the script. This attribute value MUST be specified with a
mime-type format. And it MUST be specified if a script is provided.

script: string [0..1] The modeler MAY include a script that can be run when the Task is per-
formed. If a script is not included, then the Task will act as the equivalent of
an Abstract Task.

10.3.4 Human Interactions

10.3.4.1 Tasks with Human involvement

In many business workflows, human involvement is needed to complete certain Tasks specified in the workflow model.
BPMN specifies two different types of Tasks with human involvement, the Manual Task and the User Task.

A User Task is executed by and managed by a business process runtime. Attributes concerning the human involvement,
like people assignments and Ul rendering can be specified in great detail. A Manual Task is neither executed by nor
managed by a business process runtime.

Notation

Both, the Manual Task and User Task share the same shape, which is a rectangle that has rounded corners. Manual
Tasks and User Tasks have a Icons to indicate the human involvement is REQUIRED to complete the Task (see Figure
10.15 and Figure 10.17).

Manual Task

A Manual Task is a Task that is not managed by any business process engine. It can be considered as an unmanaged
Task, unmanaged in the sense of that the business process engine doesn’t track the start and completion of such a Task.
An example of this could be a paper based instruction for a telephone technician to install a telephone at a customer
location.

= Activity * | ResourceRole
(From Activities) (From Activities)
55 isForCompensation Boolean 0.1 + resources | 63 name : String

[Eg startQuantity © Integer
=) completionQuantity ; Integer

| Task

(From Activities)

ManualTask | Performer
(from Process)
(From HumanInteraction)

Figure 10.21 — Manual Task class diagram

Business Process Model and Notation (BPMN), v2.0.2 163

The User Task inherits the attributes and model associations of Activity (see Table 10.3), but does not have any
additional attributes or model associations.

User Task

A User Task is a typical “workflow” Task where a human performer performs the Task with the assistance of a
software application. The lifecycle of the Task is managed by a software component (called task manager) and is
typically executed in the context of a Process.

] Activity * | ResourceRole
(from Activities) (From Activities)
[Eg isForCompensation : Boolean 0.1 + resources Eg name @ String

[Eg startQuantity : Integer
Eg completionQuantity : Integer

= Task = performer

(from Activities)

] userTask " :
(From HumanInteraction) + usertask Q Renderlng_
g implementation : String 01 + renderings (from Humaninteraction)

Figure 10.22 — User Task class diagram

The User Task can be implemented using different technologies, specified by the implementation attribute. Besides
the Web service technology, any technology can be used. A User Task for instance can be implemented using WS-
HumanTask by setting the implementation attribute to “http://docs.oasis-open.org/ns/bpeld4people/ws-humantask/protocol/
200803.”

The User Task inherits the attributes and model associations of Activity (see Table 10.3). Table 10.13 presents the
additional attributes and model associations of the User Task. If implementations extend these attributes (e.g., to
introduce subjects or descriptions with presentation parameters), they SHOULD use attributes defined by the OASIS WS-
HumanTask specification.

Table 10.13 — User Task attributes and model associations

Attribute Name Description/Usage
implementation: string = This attribute specifies the technology that will be used to implement the
##unspecified User Task. Valid values are "##unspecified" for leaving the implementation

technology open, "##WebService" for the Web service technology or a URI
identifying any other technology or coordination protocol. The default tech-
nology for this task is unspecified.

renderings: Rendering [0.."] This attributes acts as a hook which allows BPMN adopters to specify task
rendering attributes by using the BPMN Extension mechanism.

164 Business Process Model and Notation (BPMN), v2.0.2

The User Task inherits the instance attributes of Activity (see Table 8.49). Table 10.14 presents the instance attributes
of the User Task element.

Table 10.14 — User Task instance attributes

Attribute Name Description/Usage

actualOwner: string Returns the “user” who picked/claimed the User task and became the actual
owner of it. The value is a literal representing the user’s id, email address
etc.

taskPriority: integer Returns the priority of the User Task.

Rendering of User Tasks

BPMN User Tasks neced to be rendered on user interfaces like forms clients, portlets, etc. The Rendering element
provides an extensible mechanism for specifying UI renderings for User Tasks (Task UI). The element is optional. One
or more rendering methods can be provided in a Task definition. A User Task can be deployed on any compliant
implementation, irrespective of the fact whether the implementation supports specified rendering methods or not. The
Rendering element is the extension point for renderings. Things like language considerations are opaque for the
Rendering element because the rendering applications typically provide Multilanguage support. Where this is not the
case, providers of certain rendering types can decide to extend the rendering type in order to provide language
information for a given rendering. The content of the rendering element is not defined by this International Standard.

Human Performers

People can be assigned to Activities in various roles (called “generic human roles” in WS-HumanTask). BPMN 1.2
traditionally only has the Performer role. In addition to supporting the Performer role, BPMN 2.0 defines a specific
HumanPerformer element allowing specifying more specific human roles as specialization of HumanPerformer, such as
PotentialOwner.

] Documentation . 1 & BaseElement
(From Foundation) (from Foundation)
Egtext : S_tl'lng & documentation £ : String
[Eg textFormat @ String
. + resources
H Activity] ResourceRole
(From Activities) (From Activities)
[Eg isForCompensation © Boolean 0.1 *
g startQuantity @ Integer
=3 completionQuantity : Integer
| performer

(From Process)

& HumanPerformer
{From HumanInteraction)

] potentialowner
{From HumanInteraction)

Figure 10.23 — HumanPerformer class diagram

Business Process Model and Notation (BPMN), v2.0.2 165

The HumanPerformer element inherits the attributes and model associations of ResourceRole (see Table 10.5),
through its relationship to Performer, but does not have any additional attributes or model associations.

Potential Owners

Potential owners of a User Task are persons who can claim and work on it. A potential owner becomes the actual owner
of a Task, usually by explicitly claiming it.

XML Schema for Human Interactions

Table 10.15 — ManualTask XML schema

<xsd:element name="manualTask" type="tManualTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tManualTask">

<xsd:complexContent>

<xsd:extension base="tTask"/>

</xsd:complexContent>
</xsd:complexType>

166 Business Process Model and Notation (BPMN), v2.0.2

Table 10.16 — UserTask XML schema

<xsd:element name="userTask" type="tUserTask" substitutionGroup="flowElement"/>

<xsd:complexType name="tUserTask">
<xsd:complexContent>
<xsd:extension base="tTask">
<xsd:sequence>

<xsd:element ref="rendering" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="implementation" type="tImplementation"

default="##unspecified"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="rendering" type="tRendering"/>
<xsd:complexType name="tRendering">
<xsd:complexContent>
<xsd:extension base="tBaseElement"/>
</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="timplementation">
<xsd:union memberTypes="xsd:anyURI">

<xsd:simpleType>
<xsd:restriction base="xsd:token">
<xsd:enumeration value="##unspecified" />
<xsd:enumeration value="##WebService" />
</xsd:restriction>
</xsd:simpleType>
</xsd:union>
</xsd:simpleType>

Business Process Model and Notation (BPMN), v2.0.2

167

Table 10.17 — HumanPerformer XML schema

<xsd:element name="humanPerformer" type="tHumanPerformer" substitutionGroup="performer"/>
<xsd:complexType name="tHumanPerformer">
<xsd:complexContent>
<xsd:extension base="tPerformer">
<xsd:sequence>
<xsd:element ref="peopleAssignment" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10.18 — PotentialOwner XML schema

<xsd:element name="potentialOwner" type="tPotentialOwner" substitutionGroup="performer"/>
<xsd:complexType name="tPotentialOwner">
<xsd:complexContent>
<xsd:extension base="tHumanPerformer"/>
</xsd:complexContent>
</xsd:complexType>

Examples

Consider the following sample procurement Process from the Buyer perspective (see Figure 10.24).

Handle
Order

Handle &Approve
Quotations Order

Buyer

Handle
Shipment

Figure 10.24 — Procurement Process Example

The Process comprises of two User Tasks

« Approve Order: After the quotation handling, the order needs to be approved by some regional manager to continue
with the order and shipment handling.

168 Business Process Model and Notation (BPMN), v2.0.2

« Review Order: Once the order has been shipped to the Buyer, the order and shipment documents will be reviewed
again by someone.

The details of the Resource and resource assignments are not shown in the BPMN above. See below XML sample of
the “Buyer” Process for the Resource usage and resource assignments for potential owners.

Table 10.19 — XML serialization of Buyer process

<?xml version="1.0" encoding="UTF-8"7>
<definitions id="Definition"
targetNamespace="http://www.example.org/UserTaskExample"
typeLanguage="http://www.w3.0rg/2001/XMLSchema"
expressionLanguage="http://www.w3.org/1999/XPath"
xmins="http://www.w3.0rg/2001/XMLSchema"
xmlIns="http://www.omg.org/spec/BPMN/20100524/MODEL"
xmins:tns="http://www.example.org/UserTaskExample">
<resource id="regionalManager" name="Regional Manager">
<resourceParameter id="buyerName" isRequired="true" name="Buyer Name" type="xsd:string"/>
<resourceParameter id="region" isRequired="false" name="Region" type="xsd:string"/>
</resource>

<resource id="departmentalReviewer" name="Departmental Reviewer">
<resourceParameter id="buyerName" isRequired="true" name="Buyer Name" type="xsd:string"/>
</resource>

<collaboration id="BuyerCollaboration" name="Buyer Collaboration">
<participant id="BuyerParticipant" name="Buyer" processRef="BuyerProcess"/>
</collaboration>

<!-- Process definition -->
<process id="BuyerProcess" name="Buyer Process">

<laneSet id="BuyerLaneSet">
<lane id="BuyerLane">
<flowNodeRef>StartProcess</flowNodeRef>
<flowNodeRef>QuotationHandling</flowNodeRef>
<flowNodeRef>ApproveOrder</flowNodeRef>
<flowNodeRef>OrderApprovedDecision</flowNodeRef>
<flowNodeRef>TerminateProcess</flowNodeRef>
<flowNodeRef>OrderAndShipment</flowNodeRef>
<flowNodeRef>OrderHandling</flowNodeRef>
<flowNodeRef>ShipmentHandling</flowNodeRef>
<flowNodeRef>OrderAndShipmentMerge</flowNodeRef>
<flowNodeRef>ReviewOrder</flowNodeRef>
<flowNodeRef>EndProcess</flowNodeRef>
</lane>
</laneSet>

<startEvent id="StartProcess"/>

Business Process Model and Notation (BPMN), v2.0.2 169

<sequenceFlow sourceRef="StartProcess" targetRef="QuotationHandling"/>
<task id="QuotationHandling" name="Quotation Handling"/>
<sequenceFlow sourceRef="QuotationHandling" targetRef="ApproveOrder"/>

<userTask id="ApproveOrder" name="ApproveOrder">
<potentialOwner>
<resourceRef>tns:regionalManager</resourceRef>
<resourceParameterBinding parameterRef="tns:buyerName">
<formalExpression>getDatalnput('order')/address/name</formalExpression>
</resourceParameterBinding>
<resourceParameterBinding parameterRef="tns:region">
<formalExpression>getDatalnput(‘order')/address/country</formalExpression>
</resourceParameterBinding>
</potentialOwner>
</userTask>

<sequenceFlow sourceRef="ApproveOrder" targetRef="OrderApprovedDecision"/>

<exclusiveGateway id="OrderApprovedDecision" gatewayDirection="Diverging"/>
<sequenceFlow sourceRef="OrderApprovedDecision" targetRef="OrderAndShipment">

<conditionExpression>Was the Order Approved?</conditionExpression>
</sequenceFlow>

<sequenceFlow sourceRef="OrderApprovedDecision" targetRef="TerminateProcess">
<conditionExpression>Was the Order NOT Approved?</conditionExpression>
</sequenceFlow>

<endEvent id="TerminateProcess">
<terminateEventDefinition id="TerminateEvent"/>
</endEvent>

<parallelGateway id="OrderAndShipment" gatewayDirection="Diverging"/>[

<sequenceFlow sourceRef="OrderAndShipment" targetRef="OrderHandling"/>
<sequenceFlow sourceRef="OrderAndShipment" targetRef="ShipmentHandling"/>

<task id="OrderHandling" name="Order Handling"/>
<task id="ShipmentHandling" name="Shipment Handling"/>

<sequenceFlow sourceRef="OrderHandling" targetRef="OrderAndShipmentMerge"/>
<sequenceFlow sourceRef="ShipmentHandling" targetRef="OrderAndShipmentMerge"/>

<parallelGateway id="OrderAndShipmentMerge" gatewayDirection="Converging"/>
<sequenceFlow sourceRef="OrderAndShipmentMerge" targetRef="ReviewOrder"/>

<userTask id="ReviewOrder" name="Review Order">
<potentialOwner>
<resourceRef>tns:departmentalReviewer</resourceRef>

170 Business Process Model and Notation (BPMN), v2.0.2

<resourceParameterBinding parameterRef="tns:buyerName">
<formalExpression>getDatalnput(‘order')/address/name</formalExpression>
</resourceParameterBinding>
</potentialOwner>
</userTask>

<sequenceFlow sourceRef="ReviewOrder" targetRef="EndProcess"/>
<endEvent id="EndProcess"/>

</process>
</definitions>

10.3.5 Sub-Processes

A Sub-Process is an Activity whose internal details have been modeled using Activities, Gateways, Events, and
Sequence Flows. A Sub-Process is a graphical object within a Process, but it also can be “opened up” to show a
lower-level Process. Sub-Processes define a contextual scope that can be used for attribute visibility, transactional
scope, for the handling of exceptions (see page 274 for more details), of Events, or for compensation (see page 301 for
more details).

There are different types of Sub-Processes, which will be described in the next five sub clauses.

Embedded Sub-Process (Sub-Process)
A Sub-Process object shares the same shape as the Task object, which is a rounded rectangle.
€@ A Sub-Process is a rounded corner rectangle that MUST be drawn with a single thin line.

@ The use of text, color, size, and lines for a Sub-Process MUST follow the rules defined in “Use of Text,
Color, Size, and Lines in a Diagram” on page 39 with the exception that:

€ A boundary drawn with a thick line SHALL be reserved for Call Activity (Sub-Processes)
(see page 182).
€ A boundary drawn with a dotted line SHALL be reserved for Event Sub-Processes (sce page 174).

€ A boundary drawn with a double line SHALL be reserved for Transaction Sub-Processes
(see page 176).

The Sub-Process can be in a collapsed view that hides its details (see Figure 10.25) or a Sub-Process can be in an
expanded view that shows its details within the view of the Process in which it is contained (see Figure 10.26). In the
collapsed form, the Sub-Process object uses a marker to distinguish it as a Sub-Process, rather than a Task.

€ The Sub-Process marker MUST be a small square with a plus sign (+) inside. The square MUST be
positioned at the bottom center of the shape.

Collapsed
Sub-

Process

Figure 10.25 — A Sub-Process object (collapsed)

Business Process Model and Notation (BPMN), v2.0.2 171

Sub-Process
(Expanded)

<3

Figure 10.26 — A Sub-Process object (expanded)

They are used to create a context for exception handling that applies to a group of Activities (see page 274 for more
details). Compensations can be handled similarly (see page 301 for more details).

Expanded Sub-Processes can be used as a mechanism for showing a group of parallel Activities in a less-cluttered,
more compact way. In Figure 10.27, Activities “C” and “D” are enclosed in an unlabeled expanded Sub-Process.
These two Activities will be performed in parallel. Notice that the expanded Sub-Process does not include a Start
Event or an End Event and the Sequence Flows to/from these Events. This usage of expanded Sub-Processes for
“parallel boxes” is the motivation for having Start and End Events being optional objects.

(. J

Figure 10.27 — Expanded Sub-Process used as a “Parallel Box”

BPMN specifies five types of standard markers for Sub-Processes. The (Collapsed) Sub-Process marker, seen in
Figure 10.24, can be combined with four other markers: a loop marker or a multi-instance marker, a Compensation
marker, and an Ad-Hoc marker. A collapsed Sub-Process MAY have one to three of these other markers, in all
combinations except that loop and multi-instance cannot be shown at the same time (see Figure 10.28).

€@ The marker for a Sub-Process that loops MUST be a small line with an arrowhead that curls back upon itself.

€@ The loop marker MAY be used in combination with any of the other markers except the multi-instance marker.
€@ The marker for a Sub-Process that has multiple instances MUST be a set of three vertical lines in parallel.

@ The multi-instance marker MAY be used in combination with any of the other markers except the loop marker.
@ The marker for an ad-hoc Sub-Process MUST be a “tilde” symbol.

@ The ad-hoc marker MAY be used in combination with any of the other markers.

€@ The marker for a Sub-Process that is used for compensation MUST be a pair of left facing triangles (like a tape
player “rewind” button).

€ The Compensation marker MAY be used in combination with any of the other markers.

172 Business Process Model and Notation (BPMN), v2.0.2

@ All the markers that are present MUST be grouped and the whole group centered at the bottom of the

Sub-Process.
. . Compensation
Loop Multi-iInstance Compensation Ad-Hoc and Ad-Hoc
OMF I <KIF Fl~ <KIF1~

Figure 10.28 — Collapsed Sub-Process Markers

The Sub-Process now corresponds to the Embedded Sub-Process of BPMN 1.2. The Reusable Sub-Process of BPMN 1.2
corresponds to the Call Activity (calling a Process - see page 182). Figure 10.29 shows the class diagram related to Sub-
Processes.

H Activity
(From Activities)
[Eg isForCompensation : Boolean
[startQuantity : Integer
mcompletionQuantity : Integer

] Laneset
(From Process)
[Eg name : 5tring
+ laneSets/|\ *

+ flowElementsContainer b..1

| subProcess | FlowElementsContainer
(From Activities) (from Common)
g triggeredByEvent ; Boolean

0.1
+ artifacts, | *
| AdHocSubProcess | Transaction] Artifact
(From Activities) (From Activities) (From Artifacts)
[Eg ordering : AdHocCrdering [protocal ; String
[Eg cancelRemainingInstances : Boolean [Eg methad : String
0.1
«enumeration» 1 .|+ completionCondition
[E] AdHocOrdering 5
(From Activities) Q Expression
(from Comman)

= Parallel
= Sequential

Figure 10.29- The Sub-Process class diagram

The Sub-Process element inherits the attributes and model associations of Activity (see Table 10.3) and of
FlowElementContainer (see Table 8.45). Table 10.3 presents the additional attributes of the Sub-Process element.

Business Process Model and Notation (BPMN), v2.0.2 173

Table 10.20 — Sub-Process attributes

Attribute Name Description/Usage

triggeredByEvent: boolean =false | A flag that identifies whether this Sub-Process is an
Event Sub-Process.
- If false, then this Sub-Process is a normal Sub-Process.

- If true, then this Sub-Process is an Event Sub-Process and is subject
to additional constraints (see page 174).

artifacts: Artifact [0.."] This attribute provides the list of Artifacts that are contained within the Sub-
Process.

Reusable Sub-Process (Call Activity)

The reusable Sub-Process of BPMN 1.2 corresponds to the Call Activity that calls a predefined Process. See details
of a Call Activity on page 182.

Event Sub-Process

An Event Sub-Process is a specialized Sub-Process that is used within a Process (or Sub-Process). A Sub-
Process is defined as an Event Sub-Process when its triggeredByEvent attribute is set to frue.

An Event Sub-Process is not part of the normal flow of its parent Process—there are no incoming or outgoing
Sequence Flows.

€ AnEvent Sub-Process MUST NOT have any incoming or outgoing Sequence Flows.

An Event Sub-Process MAY or MAY NOT occur while the parent Process is active, but it is possible that it will
occur many times. Unlike a standard Sub-Process, which uses the flow of the parent Process as a trigger, an Event
Sub-Process has a Start Event with a frigger. Each time the Start Event is triggered while the parent Process is
active, then the Event Sub-Process will start.

€ The Start Event of an Event Sub-Process MUST have a defined trigger.

€ The Start Event rrigger (EventDefinition) MUST be from the following types: Message, Error,
Escalation, Compensation, Conditional, Signal,and Multiple (see page 259 for more details).

€ An Event Sub-Process MUST have one and only one Start Event.

An Event Sub-Process object shares the same basic shape as the Sub-Process object, which is a rounded rectangle.

€ An Event Sub-Process is a rounded corner rectangle that MUST be drawn with a single thin dotted line (see
Figure 10.30 and Figure 10.31).

@ The use of text, color, size, and lines for an Event Sub-Process MUST follow the rules defined in “Use of
Text, Color, Size, and Lines in a Diagram” on page 39 with the exception that:

€ Ifthe Event Sub-Process is collapsed, then its Start Event will be used as a marker in the upper left
corner of the shape (see Figure 10.30).

174 Business Process Model and Notation (BPMN), v2.0.2

Expanded Event Sub-Process

Figure 10.31 — An Event Sub-Process object (expanded)

There are two possible consequences to the parent Process when an Event Sub-Process is triggered: 1) the parent
Process can be interrupted, and 2) the parent Process can continue its work (not interrupted). This is determined by the
type of Start Event that is used. See page 241 for the list of interrupting and non-interrupting Event Sub-Process
Start Events.

Figure 10.32 provides an example of a Sub-Process that includes three Event Sub-Processes. The first Event Sub-
Process is triggered by a Message, does not interrupt the Sub-Process, and can occur multiple times. The second
Event Sub-Process is used for compensation and will only occur after the Sub-Process has completed. The third
Event Sub-Process handles errors that occur while the Sub-Process is active and will stop (interrupt) the Sub-
Process if triggered.

Business Process Model and Notation (BPMN), v2.0.2 175

Notify
—p»| Customer
Retry Limit | |nvalid cC
Exceeded

Booking

Book Flight

Y
Get Credit T @
Card ST Cancel Charge
Information Flight Credit Card
<Kl

Book Hotel
ERRTE Cancel
Hotel
<Kl

Update Credit Card Information

- Update
l\lZl Credit Card '

Info

Update

@ @ @ Customer ()

Booking Flight Hotel Record

Handle Booking Error Notity
@ Cust_omer .
) Retry Limit | _Failed
Booki ;
Eor?O;nzg Exceeded \—Booking

Booking

Error 1 Error 2

Figure 10.32 — An example that includes Event Sub-Processes

Transaction

A Transaction is a specialized type of Sub-Process that will have a special behavior that is controlled through a
transaction protocol (such as WS-Transaction). The boundary of the Sub-Process will be double-lined to indicate that it

is a Transaction (see Figure 10.33).
€ A Transaction Sub-Process is a rounded corner rectangle that MUST be drawn with a double thin line.

@ The use of text, color, size, and lines for a transaction Sub-Process MUST follow the rules defined in
“Use of Text, Color, Size, and Lines in a Diagram” on page 39.

176 Business Process Model and Notation (BPMN), v2.0.2

Bookings

Book FlightJ

Cancel
Flight

’ <K Succe.ssful
Bookings
Book Hotel
............. Send Hotel
Cancellation

<K
X
\[/ Failed

Bookings

[Transaction

- Unavailability

Handle
through
Exceptions Customer
(Hazards) Service

Figure 10.33 — A Transaction Sub-Process

Successful
Bookings

Bookings

Send
=LU navailability

Failed
Bookings

Notice

Handle

through
Exceptions Customer
(Hazards) Service

Figure 10.34 — A Collapsed Transaction Sub-Process
The Transaction Sub-Process clement inherits the attributes and model associations of Activities (see Table 10.3)

through its relationship to Sub-Process. Table 10.21 presents the additional attributes and model associations of the
Transaction Sub-Process.

Business Process Model and Notation (BPMN), v2.0.2 177

Table 10.21 — Transaction Sub-Process attributes and model associations

Attribute Name Description/Usage

method: TransactionMethod The method is an attribute that defines the Transaction method used to

commit or cancel a Transaction. For executable Processes, it SHOULD be
set to a technology specific URI, e.g., http://schemas.xmlsoap.org/
ws/2004/10/wsat for WS-AtomicTransaction, or http://
docs.oasis-open.org/ws—-tx/wsba/2006/06/AtomicOutcome for
WS-BusinessActivity. For compatibility with BPMN 1.1, it can also be set to

"##compensate," "##store," or "##image."

There are three basic outcomes of a Transaction:

1.

Successful completion: this will be shown as a normal Sequence Flow that leaves the Transaction Sub-
Process.

Failed completion (Cancel): When a Transaction is canceled, the Activities inside the Transaction will be sub-
jected to the cancellation actions, which could include rolling back the Process and compensation (see page 301 for
more information on compensation) for specific Activities. Note that other mechanisms for interrupting a Transac-
tion Sub-Process will not cause compensation (e.g., Error, Timer, and anything for a non-Transaction Activity).
A Cancel Intermediate Event, attached to the boundary of the Activity, will direct the flow after the Transac-
tion has been rolled back and all compensation has been completed. The Cancel Intermediate Event can only be
used when attached to the boundary of a Transaction Sub-Process. It cannot be used in any normal flow and can-
not be attached to a non-Transaction Sub-Process. There are two mechanisms that can signal the cancellation of
a Transaction:
+ A Cancel End Event is reached within the transaction Sub-Process. A Cancel End Event can only
be used within a transaction Sub-Process.
* A cancel Message can be received via the transaction protocol that is supporting the execution of the
Transaction Sub-Process.

Hazard: This means that something went terribly wrong and that a normal success or cancel is not possible. Error
Intermediate Events are used to show Hazards. When a Hazard happens, the Activity is interrupted (without
compensation) and the flow will continue from the Error Intermediate Event.

The behavior at the end of a successful Transaction Sub-Process is slightly different than that of a normal Sub-
Process. When each path of the Transaction Sub-Process recaches a non-Cancel End Event(s), the flow does not
immediately move back up to the higher-level parent Process, as does a normal Sub-Process. First, the transaction
protocol needs to verify that all the Participants have successfully completed their end of the Transaction. Most of the
time this will be true and the flow will then move up to the higher-level Process. But it is possible that one of the
Participants can end up with a problem that causes a Cancel or a Hazard. In this case, the flow will then move to the
appropriate Intermediate Event, even though it had apparently finished successfully.

178

Business Process Model and Notation (BPMN), v2.0.2

Ad-Hoc Sub-Process

An Ad-Hoc Sub-Process is a specialized type of Sub-Process that is a group of Activities that have no REQUIRED
sequence relationships. A set of Activities can be defined for the Process, but the sequence and number of
performances for the Activities is determined by the performers of the Activities.

A Sub-Process is marked as being ad-hoc with a “tilde” symbol placed at the bottom center of the Sub-Process shape
(see Figure 10.35 and Figure 10.36).

€ The marker for an Ad-Hoc Sub-Process MUST be a “tilde” symbol.
€@ The Ad-Hoc Marker MAY be used in combination with any of the other markers.

F~

Figure 10.35 — A collapsed Ad-Hoc Sub-Process

) D
— O

~

Figure 10.36 — An expanded Ad-Hoc Sub-Process

The Ad-Hoc Sub-Process clement inherits the attributes and model associations of Activities (see Table 10.3) through
its relationship to Sub-Process. Table 10.22 presents the additional model associations of the Ad-Hoc Sub-Process.

Business Process Model and Notation (BPMN), v2.0.2 179

Table 10.22 — Ad-hoc Sub-Process model associations

Attribute Name Description/Usage

completionCondition: This Expression defines the conditions when the Process will end. When

Expression the Expression is evaluated to frue, the Process will be terminated.

;"delrl"l‘gi AdHocOrdering = This attribute defines if the Activities within the Process can be performed in
aralle

parallel or MUST be performed sequentially. The default setting is parallel
and the setting of sequential is a restriction on the performance that can be
needed due to shared resources. When the setting is sequential, then only
one Activity can be performed at a time. When the setting is parallel, then
zero (0) to all the Activities of the Sub-Process can be performed in parallel.

{ Parallel | Sequential }

ganlcelRemaining-lnstances: This attribute is used only if ordering is parallel. It determines whether running
oolean =true instances are canceled when the completionCondition becomes true.

Activities within the Process are generally disconnected from each other. During execution of the Process, any one or
more of the Activities MAY be active and they MAY be performed multiple times. The performers determine when
Activities will start, what the next Activity will be, and so on.

Examples of the types of Processes that are Ad-Hoc include computer code development (at a low level), sales
support, and writing a book chapter. If we look at the details of writing a book chapter, we could see that the Activities
within this Process include: researching the topic, writing text, editing text, generating graphics, including graphics in
the text, organizing references, etc. (see Figure 10.37). There MAY be some dependencies between Tasks in this
Process, such as writing text before editing text, but there is not necessarily any correlation between an instance of
writing text to an instance of editing text. Editing can occur infrequently and based on the text of many instances of the
writing text Task.

180 Business Process Model and Notation (BPMN), v2.0.2

Research
the Topic

Generate
Graphics

Organize
References

-

Write a Book Chapter

Write/Edit

Text
(D)

Wrrite Text

Include
Graphics in
Text

I Finalize

Chapter

|| =~

Figure 10.37 — An Ad-Hoc Sub-Process for writing a book chapter

Although there is no explicit Process structure, some sequence and data dependencies can be added to the details of the
Process. For example, we can extend the book chapter Ad-Hoc Sub-Process shown above and add Data Objects,
Data Associations, and even Sequence Flows (Figure 10.38).

Ad-Hoc Sub-Processes restrict the use of BPMN elements that would normally be used in Sub-Processes.
@ The list of BPMN eclements that MUST be used in an Ad-Hoc Sub-Process: Activity.

@ The list of BPMN elements that MAY be used in an Ad-Hoc Sub-Process: Data Object, Sequence Flow,

Association, Data Association, Group, Message Flow (as a source or target), Gateway, and
Intermediate Event.

@ The list of BPMN elements that MUST NOT be used in an Ad-Hoc Sub-Process: Start Event, End Event,

Conversations (graphically), Conversation Links (graphically), and Choreography Activities.

Business Process Model and Notation (BPMN), v2.0.2

181

Write a Book Chapter
Write/Edit
R S Moo e
R h Research
esgare Notes: Write Text
the Topic
Tosplc Grap;ics 1 Chapter Text
: VAVAE completed Y : [draft]
Include
Generate L
: Graphics in
Graphics
Text . .
MM M Finalize
: Chapter
Organize J D :
References References v
Chapter
||| e [completed]

.

Figure 10.38 — An Ad-Hoc Sub-Process with data and sequence dependencies

The Data Objects as inputs into the Tasks act as an additional constraint for the performance of those Tasks. The
performers still determine when the Tasks will be performed, but they are now constrained in that they cannot start the
Task without the appropriate input. The addition of Sequence Flows between the Tasks (e.g., between “Generate
Graphics” and “Include Graphics in Text”) creates a dependency where the performance of the first Task MUST be
followed by a performance of the second Task. This does not mean that the second Task is to be performed immediately,
but there MUST be a performance of the second Task after the performance of the first Task.

It is a challenge for a BPM engine to monitor the status of Ad-Hoc Sub-Processes, usually these kind of Processes
are handled through groupware applications (such as e-mail), but BPMN allows modeling of Processes that are not
necessarily executable, although there are some process engines that can follow an Ad-Hoc Sub-Process. Given this, at
some point the Ad-Hoc Sub-Process will have complete and this can be determined by evaluating a
completionCondition that evaluates Process attributes that will have been updated by an Activity in the
Process.

10.3.6 Call Activity

A Call Activity identifies a point in the Process where a global Process or a Global Task is used. The Call
Activity acts as a ‘wrapper’ for the invocation of a global Process or Global Task within the execution. The
activation of a call Activity results in the transfer of control to the called global Process or Global Task.

The BPMN 2.0 Call Activity corresponds to the Reusable Sub-Process of BPMN 1.2. A BPMN 2.0 Sub-Process
corresponds to the Embedded Sub-Process of BPMN 1.2 (see the previous sub clause).

A Call Activity object shares the same shape as the Task and Sub-Process, which is a rectangle that has rounded
corners. However, the target of what the Activity calls will determine the details of its shape.

€ Ifthe Call Activity calls a G1obal Task, then the shape will be the same as a Task, but the boundary of the
shape will MUST have a thick line (see Figure 10.39).

182 Business Process Model and Notation (BPMN), v2.0.2

@ The Call Activity MUST display the marker of the type of Global Task (e.g., the Call Activity would
display the User Task marker if calling a Global User Task).

& Ifthe Call Activity calls a Process, then there are two options:

@ The details of the called Process can be hidden and the shape of the Call Activity will be the same as a
collapsed Sub-Process, but the boundary of the shape MUST have a thick line (see Figure 10.40).

If the details of the called Process are available, then the shape of the Call Activity will be the same as a expanded
Sub-Process, but the boundary of the shape MUST have a thick line (see Figure 10.41).

Figure 10.39 — A Call Activity object calling a Global Task

Figure 10.40 — A Call Activity object calling a Process (Collapsed)

Figure 10.41 — A Call Activity object calling a Process (Expanded)
When a Process with a definitional Collaboration, calls a Process that also has a definitional Collaboration, the

Participants of the two Collaborations can be matched to each other using ParticipantAssociations of the
Collaboration of the calling Process.

Business Process Model and Notation (BPMN), v2.0.2 183

A Call Activity MUST fulfill the data requirements, as well as return the data produced by the CallableElement
being invoked (see Figure 10.41). This means that the elements contained in the Call Activity’s
InputOutputSpecification MUST exactly match the elements contained in the referenced CallableElement.
This includes DataInputs, DataOutputs, InputSets, and OutputSets.

H Activity -l DataInput
(From Activities) (from Data) + datalnputs
[Eg isForCompensation : Boolean 0.1 [Eg name : String N
g startQuantity : Integer £ isCollection ; Boolean
[Eg completionQuantity : Integer * | + datalnputRefs
] callActivity 1.* | + finputSetRefs
(From Activities)
= InputSet
(From Data)

[Eg name : 5tring
+inputSets | 1..*

* | + caledElementRef

+ ioSpecification | 0..1 1
0.1 1
] callableElement | InputOutputSpecification
(From Comman) + inSpecification (From Data)
[Eg name © 5trin
@ 4 0.1
0.1 1

1..*% outputSets
H outputSet
(From Data)
[Eg name : 5tring
1% + foutputSetRefs

=] RootElement
(From Foundation)

* |+ dataOutputRefs
] DataOutput
(from Data) *
[Eg name : 5tring

g isCallection : Boolean + dataOutputs

Figure 10.42 —-The Call Activity class diagram

A Call Activity can override properties and attributes of the element being called, potentially changing the behavior of
the called element based on the calling context. For example, when the Call Activity defines one or more
ResourceRole elements, the elements defined by the CallableElement are ignored and the elements defined in the
Call Activity are used instead. Also, Events that are propagated along the hierarchy (errors and escalations) are
propagated from the called element to the Call Activity (and can be handled on its boundary).

The Call Activity inherits the attributes and model associations of Activity (see Table 10.3). Table 10.23 presents the
additional model associations of the Call Activity.

184 Business Process Model and Notation (BPMN), v2.0.2

Table 10.23 — CallActivity model associations

Attribute Name Description/Usage

calledElement: CallableElement The element to be called, which will be either a Process or a

[0-11 GlobalTask. Other CallableElements, such as Choreography,
GlobalChoreographyTask, Conversation, and
GlobalCommunication MUST NOT be called by the Call Conversation
element.

Callable Element

CallableElement is the abstract super class of all Activities that have been defined outside of a Process or
Choreography but which can be called (or reused), by a Call Activity, from within a Process or Choreography. It
MAY reference Interfaces that define the service operations that it provides. The BPMN elements that can be called
by Call Activities (i.e., are CallableElements) are: Process and GlobalTask (see Figure 10.43).
CallableElements are RootElements, which can be imported and used in other Definitions. When
CallableElements (e.g., Process) are defined, they are contained within Definitions.

HootEement
[From Foundation]

+ caledClementiel
| Callabiekiement
- 0.1 [Frem Comman)
Callactivity @ name ; Shing
[Freem Artebies + inSpecihcanon Inru.l'lllt.;tfnﬂ Specification
Ko Diat)
0.1 0.1
1
Process
{From Process) L™ + npUtSats 1.® s oulpuiSels
& Docen TvoR | ProcemTime InguitSat Oustputiat
& Bk & Booboan {Teom Dets) {Frem Diata)
3 EEvaiutabls - Backean 4 e - Stivd 3 rame | Shng
+ rputDatated 1 1+ cutpuiDats#afl
bk
[From Progess) w "
+ Klinding NP DUt pUBinding
(Feom Dinka)
= b caladeElomenty 2.1 =
+icBndeg | =
+ suppor tndinte facefots
+ DpeErationiel
Interlace
{From Servical R :II. Co:l'itbll'l
& Pamea 1 51 {hiom Sarven
& mokermenibationPgl ; Elsrriant L 1.*% | 5§ name ; Sbing

& mplementabionited « Blement
Figure 10.43 — CallableElement class diagram

The CallableElement inherits the attributes and model associations of BaseElement (see Table 8.5) through its
relationship to RootElement. Table 10.24 presents the additional attributes and model associations of the
CallableElement.

Business Process Model and Notation (BPMN), v2.0.2 185

Table 10.24 — CallableElement attributes and model associations

Attribute Name

Description/Usage

name: string [0..1]

The descriptive name of the element.

supportedinterfaceRefs:
Interface [0..%]

The Interfaces describing the external behavior provided by this element.

ioSpecification: Input
OutputSpecification [0..1]

The InputOutputSpecification defines the inputs and outputs and the
InputSets and OutputSets for the Activity.

ioBinding: InputOutput
Binding [0..%]

The InputOutputBinding defines a combination of one InputsSet and
one OutputSet in order to bind this to an operation defined in an
interface.

When a CallableElement is exposed as a Service, it has to define one or more InputOutputBinding
elements. An InputOutputBinding element binds one /nput and one Output of the
InputOutputSpecification to an Operation of a Service Interface. Table 10.25 presents the additional
model associations of the InputOutputBinding.

Table 10.25 - InputOutputBinding model associations

Attribute Name

Description/Usage

inputDataRef: Datalnput

A reference to one specific DataInput defined as part of the
InputOutputSpecification of the Activity.

outputDataRef: DataOutput

A reference to one specific DataOutput defined as part of the
InputOutputSpecification of the Activity.

operationRef: Operation

A reference to one specific Operation defined as part of the Interface of
the Activity.

10.3.7 Global Task

A Global Task is a reusable, atomic Task definition that can be called from within any Process by a Call Activity.

186

Business Process Model and Notation (BPMN), v2.0.2

] callActivity =] RootElement
(From Activities) * (from Foundation)

0..1+ caledElementRef

| callableElement
(from Common) | Interface

[Eg name : 5tring + calableElements * (an? service)
[Eg name : 5tring
* + supportedinterfaceRefs = implementationRef : Elernent

] GlobalTask
(From Process)

=] ResourceRole
" (from Activities)
[Eg name : 5tring

0.1 + resources
] GlobalUserTask =] GlobalManualTask =] GlobalScriptTask =] GlobalBusinessRuleTask
{From Humanlnteraction) (From HumanInteraction) (from Activities) (From Activities)
= implementation : String =1 scr@ptLangL_Jage L Sting || 5 implementation : String
01 & script @ String
*)/ + renderings
=|Rendering

(From HumanInter action)

Figure 10.44 — Global Tasks class diagram

The GlobalTask inherits the attributes and model associations of Callable Element (see Table 10.24). Table 10.26
presents the additional model associations of the GlobalTask.

Table 10.26 — Global Task model associations

Attribute Name Description/Usage

resources: ResourceRole [0.."] Defines the resource that will perform or will be responsible for the

GlobalTask. In the case where the Call Activity that references this
GlobalTask defines its own resources, they will override the ones defined
here.

Types of Global Task

There are different types of Tasks identified within BPMN to separate the types of inherent behavior that Tasks might
represent. The types of Global Tasks are only a subset of standard Tasks types. Only GlobalUserTask,
GlobalManualTask, GlobalScriptTask, and GlobalBusinessRuleTask are defined in BPMN. For the sake of
efficiency in this document, the list of Task types is presented once on page 154. The behavior, attributes, and model
associations defined in that sub clause also apply to the corresponding types of Global Tasks.

Business Process Model and Notation (BPMN), v2.0.2 187

10.3.8 Loop Characteristics

Activities MAY be repeated sequentially, essentially behaving like a loop. The presence of LoopCharacteristics
signifies that the Activity has looping behavior. LoopCharacteristics is an abstract class. Concrete subclasses
define specific kinds of looping behavior.

The LoopCharacteristics inherits the attributes and model associations of BaseElement (see Table 8.5). There
are no further attributes or model associations of the LoopCharacteristics.

However, each Loop Activity instance has attributes whose values MAY be referenced by Expressions. These values
are only available when the Loop Activity is being executed.

Figure 10.45 displays the class diagram for an Activity’s loop characteristics, including the details of both the standard
loop and a multi-instance.

=T O Task CallAc ity ‘il e
+ el L el Lavicer i Actheties [—— T Aetivitetn
(P Actmsifion | 4 e e Everd . Backan
e
i
"]
Compkes
Snanclarl ool el Poopiharactermtng Actmaly
Driim Activisen [P Attt | na 0.1 i Bstrettise
3 teriBeiore | Fockan
o1 + lpoplharacterstics
0.k
G + loapMamrmum 0, 1.+ ieaetonditon ahoecifeaton,
Expanesscn Fudtilmtancsl oopCharacteriagics Dt algmit - . i Ot gt Sqpecifi ation
[tram Cammer) i a1 ihom et » inguidiataltam frws * Tiwm it
g sl ¢ floskeiry 5 Prmes ¢ SR » catainouts
+ gt pdniey % bhanicr | Multilredarcefshasion o o 3 T ACokcton | Goakean
@l .1
+ tomplatontandsion [ratafhitpuat -
& oUtoUATIEA RO e Dt
g P | SETg e
FormaEspression a1 01 g RCokecton | Bogkan T SRR
(P C o | 2.l
4 o - Shing 1Y - *| o
% by | Bt
 pondton
.l + oopDutiinputied 0.1 4+ it el o illal
& otk abavic Delribon
a1 = fa-.0.1 emfwarel lemment
+ PiFaEshan EvertRt + oraehanorcreriRal From Dt s
ConphesiieharmDe Tt EvenitDefinition
(et daivitien irtem Frary
+ evariDaintonfef
g e "
orgbcid Flhaorw€ wert Fhwowk weint

{Fraes Everita s vt

Figure 10.45 — LoopCharacteristics class diagram
The LoopCharacteristics element inherits the attributes and model associations of BaseElement (see Table 8.5),

but does not have any further attributes or model associations. However, a Loop Activity does have additional instance
attributes as shown in Table 10.27.

188 Business Process Model and Notation (BPMN), v2.0.2

Table 10.27 — Loop Activity instance attributes

Attribute Name Description/Usage

loopCounter: integer The LoopCounter attribute is used at runtime to count the number of loops
and is automatically updated by the process engine.

Standard Loop Characteristics

The StandardLoopCharacteristics class defines looping behavior based on a boolean condition. The Activity
will loop as long as the boolean condition is frue. The condition is evaluated for every loop iteration, and MAY be
evaluated at the beginning or at the end of the iteration. In addition, a numeric cap can be optionally specified. The
number of iterations MAY NOT exceed this cap.

@ The marker for a Task or a Sub-Process that is a standard /oop MUST be a small line with an arrowhead that curls
back upon itself (see Figure 10.46 and Figure 10.47).

€ The loop Marker MAY be used in combination with the Compensation Marker.

Figure 10.46 — A Task object with a Standard Loop Marker

[+10)
Figure 10.47 — A Sub-Process object with a Standard Loop Marker
The StandardLoopCharacteristics element inherits the attributes and model associations of BaseElement (see

Figure 8.5), through its relationship to LoopCharacteristics. Table 10.28 presents the additional attributes and
model associations for the StandardLoopCharacteristics element.

Business Process Model and Notation (BPMN), v2.0.2 189

Table 10.28 — StandardLoopCharacteristics attributes and model associations

Attribute Name Description/Usage

testBefore: boolean = false Flag that controls whether the loop condition is evaluated at the beginning
(testBefore = true) or at the end (testBefore = false) of the loop
iteration.

loopMaximum: integer [0..1] Serves as a cap on the number of iterations.

loopCondition: Expression [0..1] A boolean Expression that controls the loop. The Activity will only loop
as long as this condition is true. The looping behavior MAY be
underspecified, meaning that the modeler can simply document the
condition, in which case the loop cannot be formally executed.

Multi-Instance Characteristics

The MultiInstanceLoopCharacteristics class allows for creation of a desired number of Activity instances.
The instances MAY execute in parallel or MAY be sequential. Either an Expression is used to specify or calculate the
desired number of instances or a data driven setup can be used. In that case a data input can be specified, which is able to
handle a collection of data. The number of items in the collection determines the number of Activity instances. This data
input can be produced by an input Data Association. The modeler can also configure this loop to control the tokens
produced.

€ The marker for a Task or Sub-Process that is a multi-instance MUST be a set of three vertical lines.

@ Ifthe multi-instance instances are set to be performed in parallel rather than sequential (the isSequential
attribute set to false), then the lines of the marker will be vertical (see Figure 10.48).

@ If the multi-instance instances are set to be performed in sequence rather than parallel (the isSequential
attribute set to #rue), then the marker will be horizontal (see Figure 10.49).

€@ The Multi-Instance marker MAY be used in combination with the Compensation marker.

L L

Figure 10.48 — Activity Multi-Instance marker for parallel instances

) L

Figure 10.49 — Activity Multi-Instance marker for sequential instances

190 Business Process Model and Notation (BPMN), v2.0.2

The MultiInstanceLoopCharacteristics element inherits the attributes and model associations of
BaseElement (see Table 8.5), through its relationship to LoopCharacteristics. Table 10.29 presents the
additional attributes and model associations for the MultiInstanceLoopCharacteristics element.

Table 10.29 — MultilnstanceLoopCharacteristics attributes and model associations

Attribute Name

Description/Usage

isSequential: boolean = false

This attribute is a flag that controls whether the Activity instances will
execute sequentially or in parallel.

loopCardinality: Expression [0..1]

A numeric Expression that controls the number of Activity instances
that will be created. This Expression MUST evaluate to an integer.
This MAY be underspecified, meaning that the modeler MAY simply
document the condition. In such a case the loop cannot be formally
executed.

In order to initialize a valid multi-instance, either the 1oopCardinality
Expression or the loopDataInput MUST be specified.

loopDatalnputRef:
ltemAwareElement [0..1]

This TtemAwareElement is used to determine the number of Activity
instances, one Activity instance per item in the collection of data stored
in that ITtemAwareElement element.

For Tasks it is a reference to a Data Input which is part of the Activity’s
InputOutputSpecification.

For Sub-Processes it is a reference to a collection-valued Data Object
in the context that is visible to the Sub-Processes.

In order to initialize a valid multi-instance, either the 1oopCardinality
Expression or the loopDataInput MUST be specified.

loopDataOutputRef:
ltemAwareElement [0..1]

This ItemAwareElement specifies the collection of data, which will be
produced by the multi-instance.

For Tasks it is a reference to a Data Output which is part of the
Activity’s InputOutputSpecification.

For Sub-Processes it is a reference to a collection-valued Data Object
in the context that is visible to the Sub-Processes.

inputDataltem: Datalnput [0..1]

A Data Input, representing for every Activity instance the single item of
the collection stored in the 1oopDataInput. This Data Input can be
the source of DataInputAssociation to a data input of the Activity’s
InputOutputSpecification. The type of this Data Input MUST the
scalar of the type defined for the 1oopDataInput.

outputDataltem: DataOutput [0..1]

A Data Output, representing for every Activity instance the single item
of the collection stored in the 1oopDataOutput. This Data Output can
be the target of DataOutputAssociation to a data output of the
Activity’s TnputOutputSpecification. The type of this Data
Output MUST the scalar of the type defined for the 1oopDataOutput.

Business Process Model and Notation (BPMN), v2.0.2 191

Table 10.29 — MultilnstanceLoopCharacteristics attributes and model associations

behavior: MultilnstanceBehavior = all { | The attribute behavior acts as a shortcut for specifying when events
None | One | All| Complex } SHALL be thrown from an Activity instance that is about to complete. It
can assume values of None, One, 211, and Complex, resulting in the
following behavior:
* None: the EventDefinition which is associated through the
noneEvent association will be thrown for each instance completing.

* One: the EventDefinition referenced through the oneEvent
association will be thrown upon the first instance completing.

- a11: no Event is ever thrown; a token is produced after completion of all
instances.

* Complex: the complexBehaviorDefinitions are consulted to
determine if and which Events to throw.

For the behaviors of none and one, a default SignalEventDefini-
tion will be thrown which automatically carries the current runtime
attributes of the MI Activity.

Any thrown Events can be caught by boundary Events on the Multi-
Instance Activity.

complexBehaviorDefinition: Controls when and which Events are thrown in case behavior is set to
ComplexBehaviorDefinition [0..*] complex

cooTpIetionCondition: Expression This attribute defines a boolean Expression that when evaluated to
[0-1] true, cancels the remaining Activity instances and produces a token.
oneBehaviorEventRef: The EventDefinition which is thrown when behavior is set to one

EventDefinition [0..1] and the first internal Activity instance has completed.

noneBehaviorEventRef: The EventDefinition which is thrown when the behavior is set to
EventDefinition [0..1] . TR
none and an internal Activity instance has completed.

Table 10.30 lists all instance attributes available at runtime. For each instance of the Multi-Instance Activity (outer
instance), there exists a number of generated (inner) instances of the Activity at runtime.

192 Business Process Model and Notation (BPMN), v2.0.2

Table 10.30 — Multi-instance Activity instance attributes

Attribute Name

Description/Usage

loopCounter: integer

This attribute is provided for each generated (inner) instance of the
Activity. It contains the sequence number of the generated
instance, i.e., if this value of some instance in n, the instance is the
n-th instance that was generated.

numberOfinstances: integer

This attribute is provided for the outer instance of the Multi-Instance
Activity only. This attribute contains the total number of inner
instances created for the Multi-Instance Activity.

numberOfActivelnstances: integer

This attribute is provided for the outer instance of the Multi-Instance
Activity only. This attribute contains the number of

currently active inner instances for the Multi-Instance Activity. In
case of a sequential Multi-Instance Activity, this value can’t be
greater than 1. For parallel Multi-Instance Activities, this value

can’t be greater than the value contained in numberOfInstances.

numberOfCompletedinstances:
integer

This attribute is provided for the outer instance of the Multi-Instance
Activity only. This attribute contains the number of already com-
pleted inner instances for the Multi-Instance Activity.

numberOfTerminatedinstances:
integer

This attribute is provided for the outer instance of the
Multi-Instance Activity only. This attribute contains the number of
terminated inner instances for the Multi-Instance Activity. The sum
of numberOfTerminatedInstances,
numberOfCompletedInstances, and
numberOfActiveInstances always sums up to

numberOfInstances.

Complex Behavior Definition

This element controls when and which Events are thrown in case behavior of the Multi-lnstance Activity is set to

complex.

The ComplexBehaviorDefinition element inherits the attributes and model associations of BaseElement (see
Table 8.5). Table 10.31 presents the additional attributes and model associations for the
ComplexBehaviorDefinition element.

Business Process Model and Notation (BPMN), v2.0.2

193

Table 10.31 — ComplexBehaviorDefinition attributes and model associations

Attribute Name Description/Usage

condition: Formal Expression This attribute defines a boolean Expression that when evaluated to true,
cancels the remaining Activity instances and produces a token.

event: ImplicitThrowEvent If the condition is true, this identifies the Event that will be thrown (to be
caught by a boundary Event on the Multi-Instance Activity).

10.3.9 XML Schema for Activities

Table 10.32 — Activity XML schema

<xsd:element name="activity" type="tActivity"/>
<xsd:complexType name="tActivity" abstract="true">
<xsd:complexContent>
<xsd:extension base="tFlowNode">
<xsd:sequence>

<xsd:element ref="ioSpecification" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="property" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="datalnputAssociation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="dataOutputAssociation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="resourceRole" minOccurs="0" maxOccurs="unbounded"/>

<xsd:element ref="loopCharacteristics" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="isForCompensation" type="xsd:boolean" default="false"/>
<xsd:attribute name="startQuantity" type="xsd:integer" default="1"/>
<xsd:attribute name="completetionQuantity" type="xsd:integer" default="1"/>
<xsd:attribute name="default" type="xsd:IDREF" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

194 Business Process Model and Notation (BPMN), v2.0.2

Table 10.33 — AdHocSubProcess XML schema

<xsd:element name="adHocSubProcess" type="tAdHocSubProcess" substitutionGroup="flowElement"/>
<xsd:complexType name="tAdHocSubProcess">
<xsd:complexContent>
<xsd:extension base="tSubProcess">
<xsd:sequence>
<xsd:element name="completionCondition" type="tExpression" minOccurs="0"
maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="cancelRemaininglnstances" type="xsd:boolean" default="true"/>
<xsd:attribute name="ordering" type="tAdHocOrdering" default="Parallel"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="tAdHocOrdering">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="Parallel"/>
<xsd:enumeration value="Sequential"/>
</xsd:restriction>
</xsd:simpleType>

Table 10.34 — BusinessRuleTask XML schema

<xsd:element name="businessRuleTask" type="tBusinessRuleTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tBusinessRuleTask">
<xsd:complexContent>
<xsd:extension base="tTask">
<xsd:attribute name="implementation" type="tImplementation" default="##unspecified"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Business Process Model and Notation (BPMN), v2.0.2 195

Table 10.35 — CallableElement XML schema

<xsd:element name="callableElement" type="tCallableElement"/>
<xsd:complexType name="tCallableElement">
<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:sequence>
<xsd:element name="supportedinterfaceRef" type="xsd:QName" minOccurs="0" maxO-
ccurs="unbounded"/>
<xsd:element ref="ioSpecification" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="ioBinding" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.36 — CallActivity XML schema

<xsd:element name="callActivity" type="tCallActivity" substitutionGroup="flowElement"/>
<xsd:complexType name="tCallActivity">
<xsd:complexContent>
<xsd:extension base="tActivity">
<xsd:attribute name="calledElement" type="xsd:QName" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.37 — GlobalBusinessRuleTask XML schema

<xsd:element name="globalBusinessRuleTask" type="tGlobalBusinessRuleTask" substitu-
tionGroup="rootElement"/>

<xsd:complexType name="tGlobalBusinessRuleTask">

<xsd:complexContent>
<xsd:extension base="tGlobalTask">

<xsd:attribute name="implementation" type="tImplementation" default="##unspecified"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

196 Business Process Model and Notation (BPMN), v2.0.2

Table 10.38 — GlobalScriptTask XML schema

<xsd:element name="globalScriptTask" type="tGlobalScriptTask" substitutionGroup="rootElement"/>
<xsd:complexType name="tGlobalScriptTask">
<xsd:complexContent>
<xsd:extension base="tGlobalTask">
<xsd:sequence>
<xsd:element ref="script" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="scriptLanguage" type="xsd:anyURI"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.39 — GlobalTask XML schema

<xsd:element name="globalTask" type="tGlobalTask" substitutionGroup="rootElement"/>
<xsd:complexType name="tGlobalScriptTask">
<xsd:complexContent>
<xsd:extension base="tCallableElement">
<xsd:sequence>
<xsd:element ref="resourceRole" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.40 — LoopCharacteristics XML schema

<xsd:element name="loopCharacteristics" type="tLoopCharacteristics"/>
<xsd:complexType name="tLoopCharacteristics" abstract="true">
<xsd:complexContent>
<xsd:extension base="tBaseElement"/>
</xsd:complexContent>
</xsd:complexType>

Business Process Model and Notation (BPMN), v2.0.2 197

Table 10.41 — MultilnstanceLoopCharacteristics XML schema

<xsd:element name="multiinstanceLoopCharacteristics" type="tMultiinstanceLoopCharacteristics"
substitutionGroup="loopCharacteristics"/>
<xsd:complexType name="tMultiinstanceLoopCharacteristics">
<xsd:complexContent>
<xsd:extension base="tLoopCharacteristics">
<xsd:sequence>
<xsd:element name="loopCardinality" type="tExpression" minOccurs="0"
maxOccurs="1"/>
<xsd:element name="loopDatalnputRef" type="xsd:QName" minOccurs="0"
maxOccurs="1"/>
<xsd:element name="loopDataOutputRef" type="xsd:QName" minOccurs="0"
maxOccurs="1"/>
<xsd:element name="inputDataltem" type="tDatalnput" minOccurs="0" maxOccurs="1"/>
<xsd:element name="outputDataltem" type="tDataOutput" minOccurs="0"
maxOccurs="1"/>
<xsd:element ref="complexBehaviorDefinition" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="completionCondition" type="tExpression" minOccurs="0"
maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="isSequential" type="xsd:boolean" default="false"/>
<xsd:attribute name="behavior" type="tMultiinstanceFlowCondition" default="All"/>
<xsd:attribute name="oneBehaviorEventRef" type="xsd:QName" use="optional"/>
<xsd:attribute name="noneBehaviorEventRef" type="xsd:QName" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="tMultiinstanceFlowCondition">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="None"/>
<xsd:enumeration value="One"/>
<xsd:enumeration value="All"/>
<xsd:enumeration value="Complex"/>
</xsd:restriction>
</xsd:simpleType>

198 Business Process Model and Notation (BPMN), v2.0.2

Table 10.42 — ReceiveTask XML schema

<xsd:element name="receiveTask" type="tReceiveTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tReceiveTask">
<xsd:complexContent>
<xsd:extension base="tTask">
<xsd:attribute name="implementation" type="tImplementation" default="##WebService"/>
<xsd:attribute name="instantiate" type="xsd:boolean" default="false"/>
<xsd:attribute name="messageRef" type="xsd:QName" use="optional"/>
<xsd:attribute name="operationRef" type="xsd:QName" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.43 — ResourceRole XML schema

<xsd:element name="resourceRole" type="tResourceRole"/>

<xsd:complexType name="tResourceRole">
<xsd:complexContent>

<xsd:extension base="tBaseElement">
<xsd:choice>
<xsd:sequence>
<xsd:element name="resourceRef" type="xsd:QName" minOccurs="0"
maxOccurs="1"/>
<xsd:element ref="resourceParameterBinding" minOccurs="0"
maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:element ref="resourceAssignmentExpression" minOccurs="0" maxOccurs="1"/>
</xsd:choice>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Business Process Model and Notation (BPMN), v2.0.2 199

Table 10.44 — ScriptTask XML schema

<xsd:element name="scriptTask" type="tScriptTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tScriptTask">
<xsd:complexContent>
<xsd:extension base="tTask">
<xsd:sequence>
<xsd:element ref="script" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="scriptFormat" type="xsd:anyURI"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="script" type="tScript"/>
<xsd:complexType name="tScript" mixed="true">
<xsd:sequence>
<xsd:any namespace="##any" processContents="lax" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

Table 10.45 — SendTask XML schema

<xsd:element name="sendTask" type="tSendTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tSendTask">
<xsd:complexContent>
<xsd:extension base="tTask">
<xsd:attribute name="implementation" type="tImplementation" default="##WebService"/>
<xsd:attribute name="messageRef" type="xsd:QName" use="optional"/>
<xsd:attribute name="operationRef" type="xsd:QName" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.46 — ServiceTask XML schema

<xsd:element name="serviceTask" type="tServiceTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tServiceTask">
<xsd:complexContent>
<xsd:extension base="tTask">
<xsd:attribute name="implementation" type="tImplementation" default="##WebService"/>
<xsd:attribute name="operationRef" type="xsd:QName" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

200 Business Process Model and Notation (BPMN), v2.0.2

Table 10.47- StandardLoopCharacteristics XML schema

<xsd:element name="standardLoopCharacteristics" type="tStandardLoopCharacteristics"/>
<xsd:complexType name="tStandardLoopCharacteristics">
<xsd:complexContent>
<xsd:extension base="tLoopCharacteristics">
<xsd:sequence>
<xsd:element name="loopCondition" type="tExpression" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="testBefore" type="xsd:boolean" default="false"/>
<xsd:attribute name="loopMaximum" type="xsd:integer" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.48 — SubProcess XML schema

<xsd:element name="subProcess" type="tSubProcess" substitutionGroup="flowElement"/>
<xsd:complexType name="tSubProcess">
<xsd:complexContent>
<xsd:extension base="tActivity">
<xsd:sequence>
<xsd:element ref="laneSet" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="flowElement" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="artifact" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="triggeredByEvent" type="xsd:boolean" default="false"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.49 — Task XML schema

<xsd:element name="task" type="tTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tTask">
<xsd:complexContent>
<xsd:extension base="tActivity"/>
</xsd:complexContent>
</xsd:complexType>

Business Process Model and Notation (BPMN), v2.0.2

201

Table 10.50 — Transaction XML schema

<xsd:element name="transaction" type="tTransaction" substitutionGroup="flowElement"/>
<xsd:complexType name="tTransaction">
<xsd:complexContent>
<xsd:extension base="tSubProcess">
<xsd:attribute name="method" type="tTransactionMethod" default="Compensate"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="tTransactionMethod">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="Compensate"/>
<xsd:enumeration value="Image"/>
<xsd:enumeration value="Store"/>
</xsd:restriction>
</xsd:simpleType>

10.4 Items and Data

A traditional requirement of Process modeling is to be able to model the items (physical or information items) that are
created, manipulated, and used during the execution of a Process. An important aspect of this is the ability to capture
the structure of that data and to query or manipulate that structure.

BPMN does not itself provide a built-in model for describing structure of data or an Expression language for querying
that data. Instead it formalizes hooks that allow for externally defined data structures and Expression languages. In
addition, BPMN allows for the co-existence of multiple data structure and Expression languages within the same
model. The compatibility and verification of these languages is outside the scope of this International Standard and
becomes the responsibility of the tool vendor.

BPMN designates XML Schema and XPath as its default data structure and Expression languages respectively, but
vendors are free to substitute their own languages.

10.4.1 Data Modeling

A traditional requirement of Process modeling is to be able to model the items (physical or information items) that are
created, manipulated, and used during the execution of a Process.

This requirement is realized in BPMN through various constructs: Data Objects, ltemDefinition, Properties, Data
Inputs, Data Outputs, Messages, Input Sets, Output Sets, and Data Associations.

Item-Aware Elements

Several elements in BPMN are subject to store or convey items during process execution. These elements are referenced
generally as “item-aware elements.” This is similar to the variable construct common to many languages. As with
variables, these elements have an TtemDefinition.

202 Business Process Model and Notation (BPMN), v2.0.2

The data structure these elements hold is specified using an associated ITtemDefinition. An ItemAwareElement
MAY be underspecified, meaning that the st ructure attribute of its TtemDefinition is optional if the modeler does
not wish to define the structure of the associated data.

The elements in the specification defined as item-aware elements are: Data Objects, Data Object References, Data
Stores, Properties, Datalnputs and DataOutputs.

Q ItemDefinition «enumeration:»
(From Common) ItemKind
Eg itemkind : Ttemkind (From Cammon)
g structureRef : Element = Physical
g isCollection : Boolean = Inforrmation

0.1 |+ itemSubjectRef

=] BaseElement | DataState
(from Foundation) (From Daka)
|_q3id : String [Eg name : 5tring

+ dataState g, .1

1
| ItemAwareElement
(from Data)
= Property] Datalnput = Dataoutput | DataStore =] DataStoreReference
(From Data) (from Data) (from Data) (from Data) (from Data)
[Eg name : 5tring [Eg name : 5tring [Eg name : String [Eg name : 5tring
[Eg isCollection ; Boolean g isCollection ; Boolean [Eg capacity © Integer
g islinlimited : Boolean
. . s 0.1 "+ dataStoreRef *
| pataObject 1] DataObjectReference
(From Data) (From Data)

3 isCallection : Boclean T dataObjectRef

Figure 10.50 — ItemAware class diagram

The TtemAwareElement element inherits the attributes and model associations of BaseElement (see Table 8.5).
Table 10.51 presents the additional model associations of the TtemAwareElement element.

Table 10.51 — ItemAwareElement model associations

Attribute Name Description/Usage

itemSubjectRef. ltemDefinition [0..1] | gpecification of the items that are stored or conveyed by the
ItemAwareElement.

dataState: DataState [0..1] A reference to the DataState, which defines certain states for the data
contained in the Item.

Business Process Model and Notation (BPMN), v2.0.2 203

Data Objects

The primary construct for modeling data within the Process flow is the DataObject element. A DataObject has a
well-defined lifecycle, with resulting access constraints.

DataObject

The Data Object class is an item-aware element. Data Object elements MUST be contained within Process or Sub-
Process clements. Data Object clements are visually displayed on a Process diagram. Data Object References are
a way to reuse Data Objects in the same diagram. They can specify different states of the same Data Object at
different points in a Process. Data Object Reference cannot specify item definitions, and Data Objects cannot
specify states. The names of Data Object References are derived by concatenating the name of the referenced Data
Data Object the state of the Data Object Reference in square brackets as follows: <Data Object Name> [<Data
Object Reference State> |.

=| BaseElement | Documentation
(from Foundation) _ (From Foundation)
E5id : Sting + documentation 5 text ¢ String
1 * g textFormat @ String
| itemDefinition «enumeration»
| AlowElement (From Comman) =] ItemKind
(from Common) 55 iternkind : TtemKind (From Common)
[Eg name : 5tring £ structureRef : Element = Physical
£g isCollection : Boolean = Information

+ itemSubjectRef | 0..1

=] DataObject
(from Data) *
[isCollection : Boolean
) = ItelmlﬂuwareEIement + datastate = [.)atastate
(From Data) (From Data)
1 0.1 [Eg name : 5tring
1 * | DataObjectReference

(from Data)
+ dataObjectRef

Figure 10.51 — DataObject class diagram

The DataObject clement inherits the attributes and model associations of FlowElement (see Table 8.44) and
TtemAwareElement (Table 10.52). Table 10.54 presents the additional attributes of the DataObject element.

204 Business Process Model and Notation (BPMN), v2.0.2

Table 10.52 — DataObject attributes

Attribute Name Description/Usage

isCollection: boolean = false Defines if the Data Object represents a collection of elements. It is needed
when no itemDefinition is referenced. If an itemDefinition is
referenced, then this attribute MUST have the same value as the
isCollection attribute of the referenced itemDefinition. The default
value for this attribute is false.

The Data Object Reference clement inherits the attributes and model associations of TtemAwareElement (Table
10.52) and FlowElement (see Table 8.44). Table 10.53 presents the additional attributes of the Data Object
Reference clement.

Table 10.53 — DataObjectReference attributes and model associations

Attribute Name Description/Usage
dataObjectRef: DataObject The Data Object referenced by the Data Object Reference.
States

Data Object clements can optionally reference a DataState element, which is the state of the data contained in the
Data Object (sec an example of DataStates used for Data Objects in Figure 7.8). The definition of these states, e.g.,
possible values and any specific semantic are out of scope of this International Standard. Therefore, BPMN adopters can
use the State element and the BPMN extensibility capabilities to define their states.

The DataState element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 10.54
presents the additional attributes and model associations of the DataObject element.

Table 10.54 — DataState attributes and model associations

Attribute Name Description/Usage

name: string Defines the name of the DataState.

Data Objects representing a Collection of Data

A DataObject clement that references an TtemDefinition marked as collection has to be visualized differently,
compared to single instance data structures. The notation looks as follows:

Single instance (see Figure 10.52)

Business Process Model and Notation (BPMN), v2.0.2 205

Figure 10.52 — A DataObject

Collection (see Figure 10.53)

Figure 10.53 — A DataObject that is a collection

Visual representations of Data Objects

Data Object can appear multiple times in a Process diagram. Each of these appearances references the same Data
Object instance. Multiple occurrences of a Data Object in a diagram are allowed to simplify diagram connections.

Lifecycle and Accessibility

The lifecycle of a Data Object is tied to the lifecycle of its parent Process or Sub-Process. When a Process or
Sub-Process is instantiated, all Data Objects contained within it are also instantiated. When a Process or Sub-
Process instance is disposed, all Data Object instances contained within it are also disposed. At this point the data
within these instances are no longer available.

The accessibility of a Data Object is driven by its lifecycle. The data within a Data Object can only be accessed when
there is guaranteed to be a live Data Object instance present. As a result, a Data Object can only be accessed by its
immediate parent (Process or Sub-Process), or by its sibling Flow Elements and their children, including Data
Object References referencing the Data Object.

For example - Consider the follow structure:

Process A
Data object 1
Task A
Sub-process A
Data object 2
Task B
Sub-process B
Data object 3
Sub-process C
Data object 4
Task C
Task D

206 Business Process Model and Notation (BPMN), v2.0.2

“Data object 1” can be accessed by “Process A,” “Task A,” “Sub-Process A,” “Task B,” “Sub-Process B,” “Sub-Process
C,” “Task C,” and “Task D.”

“Data object 2” can be accessed by: “Sub-Process A” and “Task B.”
“Data object 3” can be accessed by: “Sub-Process B,” “Sub-Process C,” “Task C,” and “Task D.”

“Data object 4” can be accessed by: “Sub-Process C” and “Task C.”

Data Stores

A DataStore provides a mechanism for Activities to retrieve or update stored information that will persist beyond the
scope of the Process. The same DataStore can be visualized, through a Data Store Reference, in one or more
places in the Process.

The Data Store Reference is an ITtemAwareElement and can thus be used as the source or target for a Data
Association. When data flows into or out of a Data Store Reference, it is effectively flowing into or out of the
DataStore that is being referenced.

The notation looks as follows (see Figure 10.54):

=

Data
Store

Figure 10.54 — A Data Store

HaseElenmend Docementation
(Trem Fouradation) & dacumentation [from Foundation)
g B & Dt 1 String

f - & trutFormat @ String

FlawFlement e
(Fram Commen) = 1'-“_‘5““"‘:'
& Name T SETng {From Commen)
= Pl
= Informaton
1 Mwimnfom arel lenaenk | ThemDwlinition
| DataStoreR eferenon {Freen Daka) [Froem £ y
= + IlernSubjectiel o Lo,
[from Data) & ibernbired ; Termbind
- 0.1 g shuckuraiaf @ Glamant
& iCalaction | Baclean
Datastore
+ dataStorefal [Froam Caka)
- Footllermert
.l i nama : Sting {lrem Foursdaten)

s Capacity - Intoger
L ELinkmited : Boclean

Figure 10.55 — DataStore class diagram

Business Process Model and Notation (BPMN), v2.0.2 207

The DataStore element inherits the attributes and model associations of FlowElement (see Table 8.44) through its
relationship to RootElement, and TtemAwareElement (see Table 10.51). Table 10.55 presents the additional
attributes of the DataStore element.

Table 10.55 — Data Store attributes

Attribute Name Description/Usage
name: string A descriptive name for the element.
capacity: integer [0..1] Defines the capacity of the Data Store. This is not needed if the

isUnlimited attribute is set to true.

isUnlimited: boolean = false If isunlimited is set to true, then the capacity of a Data Store is set as
unlimited and will override any value of the capacity attribute.

The Data Store Reference clement inherits the attributes and model associations of FlowElement (see Table 8.44)
and ITtemAwareElement (see Table 10.51). Table 10.56 presents the additional model associations of the Data Store
Reference clement.

Table 10.56 — Data Store attributes

Attribute Name Description/Usage
dataStoreRef: DataStore Provides the reference to a global Datastore.
Properties

Properties, like Data Objects, are item-aware elements. But, unlike Data Objects, they are not visually displayed on a
Process diagram. Certain flow elements MAY contain properties, in particular only Processes, Activities, and
Events MAY contain Properties.

The Property class is a DataElement element that acts as a container for data associated with flow elements.
Property elements MUST be contained within a FlowElement. Property elements are not visually displayed on a
Process diagram.

208 Business Process Model and Notation (BPMN), v2.0.2

] itemAwareElement] 1temDefinition

(From Data) . y (From Common)
+ itemSubjectRef
! [Eg iternkind © Ttemkind
- 0..1 | EgstructureRef : Element

g isCollection : Boolean

«enumeration:»

[E] ItemKind

g pr(.)cess Q .Prnperty (From Common)

. (From PII ocless) + properties . (Fr ?m Data) = Physical

g processType : ProcessType [Eg name : 5tring = Informatian

g isClosed : Boolean .1 "
g isExecutable : Boolean

] Activity
(From Activities) + properties
[Eg, isForCompensation Boaolean
[Eg startQuantity : Integer 0.1 *

@completionQuantity : Integer

= Event + properties
(From Events)
0.1 *

Figure 10.56 — Property class diagram

The Property element inherits the attributes and model associations of TtemAwareElement (Table 10.51). Table
10.54 presents the additional attributes of the Property element.

Table 10.57 — Property attributes

Attribute Name Description/Usage

name: string Defines the name of the Property.

Lifecycle and Accessibility

The lifecycle of a Property is tied to the lifecycle of its parent Flow Element. When a Flow Element is
instantiated, all Properties contained by it are also instantiated. When a Flow Element instance is disposed, all
Property instances contained by it are also disposed. At this point the data within these instances are no longer
available.

The accessibility of a Property is driven by its lifecycle. The data within a Property can only be accessed when there is
guaranteed to be a live Property instance present. As a result, a Property can only be accessed by its parent Process,
Sub-Process, or Flow Element. In case the parent is a Process or Sub-Process, then a property can be accessed by
the immediate children (including children elements) of that Process or Sub-Process. For example, consider the
following structure:

Process A
Task A
Sub-Process A
Task B
Sub-Process B
Sub-Process C

Business Process Model and Notation (BPMN), v2.0.2 209

Task C
Task D

The Properties of “Process A” are accessible by: “Process A,” “Task A,” “Sub-Process A,” “Task B,” “Sub-Process
B,” “Sub-Process C,” “Task C,” and “Task D.”

The Properties of “Sub-Process A” are accessible by: “Sub-Process A” and “Task B.”

The Properties of “Task C” are accessible by: “Task C.”

Data Inputs and Outputs

Activities and Processes often need data in order to execute. In addition they can produce data during or as a result of
execution. Data requirements are captured as Data Inputs and InputSets. Data that is produced is captured using
Data Outputs and OutputSets. These elements are aggregated in a TnputOutputSpecification class.

Certain Activities and CallableElements contain a InputOutputSpecification element to describe their
data requirements. Execution semantics are defined for the InputOutputSpecification and they apply the same
way to all elements that extend it. Not every Activity type defines inputs and outputs, only Tasks,
CallableElements (Global Tasks and Processes) MAY define their data requirements. Embedded Sub-
Processes MUST NOT define Data Inputs and Data Outputs directly, however they MAY define them indirectly via
MultiInstanceLoopCharacteristics.

210 Business Process Model and Notation (BPMN), v2.0.2

+ documentation

] Documentation
(From Foundation)
[Eg text @ String
[Eg textFormat @ String
Ll

1
& BaseElement
(From Foundation)
g id : String
1.* + datalnputRefs + dataOutputRefs
E Inputset] patalnput] pataOutput . 1.*| [outputSet
(from Data) + finputSetRefs * (from Data) (from Data) + foutputSetRefs (from Data)

[Eg name : String
* + optionallnputRefs

-

+| finputSetWithOptional

* + whileExecutingInputRefs

inoutSets |1 «+ [inputSetwithwhileExecuting
+ inputSets | 1.

+ inSpecification /9.1

0.1
= Activity
(From Activities)
[Eg isForCompensation : Boolean
g startQuantity © Integer
==Y completionQuantity : Integer

0.1 0.1

+ datalnputAssociations

] DataInputAssociation

(From Data) (From Data)

[Eg name : String
g isCollection : Boolean

+ datalnputs | *

] itemAwareElement

(From Data)
1
Q InputOutputSpecification
(From Data)

+ dataQutputAssociations
=] DataOutputAssociation

Figure 10.57 — InputOutputSpecification class diagram

The InputOutputSpecification element inherits the attributes and model associations of BaseElement (see

[Eg name : String
g isCollection : Boolean

+ optionalOutputRefs
+ JoutputsetwithOptional

+ whileExecutingOutputRefs*

M

+ foutputSetWithwhileExecuting

+ dataOutputs

1..*+ outputSets

+ inSpecification’|0..1

0.1
] callableElement
(From Common)
[Eg name : String

Table 8.5). Figure 10.54 presents the additional attributes and model associations of the

InputOutputSpecification element.

Business Process Model and Notation (BPMN), v2.0.2

Table 10.58 — InputOutputSpecification Attributes and Model Associations

Attribute Name Description/Usage

inputSets: InputSet [1.."] A reference to the InputSets defined by the
InputOutputSpecification. Every
InputOutputSpecification MUST define at least one InputsSet.

outputSets: OutputSet [1.."] A reference to the OutputSets defined by the
InputOutputSpecification. EveryData Interface MUST define
at least one OutputsSet.

datalnputs: Datalnput [0.."] An optional reference to the Data Inputs of the
InputOutputSpecification. Ifthe InputOutputSpecification
defines no Data Input, it means no data is REQUIRED to start the
Activity. This is an ordered set.

dataOutputs: DataOutput [0.."] An optional reference to the Data Outputs of the
InputOutputSpecification. If the InputOutputSpecification
defines no Data Output, it means no data is REQUIRED to finish the
Activity. This is an ordered set.

Data Input

A Data Input is a declaration that a particular kind of data will be used as input of the
InputOutputSpecification. There may be multiple Data Inputs associated with an
InputOutputSpecification.

The Data Input is an item-aware element. Data Inputs are visually displayed on a Process diagram to show the inputs
to the top-level Process or to show the inputs of a called Process (i.c., one that is referenced by a Call Activity, where
the Call Activity has been expanded to show the called Process within the context of a calling Process).

€ Visualized Data Inputs have the same notation as Data Objects, except that they MUST contain a small,
unfilled block arrow (see Figure 10.58).

€ Data Inputs MAY have incoming Data Associations:

€ Ifthe Data Input is directly contained by the top-level Process, it MUST not be the target of Data
Associations within the underlying model. Only Data Inputs that are contained by Activities or
Events MAY be the target of Data Associations in the model.

€@ Ifthe Process is being called from a Call Activity, the Data Associations that target the Data
Inputs of the Call Activity in the underlying model MAY be visualized such that they connect to the
corresponding Data Inputs of the called Process, visually crossing the Call Activity boundary. But note
that this is visualization only. In the underlying model, the Data Associations target the Data Inputs of
the Call Activity and not the Data Inputs of the called Process.

212 Business Process Model and Notation (BPMN), v2.0.2

=)

Figure 10.58 — A Datalnput

The “optional” attribute defines if a Datalnput is valid even if the state is “unavailable.” The default value is false. If

the value of this attribute is zrue, then the execution of the Activity will not begin until a value is assigned to the
Datalnput element, through the corresponding Data Associations.

States

Datalnput elements can optionally reference a DataState element, which is the state of the data contained in the
Datalnput. The definition of these states, e.g., possible values, and any specific semantics are out of scope of this
International Standard. Therefore, BPMN adopters can use the DataState element and the BPMN extensibility
capabilities to define their states.

| DataState 0.1 1 = ItemAwareElement
(From Data) (From Data)

Egname : StiNg |, datastate

+ itemSubjectRef | 0..1

] Datalnput] ItemDefinition
(From Data) (Ffrom Common)
58 name : Stiing [Eg itemkind : Ttemkind
[Eg isCollection ; Boolean [Eg structureRef : Element
[Eg isCollection : Boolean
+ datalnputRefs = « * 4+ whieExecutingInputRefs * + pptionallnputRefs
“«enumerations
[ItemKind
(From Common)
+ finputSetRefs | = * |+ finputSetWithwhileExecuting*+ finputSetwithOptional =1 Physical
=1 Information
| InputSet
(from Data)

g name ; 5tring
Figure 10.59 — Data Input class diagram
The Datalnput clement inherits the attributes and model associations of BaseElement (see Table 8.5) and

ItemAwareElement (Table 10.52). Table 10.59 presents the additional attributes and model associations of the
Datalnput clement.

Business Process Model and Notation (BPMN), v2.0.2

213

Table 10.59 — Datalnput attributes and model associations

Attribute Name

Description/Usage

name: string [0..1]

A descriptive name for the element.

inputSetRefs: InputSet [1..%]

A DataInput is used in one or more InputSets. This attribute is
derived from the InputsSets.

inputSetwithOptional: InputSet [0..]

Each InputsSet that uses this DataInput can determine if the Activity
can start executing with this DataInput state in “unavailable.” This attri-
bute lists those ITnputsSets.

inputSetWithWhileExecuting:
Inputset [0..*]

Each InputsSet that uses this DataInput can determine if the Activity
can evaluate this DataInput while executing. This attribute lists those
InputSets.

isCollection: boolean = false

Defines if the Datalnput represents a collection of elements. It is needed
when no itemDefinition is referenced. If an itemDefinition is
referenced, then this attribute MUST have the same value as the
isCollection attribute of the referenced itemDefinition. The
default value for this attribute is false.

Data Output

A Data Output is a declaration that a particular kind of data can be produced as output of the
InputOutputSpecification. There MAY be multiple Data Outputs associated with a

InputOutputSpecification.

The Data Output is an item-aware element. Data Output are visually displayed on a top-level Process diagram to
show the outputs of the Process (i.e., one that is referenced by a Call Activity, where the Call Activity has been
expanded to show the called Process within the context of a calling Process).

214

€ Visualized Data Outputs have the same notation as Data Objects, except that they MUST contain a small,

filled block arrow (see Figure 10.60).

*

€ Data Outputs MAY have outgoing DataAssociations.

If the Data Output is directly contained by the top-level Process, it MUST not be the source of Data
Associations within the underlying model. Only Data Outputs that are contained by Activities or
Events MAY be the target of Data Associations in the model.

If the Process is being called from a Call Activity, the Data Associations that target the Data
Outputs of the Call Activity in the underlying model MAY be visualized such that they connect to the
corresponding Data Outputs of the called Process, visually crossing the Call Activity boundary. But
note that this is visualization only. In the underlying model, the Data Associations originate the Data
Outputs of the Call Activity and not the Data Outputs of the called Process.

Business Process Model and Notation (BPMN), v2.0.2

=

Figure 10.60 — A Data Output

States

DataOutput elements can optionally reference a DataState element, which is the state of the data contained in the

DataOutput. The definition of these states, e.g., possible values, and any specific semantics are out of scope of this

International Standard. Therefore, BPMN adopters can use the DataState element and the BPMN extensibility
capabilities to define their states.

] Datastate 0.1 1 H itemAwareElement
(from Data) (From Data)
[Egname : String | + dataState "
+ itemSubjectRef | 0..1
£ DataDutput | temDefinition
(From Data) (From Common)

[Eg itemkind : Ttemkind
g structureRef : Element
g isCollection : Boolean

[Eg name : String
g isCollection : Boolean

® ®

+ dataOutputRefs « + optionalOutputRefs + whileExecutingOutputRefs

«“enumeration»
=] ItemKind
(From Common)
= Physical
= Information

-

+ foutputSetRefs 1.™ + foutputSetWithOptional * + JoutputSetwithWhieExeruting

| outputSet
(From Data)
[E¢ hame : 5tring

Figure 10.61 — Data Output class diagram
The DataOutput element inherits the attributes and model associations of BaseElement (see Table 8.5) and

ItemAwareElement (Table 10.52). Table 10.60 presents the additional attributes and model associations of the
DataInput element.

Business Process Model and Notation (BPMN), v2.0.2

215

Table 10.60 — DataOutput attributes and associations

Attribute Name Description/Usage
name: string [0..1] A descriptive name for the element.
outputSetRefs: OutputSet [1.."] A DataOutput is used in one or more OutputSets. This attribute is

derived from the OutputsSets.

%“t*P“tsetW“hOPtima': OutputSet Each outputSet that uses this Dataoutput can determine if the
[0-71 Activity can complete executing without producing this DataInput.
This attribute lists those OutputsSets.

outputSetWithWhileExecuting: Each outputsSet that uses this DataInput can determine if the

OutputSet [0.] Activity can produce this DataOutput while executing. This attribute
lists those OutputSets.

isCollection: boolean = false Defines if the DataOutput represents a collection of elements. It is

needed when no itemDefinition is referenced. If an
itemDefinition is referenced, then this attribute MUST have the
same value as the isCollection attribute of the referenced
itemDefinition. The default value for this attribute is false.

The following describes the mapping of data inputs and outputs to the specific Activity and Event implementations.

Service Task Mapping

If the Service Task is associated with an Operation, there MUST be a Message Data Input on the Service Task
and it MUST have an itemDefinition equivalent to the one defined by the Message referred to by the
inMessageRef attribute of the operation. If the operation defines output Messages, there MUST be a single Data
Output and it MUST have an itemDefinition equivalent to the one defined by Message referred to by the
outMessageRef attribute of the Operation.

Send Task Mapping

If the Send Task is associated with a Message, there MUST be at most inputSet set and at most one Data Input on
the Send Task. If the Data Input is present, it MUST have an itemDefinition equivalent to the one defined by the
associated Message. If the Data Input is not present, the Message will not be populated with data at execution time.

Receive Task Mapping

If the Receive Task is associated with a Message, there MUST be at most outputSet set and at most one Data
Output on the Receive Task. If the Data Output is present, it MUST have an i temDefinition equivalent to the
one defined by the associated Message. If the Data Output is not present, the payload within the Message will not
flow out of the Receive Task and into the Process.

User Task Mapping

User Tasks have access to the Data Input, Data Output and the data aware elements available in the scope of the
User Task.

216 Business Process Model and Notation (BPMN), v2.0.2

Call Activity Mapping

The DataInputs and DataOutputs of the Call Activity are mapped to the corresponding elements in the
CallableElement without any explicit DataAssociation.

Script Task Mapping

Script Tasks have access to the Data Input, Data Output and the data aware elements available in the scope of the
Script Task.

Events

If any of the EventDefinitions for the Event is associated with an element that has an TtemDefinition (such as
a Message, Escalation, Error, or Signal), the following constraints apply:

« Ifthe Event is associated with multiple EventDefinitions, there MUST be one Data Input (in the case of throw
Events) or one Data Output (in the case of catch Event) for each EventDefinition. The order of the
EventDefinitions and the order of the Data Inputs/Outputs determine which Data Input/Output
corresponds with which EventDefinition.

+ Foreach EventDefinition and Data Input/Output pair, if the Data Input/Output is present, it MUST have an
ItemDefinition equivalent to the one defined by the Message, Escalation, Error, or Signal on the
associated EventDefinition. In the case of a throw Event, if the Data Input is not present, the Message,
Escalation, Error,or Signal will not be populated with data. In the case of a catch Event, if the Data Output
is not present, the payload within the Message, Escalation, Error, or Signal will not flow out of the Event
and into the Process.

InputSet

An InputSet is a collection of DataInput elements that together define a valid set of data inputs for an
InputOutputSpecification. An InputOutputSpecification MUST have at least one InputSet element.
An InputSet MAY reference zero or more DataInput elements. A single DataInput MAY be associated with
multiple InputSet elements, but it MUST always be referenced by at least one InputSet.

An “empty” InputSet, one that references no DataInput elements, signifies that the Activity requires no data to start
executing (this implies that either there are no data inputs or they are referenced by another input set).

InputSet elements are contained by InputOutputSpecification elements; the order in which these elements are
included defines the order in which they will be evaluated.

Business Process Model and Notation (BPMN), v2.0.2 217

= Inputset
(From Data)
[Eg name : String

1 W+ finputSetRefs

* | + datalnputRefs

= pataInput
(from Data)
[Eg name : String
g isCollection : Boolean

Egid : String

+ [inputSetWithOptional

+ optionallnputRefs | *

] BaseElement
(From Foundation)

| Documentation
(From Foundation)
[Eg, text 1 String

+ documentation

1 * [Eg, textFormat : String
* * E] outputSet
(From Data)

+ inputSetRefs . om
+ outputSetRefs | E& name @ String
1. . *

+ inputSets

* 4+ finputSetwithWhieExecuting

* + whileExecutingInputRefs

Q InputOutputSpecification

* 1 (from Data)

+ datalnputs

Figure 10.62 — InputSet class diagram

The InputSet element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 10.61
presents the additional attributes and model associations of the InputSet element.

Table 10.61 — InputSet attributes and model associations

Attribute Name

Description/Usage

name: string [0..1]

A descriptive name for the input set.

datalnputRefs: Datalnput [0..*]

The DataInput elements that collectively make up this data requirement.

optionallnputRefs: Datalnput
[0..%]

The DataInput elements that are a part of the InputsSet that can be in the
state of “unavailable” when the Activity starts executing. This association
MUST NOT reference a DataInput thatis not listed in the
datalInputRefs.

whileExecutinglnputRefs:
Datalnput [0..¥]

The DataInput elements that are a part of the InputSet that can be evalu-
ated while the Activity is executing. This association MUST NOT reference a
DataInput thatis notlisted in the dataInputRefs.

outputSetRefs: OutputSet [0..*]

Specifies an Input/Output rule that defines which outputset is expected to
be created by the Activity when this InputSet became valid.

This attribute is paired with the inputSetRefs attribute of OutputSets.
This combination replaces the TORules attribute for Activities in BPMN 1.2.

OutputSet

An OutputSet is a collection of DataOutputs elements that together can be produced as output from an Activity or
Event. An InputOutputSpecification element MUST define at least OutputSet element. An OutputSet
MAY reference zero or more DataOutput elements. A single DataOutput MAY be associated with multiple
OutputsSet elements, but it MUST always be referenced by at least one OutputSet.

218

Business Process Model and Notation (BPMN), v2.0.2

An “empty” OutputsSet, one that is associated with no DataOutput elements, signifies that the ACTIVITY produces

no data.

The implementation of the element where the OutputSet is defined determines the OutputSet that will be produced.
So it is up to the Activity implementation or the Event, to define which OutputSet will be produced.

=] BaseElement -
(From Foundation) Q{Pocgme:t?h?n
g id @ Strin) rom Foundation
% 9 + documentation 5 text : Sting
" g, tewtFormat @ String
H outputSet * * C InputSet
— (from Data) +outputSetRefs 4 inputSetrefs (from Data)
5§ name : String - [Eg name : String
+ outputSets
1.* + foutputSetRefs + foutputSetWithOptional | ™ *
+ foutputSetWithWhileExecuting
1
* |+ dataOutputRefs + optionalOutputRefs * * | + whileExecutingOutputRefs
| pataoutput " 1 =] InputOutputSpecification
(from Data) (from Data)
Egname : String + dataOutputs

[Eg isCollection : Boolean

Figure 10.63 — OutputSet class diagram

The OutputSet element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 10.62
presents the additional attributes and model associations of the OutputSet element.

Business Process Model and Notation (BPMN), v2.0.2 219

Table 10.62 — OutputSet attributes and

model associations

Attribute Name

Description/Usage

name: string [0..1]

A descriptive name for the input set.

dataOutputRefs: DataOutput [0..%]

The DataOutput elements that MAY collectively be outputted.

optionalOutputRefs: DataOutput [0..*]

The DataOutput elements that are a part of the OutputSet that do not
have to be produced when the Activity completes executing. This asso-
ciation MUST NOT reference a DataOutput that is not listed in the
dataOutputRefs.

whileExecutingOutputRefs:
DataOutput [0..¥]

The DataOutput elements that are a part of the OutputsSet that can
be produced while the Activity is executing. This association MUST
NOT reference a DataOutput that is not listed in the
dataOutputRefs.

inputSetRefs: InputSet [0..%]

Specifies an Input/Output rule that defines which InputsSet has to
become valid to expect the creation of this OutputsSet. This attribute is
paired with the outputSetRefs attribute of InputsSets. This combina-
tion replaces the T0Rules attribute for Activities in BPMN 1.2.

Data Associations

Data Associations are used to move data between Data Objects, Properties, and inputs and outputs of
Activities, Processes, and GlobalTasks. Tokens do not flow along a Data Association, and as a result they have
no direct effect on the flow of the Process.

The purpose of retrieving data from Data Objects or Process Data Inputs is to fill the Activities inputs and later
push the output values from the execution of the Activity back into Data Objects or Process Data Outputs.

DataAssociation

The DataAssociation class is a BaseElement contained by an Activity or Event, used to model how data is
pushed into or pulled from item-aware elements. DataAssociation elements have one or more sources and a target;
the source of the association is copied into the target.

The TtemDefinition from the souceRef and targetRef MUST have the same ITtemDefinition or the
DataAssociation MUST have a transformation Expression that transforms the source TtemDefinition into the

target TtemDefinition.

220

Business Process Model and Notation (BPMN), v2.0.2

= Basabiement DocUmen tation

{Tiam Foarsdatmm) {liem Fownlation)
& : Sting + dotumantatian oo et ; Sbing
1 - & textFormal : Stng
= | mssigrument SIRQRTMENT + hom | Exparmsion
- Datafssocialion {Trom Data) Tram Commid
{Fram Cata} .1 1
14 asmgrment = ansigrement e
0.1 1
0.1
. . + traraformaton | O.1
- ramualExprasgion
* g somarcefl 1 o LanguitBul [Freen Cammen)
| DatalnputAssodation | ltemAwareElement _.|-run._r-' + Blrireg
[From Dutal {lvem Baba) 4 body | Elemant

+ avauates ToTypeRef 1

+ (temSubjactief | IvemDefinition
[lrom Common)

&itembind | [tembind

& Jtructreitef | Element

& EColuction | Boolean

| DataDutputAssociation
{From Data) 0.1

Figure 10.64 — DataAssociation class diagram

Optionally, Data Associations can be visually represented in the diagram by using the Association connector style (see
Figure 10.65 and Figure 10.66).

.............................. >

Figure 10.65 — A Data Association

Research
Notes

Research Write Text

the Topic

Figure 10.66 — A Data Association used for an Outputs and Inputs into an Activities

The core concepts of a DataAssociation are that they have sources, a target, and an optional transformation.

When a data association is “executed,” data is copied to the target. What is copied depends if there is a transformation
defined or not.

If there is no transformation defined or referenced, then only one source MUST be defined, and the contents of this source
will be copied into the target.

Business Process Model and Notation (BPMN), v2.0.2 221

If there is a transformation defined or referenced, then this transformation Expression will be evaluated and the result
of the evaluation is copied into the target. There can be zero (0) to many sources defined in this case, but there is no
requirement that these sources are used inside the Expression.

In any case, sources are used to define if the data association can be “executed,” if any of the sources is in the state of
“unavailable,” then the data association cannot be executed, and the Activity or Event where the data association is
defined MUST wait until this condition is met.

Data Associations are always contained within another element that defines when these data associations are going to
be executed. Activities define two sets of data associations, while Events define only one.

For Events, there is only one set, but they are used differently for catch or throw Events. For a catch Event, data
associations are used to push data from the Message received into Data Objects and properties. For a throw Event,
data associations are used to fill the Message that is being thrown.

As DataAssociations are used in different stages of the Process and Activity lifecycle, the possible sources and targets
vary according to that stage. This defines the scope of possible elements that can be referenced as source and target. For
example: when an Activity starts executing, the scope of valid targets include the Activity data inputs, while at the end
of the Activity execution, the scope of valid sources include Activity data outputs.

The DataAssociation element inherits the attributes and model associations of BaseElement (see Table 8.5). Table
10.63 presents the additional model associations of the DataAssociation element.

Table 10.63 — DataAssociation model associations

Attribute Name Description/Usage

transformation: Expression [0..1] | Specifies an optional transformation Expression. The actual scope of
accessible data for that Expression is defined by the source and target of
the specific Data Association types.

assignment: Assignment [0.."] Specifies one or more data elements Assignments. By using an
Assignment, single data structure elements can be assigned from the
source structure to the target structure.

SOErCGRefi ltemAwareElement Identifies the source of the Data Association. The source MUST be an

0. ItemAwareElement.

targetRef: ltemAwareElement Identifies the target of the Data Association. The target MUST be an
ItemAwareElement.

Assignment

The Assignment class is used to specify a simple mapping of data elements using a specified Expression language.

The default Expression language for all Expressions is specified in the Definitions element, using the
expressionLanguage attribute. It can also be overridden on each individual Assignment using the same attribute.

The Assignment element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 10.64
presents the additional attributes of the Assignment element.

222 Business Process Model and Notation (BPMN), v2.0.2

Table 10.64 — Assignment attributes

Attribute Name Description/Usage

from: Expression The Expression that evaluates the source of the Assignment.

to: Expression The Expression that defines the actual Assignment operation and the target
data element.

DatalnputAssociation

The DataInputAssociation can be used to associate an TtemAwareElement element with a DataInput
contained in an Activity. The source of such a DataAssociation can be every ItemAwareElement accessible in the
current scope, e.g., a Data Object, a Property, or an Expression.

The DataInputAssociation element inherits the attributes and model associations of DataAssociation (see
Table 10.64), but does not contain any additional attributes or model associations.

DataOutputAssociation

The DataOutputAssociation can be used to associate a DataOutput contained within an ACTIVITY with any
ItemAwareElement accessible in the scope the association will be executed in. The target of such a
DataAssociation can be every TtemAwareElement accessible in the current scope, e.g., a Data Object, a
Property, or an Expression.

The DataOutputAssociation element inherits the attributes and model associations of DataAssociation (see
Table 10.64), but does not contain any additional attributes or model associations.

Data Objects associated with a Sequence Flow

Figure 10.67 repeats Figure 10.66, above, and shows how Data Associations are used to represent inputs and outputs
of Activities.

Research
Notes

Research Write Text

the Topic

Figure 10.67 — A Data Object shown as an output and an inputs

Alternatively, Data Objects MAY be directly associated with a Sequence Flow connector (see Figure 10.68) to
represent the same input/output relationships. This is a visual short cut that normalizes two Data Associations (e.g., as
seen in Figure 10.67): one from an item-aware element (e.g., an Activity) contained by the source of the Sequence
Flow, connecting to the Data Object; and the other from the Data Object connecting to a item-aware element contained
by the target of the Sequence Flow.

Business Process Model and Notation (BPMN), v2.0.2 223

Research
Notes

Research

the Topic Write Text

Figure 10.68 — A Data Object associated with a Sequence Flow
10.4.2 Execution Semantics for Data

When an element that defines an TnputOutputSpecification is ready to begin execution by means of Sequence
Flow or Event being caught, the inputs of the interface are filled with data coming from elements in the context, such as
Data Objects or Properties. The way to represent these assignments is the Data Association elements.

Each defined InputSet element will be evaluated in the order they are included in the InputOutputSpecification.
For each InputSet, the data inputs it references will be evaluated if it is valid.

All data associations that define as target the data input will be evaluated, and if any of the sources of the data association
is “unavailable,” then the InputSet is “unavailable” and the next InputSet is evaluated.

The first InputSet where all data inputs are “available” (by means of data associations) is used to start the execution of
the Activity. If no InputSet is “available,” then the execution will wait until this condition is met.

The time and frequency of when and how often this condition is evaluated is out of scope for this International Standard.
Implementations will wait for the sources of data associations to become available and then re-evaluate the InputSets.

In the case of throw and catch Events, given their nature, the execution semantics for data is different.

When a throw Event is activated, all DataInputAssociations of the event are executed, filling the Data Inputs of
the Event. Finally, DataInputs are then copied to the elements thrown by the Event (Messages, Signals, etc.).
Since there are no InputSets defined for Events, the execution will never wait.

When a catch Event is activated, Data Outputs of the event are filled with the element that triggered the Event. Then
all DataOutputAssociations of the Event are executed. There are no OutputSets defined for Events.

To allow invoking a Process from both a Call Activity and via Message Flow, the Start Event and End Event
support an additional case.

In the case of a Start Event, the Data Inputs of the enclosing process are available as targets to the
DataOutputAssociations of the Event. This way the Process Data Inputs can be filled using the elements that
triggered the Start Event.

In the case of an End Event, the Data Outputs of the enclosing process are available as sources to the
DataInputAssociations of the Event. This way the resulting elements of the End Event can use the Process
Data Outputs as sources.

224 Business Process Model and Notation (BPMN), v2.0.2

Once an InputSet becomes “available,” all Data Associations whose target is any of the Data Inputs of the
InputSet are executed. These executions fill the Activity Data Inputs and the execution of the Activity can begin.
When an Activity finishes execution, all Data Associations whose sources are any of the Data Outputs of the
OutputsSet are executed. These executions copy the values from the Data Outputs back to the container’s context
(Data Object, Properties, etc.).

Execution Semantics for DataAssociation
The execution of any Data Associations MUST follow these semantics:
+ Ifthe Data Association specifies a “transformation” Expression, this expression is evaluated and the result is copied
to the targetRef. This operation replaces completely the previous value of the targetRef element.
« For each “assignment” element specified:
+ Evaluate the Assignment’s “from” expression and obtain the *source value*.
* Evaluate the Assignment’s “to” expression and obtain the *target element*. The *target element* can be any

element in the context or a sub-element of it (e.g., a DataObject or a sub-element of it).

* Copy the *source value* to the *target element™.

+ Ifno “transformation” Expression nor any “assignment” elements are defined in the Data Association:

* Copy the Data Association “sourceRef” value into the “targetRef.” Only one sourceRef element is allowed
in this case.

10.4.3 Usage of Data in XPath Expressions

BPMN extensibility mechanism enables the usage of various languages for Expressions and queries. This sub clause
describes how XPath is used in BPMN. It introduces a mechanism to access BPMN Data Objects, BPMN Properties,
and various instance attributes from XPath Expressions. The accessibility by the Expression language is defined
based on the entities accessibility by the Activity that contains the Expression. All elements accessible from the
enclosing element of an XPath Expression MUST be made available to the XPath processor.

BPMN Data Objects and BPMN Properties are defined using ItemDefinition. The XPath binding assumes that the
ItemDefinition is either an XSD complex type or an XSD element. If XSD element is used, it MUST be manifested
as a node-set XPath variable with a single member node. If XSD complex type is used, it MUST be manifested as a node-
set XPath variable with one member node containing the anonymous document element that contains the actual value of
the BPMN Data Object or Property.

Access to BPMN Data Objects

Table 10.65 introduces an XPath function used to access BPMN Data Objects. Argument processName names
Process and is of type string. Argument dataObjectName names Data Object and is of type string. It MUST be a
literal string.

Business Process Model and Notation (BPMN), v2.0.2 225

Table 10.65 — XPath Extension Function for Data Objects

XPath Extension Function Description/Usage

Element getDataObject This extension function returns value of submitted Data Object. Argument
(processName’, ‘dataObjectName’) processName is optional. If omitted, the process enclosing the Activity
that contains the Expression is assumed. In order to access Data
Objects defined in a parent process the processName MUST be used.
Otherwise it MUST be omitted.

Because XPath 1.0 functions do not support returning faults, an empty node set is returned in the event of an error.

Access to BPMN Data Input and Data Output

Table 10.66 introduces XPath functions used to access BPMN Data Inputs and BPMN Data Outputs. Argument
dataInputName names a Data Input and is of type string. Argument dataOutput names a Data Output and is
of type string.

Table 10.66 — XPath Extension Function for Data Inputs and Data Outputs

XPath Extension Function Description/Usage
Element getDatalnput (‘datalnputName’) This extension function returns the value of the submitted Data
Input.

Element getDataOutput (‘dataOutputName') | This extension function returns the value of the submitted Data
Output.

Access to BPMN Properties
Table 10.67 introduces XPath functions used to access BPMN Properties.

Argument processName names Process and is of type string. Argument propertyName names property and is of
type string. Argument activityName names Activity and is of type string. Argument eventName names Event and
is of type string. These strings MUST be literal strings. The XPath extension functions return value of the submitted
property. Because XPath 1.0 functions do not support returning faults, an empty node set is returned in the event of an
error.

226 Business Process Model and Notation (BPMN), v2.0.2

Table 10.67 — XPath Extension Functions for Properties

XPath Extension Function Description/Usage

Element getProcessProperty This extension function returns value of submitted Process property.
(processName’, “propertyName’) Argument processName is optional. If omitted, the Process enclosing the
Activity that contains the Expression is assumed. In order to access
Properties defined in a parent Process the processName MUST be
used. Otherwise it MUST be omitted.

Element getActivityProperty This extension function returns value of submitted Activity property.
(‘activityName’, ‘propertyName’)

Element getEventProperty This extension function returns value of submitted Event property.
‘eventName’, ‘propertyName’)

For BPMN Instance Attributes
Table 10.68 introduces XPath functions used to access BPMN instance Attributes.

Argument processName names Process and is of type string. Argument attributeName names instance
attribute and is of type string. Argument activityName names Activity and is of type string. These strings
MUST be literal strings.

These functions return value of the submitted instance Activity. Because XPath 1.0 functions do not support returning
faults, an empty node set is returned in the event of an error.

Business Process Model and Notation (BPMN), v2.0.2 227

Table 10.68 — XPath extension functions for instance attributes

XPath Extension Function

Description/Usage

Element getProcessinstanceAttribute
(‘processName’,‘attributeName’)

This extension function returns value of submitted Process
instance attribute. Argument processName is optional. If omitted,
the Process enclosing the Activity that contains the
Expression is assumed. In order to access instance Attributes
of a parent Process the processName MUST be used.
Otherwise it MUST be omitted.

Element getChoreographylnstance-
Attribute (‘attributeName’)

This extension function returns value of submitted Choreography
instance attribute.

Element getActivitylnstanceAttribute
(‘activityName’, ‘attributeName’)

This extension function returns value of submitted Activity
instance attribute. User Task and loop are examples of
Activities.

10.4.4 XML Schema for Data

Table 10.69 — Assignment XML schema

<xsd:element name="assignment" type="tAssignment" />

<xsd:complexType name="tAssignment">

<xsd:complexContent>

<xsd:extension base="tBaseElement">

<xsd:sequence>

<xsd:element name="from" type="tExpression" minOccurs="1" maxOccurs="1"/>
<xsd:element name="to" type="tExpression" minOccurs="1" maxOccurs="1"/>

</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

228

Business Process Model and Notation (BPMN), v2.0.2

Table 10.70 — DataAssociation XML schema

<xsd:element name="dataAssociation" type="tDataAssociation" />
<xsd:complexType name="tDataAssociation" abstract="true">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>

<xsd:element name="sourceRef" type="xsd:IDREF" minOccurs="0" maxOccurs="unbounded"/

>

<xsd:element name="targetRef" type="xsd:IDREF" minOccurs="1" maxOccurs="1"/>
<xsd:element name="transformation" type="tFormalExpression" minOccurs="0" maxOc-

curs="1"/>

<xsd:element ref="assignment" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.71 — Datalnput XML schema

<xsd:element name="datalnput" type="tDatalnput" />
<xsd:complexType name="tDatalnput">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:attribute name="name" type="xsd:string" use="optional" />
<xsd:attribute name="itemSubjectRef" type="xsd:QName" />

<xsd:attribute name="isCollection" type="xsd:boolean" default="false"/>

<xsd:attribute name="dataState" type="xsd:IDREF"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.72 — DatalnputAssociation XML schema

<xsd:element name="datalnputAssociation" type="tDatalnputAssociation" />
<xsd:complexType name="tDatalnputAssociation">
<xsd:complexContent>
<xsd:extension base="tDataAssociation"/>
</xsd:complexContent>
</xsd:complexType>

Business Process Model and Notation (BPMN), v2.0.2

229

Table 10.73 — DataObject XML schema

<xsd:element name="dataObject" type="tDataObject" />
<xsd:complexType name="tDataObject">
<xsd:complexContent>
<xsd:extension base="tFlowElement">
<xsd:sequence>
<xsd:element ref="dataState" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="itemSubjectRef" type="xsd:QName"/>
<xsd:attribute name="isCollection" type="xsd:boolean"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.74 — DataState XML schema

<xsd:element name="dataState" type="tDataState" />
<xsd:complexType name="tDataState">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:attribute name="name" type="xsd:string"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.75 — DataOutput XML schema

<xsd:element name="dataOutput" type="tDataOutput" />
<xsd:complexType name="tDataOutput">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:attribute name="name" type="xsd:string" use="optional"/>
<xsd:attribute name="itemSubjectRef" type="xsd:QName"/>
<xsd:attribute name="isCollection" type="xsd:boolean" default="false"/>
<xsd:attribute name="dataState" type="xsd:IDREF"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.76 — DataOutputAssociation XML schema

<xsd:element name="dataOutputAssociation" type="tDataOutputAssociation" />
<xsd:complexType name="tDataOutputAssociation">
<xsd:complexContent>
<xsd:extension base="tDataAssociation"/>
</xsd:complexContent>
</xsd:complexType>

230 Business Process Model and Notation (BPMN), v2.0.2

Table 10.77 — InputOutputSpecification XML schema

<xsd:element name="ioSpecification" type="tInputOutputSpecification" />
<xsd:complexType name="tInputOutputSpecification">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element ref="datalnput" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="dataOutput" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="inputSet" minOccurs="1" maxOccurs="unbounded"/>
<xsd:element ref="outputSet" minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.78 — InputSet XML schema

<xsd:element name="inputSet" type="tInputSet" />
<xsd:complexType name="tInputSet">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element name="datalnputRefs" type="xsd:IDREF" minOccurs="0" maxOc-
curs="unbounded"/>
<xsd:element name="optionallnputRefs" type="xsd:IDREF" minOccurs="0" maxOc-
curs="unbounded"/>
<xsd:element name="whileExecutinglnputRefs" type="xsd:IDREF" minOccurs="0" maxOc-
curs="unbounded"/>
<xsd:element name="outputSetRefs" type="xsd:IDREF" minOccurs="0" maxOc-
curs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" />
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Business Process Model and Notation (BPMN), v2.0.2 231

Table 10.79 — OutputSet XML schema

<xsd:element name="outputSet" type="tOutputSet" />
<xsd:complexType name="tOutputSet">
<xsd:complexContent>

<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element name="dataOutputRefs" type="xsd:IDREF" minOccurs="0" maxOc-
curs="unbounded"/>
<xsd:element name="optionalOutputRefs" type="xsd:IDREF" minOccurs="0" maxOc-
curs="unbounded"/>
<xsd:element name="whileExecutingOutputRefs" type="xsd:IDREF" minOccurs="0" maxOc-
curs="unbounded"/>
<xsd:element name="inputSetRefs" type="xsd:IDREF" minOccurs="0" maxOc-
curs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 1

0.80 — Property XML schema

<xsd:element name="property" type="tProperty" />
<xsd:complexType name="tProperty">
<xsd:complexContent>

<xsd:extension base="tBaseElement">
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="itemSubjectRef" type="xsd:QName"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

10.5

Events

An Event is something that “happens” during the course of a Process. These Events affect the flow of the Process
and usually have a cause or an impact and in general require or allow for a reaction. The term “event” is general enough

to cover

many things in a Process. The start of an Activity, the end of an Activity, the change of state of a document,

a Message that arrives, etc., all could be considered Events.

Events allow for the description of “event-driven” Processes. In these Processes, there are three main types of

Events:
1.
2.
3.

232

Start Events (see page 237), which indicate where a Process will start.
End Events (sce page 245), which indicate where a path of a Process will end.

Intermediate Events (see page 248), which indicate where something happens somewhere between the start and
end of a Process.

Business Process Model and Notation (BPMN), v2.0.2

Within these three types, Events come in two flavors:
1. Events that catch a trigger. All Start Events and some Intermediate Events are catching Events.

2. Events that throw a Result. All End Events and some Intermediate Events are throwing Events that MAY
eventually be caught by another Event. Typically the trigger carries information out of the scope where the throw
Event occurred into the scope of the catching Events. The throwing of a trigger MAY be either implicit as defined
by this standard or an extension to it or explicit by a throw Event.

- | Rasedlement Dooument ation
. (Frem Fourdation] + documantation. ATvem Foundaton)
L5 ; String & tunt : Slring
1 . & WurlFormat & Shing
Flowlement
(Fem Comman)
& name | SNy
| HowNode ! '
{Frem Cisramcn + propartes [From Ciak s}
L N 1 Bhing
=evert 0.1 :
; Evanit
(o Evenin]
DatalnprutAssociation -+ datalnputAsscciation + CatalAlDUtSEecation || DataOutputAssodation
[From Diata) o Buata)
. .
0.1 0.l
- ThrowEvent b - 1 Catchfvent
Pyt y Evends)
{from Events] + enmtDefniodel | * R himien oty b I:I*I,mﬁ‘_ il
0.1 | 53 putsst ¢ nputiet . . 0:; S PAEECLAES | Becsdr 0.1
| Eventiefiretion & outpitiet @ CutputSat i

[From Eventa) + dataluiputs

. "
| SMEnrReE + et Darfrataons # i o
: Dl gt = Datalulput
oo Bits) Hrem Bhata)

& reames : S
c5 BCokartion © Booksan

& N | SUTE)
5 BBColection ¢ Doolsan

< Implicit ThrowDvent IntermediateThrowDvent — EnclEvent | SharlCvent = IntermediateCalchfvent = BourxharyCvent
{fvom Everida) (lram Ewenla) {Feam Ewerda) [Fiem Everda) (leam Ewena) {Troe Everda)
& ainterupting : Boclean & carcelic ity - Bockean

+ bowrdarybventials *

+ atchedToRel

= Activily

[rem Balivitien]
& nForCompesation | Bockean
& YA tCuantity @ Inbape
& compietonCuantty | Inteper

Figure 10.69 — The Event Class Diagram
10.5.1 Concepts

Depending on the type of the Event there are different strategies to forward the frigger to catching Events: publication,
direct resolution, propagation, cancellations, and compensations.

Business Process Model and Notation (BPMN), v2.0.2 233

With publication a trigger MAY be received by any catching Events in any scope of the system where the trigger is
published. Events for which publication is used are grouped to Conversations. Published Events MAY participate in
several Conversations. Messages are triggers, which are generated outside of the Pool they are published in. They
typically describe B2B communication between different Processes in different Pools. When Messages need to reach
a specific Process instance, correlation is used to identify the particular instance. Signals are triggers generated in the
Pool they are published. They are typically used for broadcast communication within and across Processes, across
Pools, and between Process diagrams.

Timer and Conditional riggers are implicitly thrown. When they are activated they wait for a time based or status
based condition respectively to trigger the catch Event.

A trigger that is propagated is forwarded from the location where the Event has been thrown to the innermost enclosing
scope instance (e.g., Process level) which has an attached Event being able to catch the trigger. Error triggers are
critical and suspend execution at the location of throwing. Escalations are non critical and execution continues at the
location of throwing. If no catching Event is found for an error or escalation trigger, this trigger is unresolved.
Termination, compensation, and cancellation are directed towards a Process or a specific Activity instance.
Termination indicates that all Activities in the Process or Activity should be immediately ended. This includes all
instances of multi-instances. It is ended without compensation or Event handling.

Compensation of a successfully completed Activity triggers its compensation handler. The compensation handler is
either user defined or implicit. The implicit compensation handler of a Sub Process calls all compensation handlers of
its enclosed Activities in the reverse order of Sequence Flow dependencies. If compensation is invoked for an
Activity that has not yet completed, or has not completed successfully, nothing happens (in particular, no error is raised).

Cancellation will terminate all running Activities and compensate all successfully completed Activities in the Sub-
Process it is applied to. If the Sub-Process is a Transaction, the Transaction is rolled back.

Data Modeling and Events

Some Events (like the Message, Escalation, Error, Signal, and Multiple Event) have the capability to carry data.
Data Association is used to push data from a Catch Event to a data element. For such Events, the following
constraints apply:

€ Ifthe Event is associated with multiple EventDefinitions, there MUST be one Data Input (in the case of
throw Events) or one Data Output (in the case of catch Events) for each EventDefinition. The order of
the EventDefinitions and the order of the Data Inputs/Outputs determine which Data Input/Output
corresponds with which EventDefinition.

€@ Foreach EventDefinition and Data Input/Output pair, if the Data Input/Output is present, it MUST have
an TtemDefinition equivalent to the one defined by the Message, Escalation, Error, or Signal on the
associated EventDefinition. In the case of a throw Event, if the Data Input is not present, the Message,
Escalation, Error, or Signal will not be populated with data. In the case of a catch Event, if the Data Output is
not present, the payload within the Message, Escalation, Error, or Signal will not flow out of the Event and
into the Process.

The execution behavior is then as follows:

€ For throw Events: When the Event is activated, the data in the Data Input is assigned automatically to the
Message, Escalation, Error, or Signal referenced by the corresponding EventDefinition.

@ For catch Events: When the trigger of the Event occurs (for example, the Message is received), the data is
assigned automatically to the Data Output that corresponds to the EventDefinition that described that trigger.

234 Business Process Model and Notation (BPMN), v2.0.2

Common Event attributes

The Event clement inherits the attributes and model associations of FlowElement (see Table 8.44). Table 10.81
presents the additional model associations of the Event element.

Table 10.81 — Event model associations

Attribute Name

Description/Usage

properties: Property [0..*]

Modeler-defined properties MAY be added to an Event. These
properties are contained within the Event.

Common Catch Event attributes

The CatchEvent element inherits the attributes and model associations of Event element (see Table 10.81). Table
10.82 presents the additional attributes and model associations of the CatchEvent element.

Table 10.82 — CatchEvent attributes and model associations

Attribute Name

Description/Usage

eventDefinitionRefs: EventDefinition [0..*]

References the reusable EventDefinitions that are triggers
expected for a cafch Event. Reusable EventDefinitions are
defined as top-level elements. These EventDefinitions can be
shared by different catch and throw Events.

« If there is no EventDefinition defined, then this is
considered a catch None Event and the Event will not have
an internal marker (see Figure 10.91).

« If there is more than one EventDefinition defined, this is
considered a Catch Multiple Event and the Event will have
the pentagon internal marker (see Figure 10.90).

This is an ordered set.

eventDefinitions: EventDefinition [0..*]

Defines the event EventDefinitions that are triggers expected
for a catch Event. These EventDefinitions are only valid inside
the current Event.

« If there is no EventDefinition defined, then this is
considered a cafch None Event and the Event will not have an
internal marker (see Figure 10.91).

- If there is more than one EventDefinition defined, this is
considered a catch Multiple Event and the Event will have the
pentagon internal marker (see Figure 10.90).

This is an ordered set.

Business Process Model and Notation (BPMN), v2.0.2 235

Table 10.82 — CatchEvent attributes and model associations

dataOutputAssociations: Data The Data Associations of the catch Event.

OutputAssociation [0.."] The dataOutputAssociation of a catch Eventis used to assign
data from the Event to a data element that is in the scope of the
Event.

For a catch Multiple Event, multiple Data Associations might be
REQUIRED, depending on the individual triggers of the Event.

dataOutputs: DataOutput [0.."] The Data Outputs for the catch Event. This is an ordered set.
outputSet: OutputSet [0..1] The outputset for the catch Event.
parallelMultiple: boolean = false This attribute is only relevant when the catch Event has more

than EventDefinition (Multiple).

If this value is true, then all of the types of triggers that are
listed in the catch Event MUST be triggered before the Process
is instantiated.

Common Throw Event Attributes

The ThrowEvent element inherits the attributes and model associations of Event element (see Table 10.81). Table
10.83 presents the additional attributes and model associations of the ThrowEvent element.

Table 10.83 — ThrowEvent attributes and model associations

Attribute Name Description/Usage

eventDefinitionRefs: EventDefinition [0."] | References the reusable EventDefinitions that are results
expected for a throw Event. Reusable EventDefinitions are
defined as top-level elements. These EventDefinitions can be
shared by different catch and throw Events.

* If there is no EventDefinition defined, then this is considered a
throw None Event and the Event will not have an internal marker
(see Figure 10.91).

« If there is more than one EventDefinition defined, this is
considered a throw Multiple Event and the Event will have the
pentagon internal marker (see Figure 10.90).

This is an ordered set.

236 Business Process Model and Notation (BPMN), v2.0.2

Table 10.83 — ThrowEvent attributes and model associations

eventDefinitions: EventDefinition [0..*]

Defines the event EventDefinitions that are results expected for
a throw Event. These EventDefinitions are only valid inside the
current Event.

« If there is no EventDefinition defined, this is considered a throw
None Event and the Event will not have an Internal marker (see
Figure 10.91).

* If there is more than one EventDefinition defined, this is
considered a throw Multiple Event and the Event will have the
pentagon internal marker (see Figure 10.90).

This is an ordered set.

datalnputAssociations: Datalnput
Association [0..]

The Data Associations of the throw Event.

The dataInputAssociation of a throw Event is responsible for the
assignment of a data element that is in scope of the Event to the
Event data.

For a throw Multiple Event, multiple Data Associations might be
REQUIRED, depending on the individual results of the Event.

datalnputs: Datalnput [0..*]

The Data Inputs for the throw Event. This is an ordered set.

inputSet: InputSet [0..1]

The Inputset for the throw Event.

Implicit Throw Event

A sub-type of throw Event is the TmplicitThrowEvent. This is a non-graphical Event that is used for Multi-
Instance Activities (see page 190). The ImplicitThrowEvent element inherits the attributes and model
associations of ThrowEvent (see Table 10.84), but does not have any additional attributes or model associations.

10.5.2 Start Event

As the name implies, the Start Event indicates where a particular Process will start. In terms of Sequence Flows, the
Start Event starts the flow of the Process, and thus, will not have any incoming Sequence Flows—no Sequence

Flow can connect to a Start Event.

The Start Event shares the same basic shape of the Intermediate Event and End Event, a circle with an open center
so that markers can be placed within the circle to indicate variations of the Event.

€ A Start Event is a circle that MUST be drawn with a single thin line (see Figure 10.70).

@ The use of text, color, size, and lines for a Start Event MUST follow the rules defined in “Use of Text, Color,
Size, and Lines in a Diagram” on page 39 with the exception that:

@ The thickness of the line MUST remain thin so that the Start Event can be distinguished from the
Intermediate and End Events.

Business Process Model and Notation (BPMN), v2.0.2 237

Figure 10.70 — Start Event

Throughout this document, we discuss how Sequence Flows are used within a Process. To facilitate this discussion,
we employ the concept of a token that will traverse the Sequence Flows and pass through the elements in the Process.
A token is a theoretical concept that is used as an aid to define the behavior of a Process that is being performed. The
behavior of Process elements can be defined by describing how they interact with a token as it “traverses” the structure
of the Process.

NOTE: A token does not traverse a Message Flow since it is a Message that is passed down a Message Flow (as the name
implies).
Semantics of the Start Event include:
¢ A Start Event is OPTIONAL: a Process level—a top-level Process, a Sub-Process (embedded), or a Global
Process (called Process)—MAY (is NOT REQUIRED to) have a Start Event.

NOTE: A Process MAY have more than one Process level (i.e., it can include Expanded Sub-Processes or Call Activ-
ities that call other Processes). The use of Start and End Events is independent for each level of the Diagram.

€ IfaProcess is complex and/or the starting conditions are not obvious, then it is RECOMMENDED that a Start
Event be used.

€ Ifa Start Event is not used, then the implicit Start Event for the Process SHALL NOT have a trigger.
If there is an End Event, then there MUST be at least one Start Event.

*

€ All Flow Objects that do not have an incoming Sequence Flow (i.e., are not a target of a Sequence Flow)
SHALL be instantiated when the Process is instantiated.

€ Exceptions to this are Activities that are defined as being Compensation Activities (it has the
Compensation marker). Compensation Activities are not considered a part of the normal flow and MUST
NOT be instantiated when the Process is instantiated. See page 301 for more information on Compensation
Activities.

€ An exception to this is a catching Link Intermediate Event, which is not allowed to have incoming
Sequence Flows. See page 266 for more information on Link Intermediate Events.

€ An exception to this is an Event Sub-Process, which is not allowed to have incoming Sequence Flows
and will only be instantiated when its Start Event is triggered. See page 174 for more information on Event
Sub-Processes.

€@ There MAY be multiple Start Events for a given Process level.

€ Each Start Event is an independent Event. That is, a Process instance SHALL be generated when the Start
Event is triggered.

If the Process is used as a global Process (a callable Process that can be invoked from Call Activities of other
Processes) and there are multiple None Start Events, then when flow is transferred from the parent Process to the
global Process, only one of the global Process’s Start Events will be triggered. The targetRef attribute of a
Sequence Flow incoming to the Call Activity object can be extended to identify the appropriate Start Event.

238 Business Process Model and Notation (BPMN), v2.0.2

NOTE: The behavior of Process can be harder to understand if there are multiple Start Events. It is RECOMMENDED that
this feature be used sparingly and that the modeler be aware that other readers of the Diagram could have difficulty
understanding the intent of the Diagram.

When the trigger for a Start Event occurs, a new Process will be instantiated and a foken will be generated for each

outgoing Sequence Flow from that Event.

Start Event Triggers
Start Events can be used for these types of Processes:
 Top-level Processes
+ Sub-Processes (embedded)
+ Global Process (called)
« Event Sub-Processes
The next three sub clauses describe the types of Start Events that can be used for each of these three types of

Processes.

Start Events for Top-level Processes

There are many ways that top-level Processes can be started (instantiated). The #rigger for a Start Event is designed
to show the general mechanisms that will instantiate that particular Process. There are seven (7) types of Start Events
for top-level Processes in BPMN (see Table 10.84): None, Message, Timer, Conditional, Signal, Multiple, and
Parallel.

A top-level Process that has at least one None Start Event MAY be called by a Call Activity in another Process.
The None Start Event is used for invoking the Process from the Call Activity. All other types of Start Events are
only applicable when the Process is used as a top-level Process.

Table 10.84 — Top-Level Process Start Event Types

Trigger Description Marker

None The None Start Event does not have a defined trigger. There is no
specific EventDefinition subclass (see page 259) for None Start
Events. If the Start Event has no associated EventDefinition, then
the Event MUST be displayed without a marker (see the figure on the
right).

Message A Message arrives from a Participant and triggers the start of the
Process. See page 91 for more details on Messages.

If there is only one EventDefinition associated with the Start Event

and that EventDefinition is of the subclass

MessageEventDefinition, then the Event is a Message Start Event

and MUST be displayed with an envelope marker (see the figure to the

right).

The actual Participant from which the Message is received can be

identified by connecting the Event to a Participant using a Message Flow
within the definitional Collaboration of the Process — see Table 10.1.

Business Process Model and Notation (BPMN), v2.0.2 239

Table 10.84 — Top-Level Process Start Event Types

Timer A specific time-date or a specific cycle (e.g., every Monday at 9am) can
be set that will trigger the start of the Process.

If there is only one EventDefinition associated with the Start Event

and that EventDefinition is of the subclass

TimerEventDefinition, then the Eventis a Timer Start Event and
MUST be displayed with a clock marker (see the figure to the right).

Conditional This type of event is triggered when a condition such as “S&P 500
changes by more than 10% since opening,” or “Temperature above 300C”

become true. The condition Expression for the Event MUST become E
false and then frue before the Event can be triggered again.

The Condition Expression of a Conditional Start Event MUST NOT refer
to the data context or instance attribute of the Process (as the Process
instance has not yet been created). Instead, it MAY refer to static Process
attributes and states of entities in the environment. The specification of
mechanisms to access such states is out of scope of the standard.

If there is only one EventDefinition associated with the Start Event and that
EventDefinition is of the subclass ConditionalEventDefinition, then

the Event is a Conditional Start Event and MUST be displayed with a lined
paper marker (see the figure to the right).

Signal A Signal arrives that has been broadcast from another Process and
triggers the start of the Process. Note that the Signal is not a Message, @

which has a specific target for the Message. Multiple Processes can

have Start Events that are triggered from the same broadcasted Signal.

If there is only one EventDefinition associated with the Start Event

and that EventDefinition is of the subclass SignalEventDefini-

tion, then the Event is a Signal Start Event and MUST be

displayed with a triangle marker (see the figure to the right).

Multiple This means that there are multiple ways of triggering the Process. Only
one of them is REQUIRED. There is no specific EventDefinition
subclass for Multiple Start Events. If the Start Event has more than one
associated EventDefinition, then the Event MUST be displayed with
the Multiple Event marker (a pentagon—see the upper figure to the
right).

©

Parallel This means that there are multiple triggers REQUIRED before the
Multiple Process can be instantiated. All of the types of friggers that are listed in
the Start Event MUST be triggered before the Process is instantiated.
There is no specific EventDefinition subclass for Parallel

Multiple Start Events. If the Start Event has more than one associated
EventDefinition and the parallelMultiple attribute of the Start
Event is true, then the Event MUST be displayed with the Parallel Multi-
ple Event marker (an open plus sign—see the figure to the right).

240 Business Process Model and Notation (BPMN), v2.0.2

Start Events for Sub-Processes

There is only one type of Start Event for Sub-Processes in BPMN (see Figure 10.82): None.

Table 10.85 — Sub-Process Start Event Types

Trigger

Description

Marker

None

The None Start Event is used for all Sub-Processes, either embedded
or called (reusable). Other types of triggers are not used for a
Sub-Process, since the flow of the Process (a foken) from the parent
Process is the trigger of the Sub-Process. If the Sub-Process is called
(reusable) and has multiple Start Events, some of the other Start Events
MAY have triggers, but these Start Events would not be used in the
context of a Sub-Process. When the other Start Events are triggered,
they would instantiate top-level Processes.

O

Start Events for Event Sub-Processes

A Start Event can also initiate an inline Event Sub-Process (see page 174). In that case, the same Event types as for
boundary Events are allowed (see Table 10.86), namely: Message, Timer, Escalation, Error, Compensation,
Conditional, Signal, Multiple, and Parallel.

€ An Event Sub-Process MUST have a single Start Event.

Table 10.86 — Event Sub-Process Start Event Types

Trigger Description Marker
Message If there is only one EventDefinition associated with the Start Event and Interrupting
that EventDefinition is of the subclass MessageEventDefinition,

then the Event is a Message Start Event and uses an envelope marker (see
the
figures to the right).

« For a Message Event Sub-Process that interrupts its containing Non-
Process, the boundary of the Event is solid (see the upper figure to the | Interrupting
right). -

77N

- For a Message Event Sub-Process that does not interrupt its { E \
containing \ /'
Process, the boundary of the Event is dashed (see the lower figure on S-
the right).

The actual Participant from which the Message is received can be identified
by connecting the Event to a Participant using a Message Flow within the
definitional Collaboration of the Process — see Table 10.1.

Business Process Model and Notation (BPMN), v2.0.2

241

Table 10.86 — Event Sub-Process Start Event Types

Timer

If there is only one EventDefinition associated with the Start Event and
that EventDefinition is of the subclass TimerEventDefinition, then
the Event is a Timer Start Event and uses a clock marker (see the figures to
the right).
- For a Timer Event Sub-Process that interrupts its containing Process,
the boundary of the Event is solid (see the upper figure to the right).

« For a Timer Event Sub-Process that does not interrupt its containing
Process, the boundary of the Event is dashed (see the lower figure on
the right).

Interrupting

Non-
Interrupting

/"\‘

(]

\%’
~_"7

Escalation

Escalation Event Sub-Processes implement measures to expedite the
completion of a business Activity, should it not satisfy a constraint specified
on its execution (such as a time-based deadline).

The Escalation Start Event is only allowed for triggering an in-line Event
Sub-Process.

If there is only one EventDefinition associated with the Start Event and
that EventDefinition is of the subclass EscalationEventDefinition,
then the Event is an Escalation Start Event and uses an arrowhead marker
(see the figures to the right).

For an Escalation Event Sub-Process that interrupts its containing Process,
the boundary of the Event is solid (see the upper figure to the right).

For an Escalation Event Sub-Process that does not interrupt its containing
Process, the boundary of the Event is dashed (see the lower figure on the
right).

Interrupting

®

Non-
Interrupting

RN
A)
!

\N_v

-

Error

The Error Start Event is only allowed for triggering an in-line Event Sub-
Process.

If there is only one EventDefinition associated with the Start Event and
that EventDefinition is of the subclass ErrorEventDefinition, then
the Event is an Error Start Event and uses a lightning marker (see the figures
to the right).

Given the nature of Errors, an Event Sub-Process with an Error trigger will
always interrupt its containing Process.

Interrupting

&

Compensation

The Compensation Start Event is only allowed for triggering an in-line
Compensation Event Sub-Process (see “Compensation Handler” on page
302). This type of Event is triggered when compensation occurs.

If there is only one EventDefinition associated with the Start Event and
that EventDefinition is of the subclass
CompensationEventDefinition, then the Eventis a Compensation
Start Event and uses a double triangle marker (see the figure to the right).
This Event does not interrupt the Process since the Process has to be
completed before this Event can be triggered.

®

242

Business Process Model and Notation (BPMN), v2.0.2

Table 10.86 — Event Sub-Process Start Event Types

boundary of the Event is solid (see the upper figure to the right).

For a Multiple Event Sub-Process that does not interrupt its containing
Process, the boundary of the Event is dashed (see the lower figure on the
right).

Conditional If there is only one EventDefinition associated with the Start Event and | Interrupting
that EventDefinition is of the subclass ConditionalEventDefini-
tion, then the Event is a Conditional Start Event and uses an lined page E
marker (see the figures to the right).
For a Conditional Event Sub-Process that interrupts its containing Process,
then the boundary of the Event is solid (see the upper figure to the right). Non-
For a Conditional Event Sub-Process that does not interrupt its containing Interrupting
Process, the boundary of the Event is dashed (see the lower figure on the
right). Vank
] \
\ |§| !
<.’
Signal If there is only one EventDefinition associated with the Start Event and | Interrupting
that EventDefinition is of the subclass SignalEventDefinition, then
the Event is a Signal Start Event and uses an triangle marker (see the fig-
ures to the right).
For a Signal Event Sub-Process that interrupts its containing Process, then
the boundary of the Event is solid (see the upper figure to the right). Non-
For a Signal Event Sub-Process that does not interrupt its containing Interrupting
Process, the boundary of the Event is dashed (see the lower figure on the -
right). 7 \D
] \
\ I
<.’
Multiple A Multiple Event indicates that there are multiple ways of triggering the Interrupting
Event Sub-Process. Only one of them is REQUIRED to actually start the
Event Sub-Process. There is no specific EventDefinition subclass (see
page 259) for Multiple Start Events. If the Start Event has more than one
associated EventDefinition, then the Event MUST be displayed with the
Multiple Event marker (a pentagon—see the figures on the right). Non-
For a Multiple Event Sub-Process that interrupts its containing Process, the Interrupting

/“\\

]

\O'
N/

Business Process Model and Notation (BPMN), v2.0.2

243

Table 10.86 — Event Sub-Process Start Event Types

Parallel
Multiple

A Parallel Multiple Event indicates that there are multiple ways of triggering
the Event Sub-Process. All of them are REQUIRED to actually start the
Event Sub-Process. There is no specific EventDefinition subclass (see
page 259) for Parallel Multiple Start Events. If the Start Event has more
than one associated EventDefinition and the parallelMultiple
attribute of the Start Event is true, then the Event MUST be displayed with
the Parallel Multiple Event marker (an open plus sign—see the figures to the
right).

Fgr :31 Parallel Multiple Event Sub-Process that interrupts its containing

Process, the boundary of the Event is solid (see the upper figure to the right).

For a Parallel Multiple Event Sub-Process that does not interrupt its
containing Process, the boundary of the Event is dashed (see the lower figure
on the right).

Interrupting

Non-
Interrupting

-~
l’ \
\]
~N_7

Attributes for Start Events

For Start Events, the following additional attribute exists:

« The Start Event element inherits the attributes and model associations of CatchEvent (see Table 10.82). Table
10.87 presents the additional attributes of the Start Event element:

Table 10.87 — Start Event attributes

Attribute Name

Description/Usage

true

isInterrupting: boolean =

true), or Compensation Events (where it doesn’t apply).

This attribute only applies to Start Events of Event Sub-Processes; it is ignored for
other Start Events. This attribute denotes whether the Sub-Process encompassing
the Event Sub-Process should be canceled or not, If the encompassing Sub-
Process is not canceled, multiple instances of the Event Sub-Process can run
concurrently. This attribute cannot be applied to Error Events (where it's always

Sequence Flow Connections

See “Sequence Flow Connections Rules” on page 40 for the entire set of objects and how they MAY be a source or target
of a Sequence Flow.

¢ A Start Event MUST NOT be a target for Sequence Flows; it MUST NOT have incoming Sequence Flows.

€ An exception to this is when a Start Event is used in an Expanded Sub-Process and is attached to the
boundary of that Sub-Process. In this case, a Sequence Flow from the higher-level Process MAY connect
to that Start Event in lieu of connecting to the actual boundary of the Sub-Process.

€ A Start Event MUST be a source for a Sequence Flow.

€ Multiple Sequence Flows MAY originate from a Start Event. For each Sequence Flow that has the Start
Event as a source, a new parallel path SHALL be generated.

€ The conditionExpression attribute for all outgoing Sequence Flows MUST be set to None.

244

Business Process Model and Notation (BPMN), v2.0.2

€ When a Start Event is not used, then all Flow Objects that do not have an incoming Sequence Flow SHALL
be the start of a separate parallel path.

@ Each path will have a separate unique foken that will traverse the Sequence Flow.

Message Flow Connections

NOTE: All Message Flows MUST connect two separate Pools. They MAY connect to the Pool boundary or to Flow
Objects within the Pool boundary. They MUST NOT connect two objects within the same Pool.

See “Message Flow Connection Rules” on page 41 for the entire set of objects and how they MAY be a source or targets
of a Message Flow.

€ A Start Event MAY be the target for a Message Flow; it can have zero (0) or more incoming Message
Flows. Each Message Flow targeting a Start Event represents an instantiation mechanism (a trigger) for the
Process. Only one of the triggers is REQUIRED to start a new Process.

¢ A Start Event MUST NOT be a source for a Message Flow; it MUST NOT have outgoing Message
Flows.

10.5.3 End Event

As the name implies, the End Event indicates where a Process will end. In terms of Sequence Flows, the End
Event ends the flow of the Process, and thus, will not have any outgoing Sequence Flows—no Sequence Flow can
connect from an End Event.

The End Event shares the same basic shape of the Start Event and Intermediate Event, a circle with an open center
so that markers can be placed within the circle to indicate variations of the Event.
€ An End Event is a circle that MUST be drawn with a single thick line (see Figure 10.71).

@ The use of text, color, size, and lines for an End Event MUST follow the rules defined in “Use of Text,
Color, Size, and Lines in a Diagram” on page 39 with the exception that:

@ The thickness of the line MUST remain thick so that the End Event can be distinguished from the
Intermediate and Start Events.

Figure 10.71 — End Event

To continue discussing how flow proceeds throughout the Process, an End Event consumes a foken that had been
generated from a Start Event within the same level of Process. If parallel Sequence Flows targets the End Event,
then the tokens will be consumed as they arrive. All the fokens that were generated within the Process MUST be
consumed by an End Event before the Process has been completed. In other circumstances, if the Process is a Sub-
Process, it can be stopped prior to normal completion through interrupting Intermediate Events (See 10.2.2,
“exception flow,” on page 274 for more details). In this situation the tokens will be consumed by an Intermediate Event
attached to the boundary of the Sub-Process.

Semantics of the End Event include:

€ There MAY be multiple End Events within a single level of a Process.

Business Process Model and Notation (BPMN), v2.0.2 245

€ AnEnd Event is OPTIONAL: a given Process level—a Process or an expanded Sub-Process—MAY
(is NOT REQUIRED to) have this shape:

€ Ifan End Event is not used, then the implicit End Event for the Process SHALL NOT have a Result.
@ Ifthere is a Start Event, then there MUST be at least one End Event.

€ Ifthe End Event is not used, then all Flow Objects that do not have any outgoing Sequence Flow (i.e., are
not a source of a Sequence Flow) mark the end of a path in the Process. However, the Process MUST
NOT end until all parallel paths have completed.

NOTE: A Process MAY have more than one Process level (i.e., it can include Expanded Sub-Processes or a Call
Activity that call other Processes). The use of Start and End Events is independent for each level of the Diagram.

For Processes without an End Event, a token entering a path-ending Flow Object will be consumed when the
processing performed by the object is completed (i.e., when the path has completed), as if the foken had then gone on to
reach an End Event. When all fokens for a given instance of the Process are consumed, then the Process will reach
a state of being completed.

End Event Results

There are nine types of End Events in BPMN: None, Message, Escalation, Error, Cancel, Compensation,
Signal, Terminate, and Multiple. These types define the consequence of reaching an End Event. This will be referred
to as the End Event Result.

Table 10.88 — End Event Types

Trigger Description Marker
None The None End Event does not have a defined result.

There is no specific EventDefinition subclass (see page 259) for

None End Events. If the End Event has no associated

EventDefinition, then the Event will be displayed without a marker

(see the figure on the right).

Message This type of End indicates that a Message is sent to a Participant at the
conclusion of the Process. See page 91 for more details on Messages.
The actual Participant from which the Message is received can be
identified by connecting the Event to a Participant using a Message Flow
within the definitional Collaboration of the Process — see Table 10.1.

Error This type of End indicates that a named Error should be generated. All
currently active threads in the particular Sub-Process are terminated as a
result. The Error will be caught by a Catch Error Intermediate Event with
the same errorCode or no errorCode which is on the boundary of the
nearest enclosing parent Activity (hierarchically). The behavior of the
Process is unspecified if no Activity in the hierarchy has such an Error
Intermediate Event. The system executing the process can define addi-
tional Error handling in this case, a common one being termination of the
Process instance.

246 Business Process Model and Notation (BPMN), v2.0.2

Table 10.88 — End Event Types

Escalation

This type of End indicates that an Escalation should be triggered. Other
active threads are not affected by this and continue to be executed. The
Escalation will be caught by a Catch Escalation Intermediate Event with
the same escalationCode or no escalationCode which is on the
boundary of the nearest enclosing parent Activity (hierarchically). The
behavior of the Process is unspecified if no Activity in the hierarchy has
such an Escalation Intermediate Event.

Cancel

This type of End is used within a Transaction Sub-Process. It will indi-
cate that the Transaction should be canceled and will trigger a Cancel
Intermediate Event attached to the Sub-Process boundary. In addition,
it will indicate that a TransactionProtocol Cancel Message should
be sentto any Entities involved in the Transaction.

®

Compensation

This type of End indicates that compensation is necessary. If an Activity
is identified, and it was successfully completed, then that Activity will be
compensated. The Activity MUST be visible from the Compensation
End Event, i.e., one of the following MUST be true:

» The Compensation End Event is contained in normal flow at the
same level of Sub-Process.

» The Compensation End Event is contained in a Compensation
Event Sub-Process that is contained in the Sub-Process
containing the Activity.

* If no Activity is identified, all successfully completed Activities
visible from the Compensation End Event are compensated, in
reverse order of their Sequence Flows. Visible means one of the
following:

» The Compensation End Event is contained in normal flow and at
the same level of Sub-Process as the Activities.

* The Compensation End Event is contained in a Compensation
Event Sub-Process that is contained in the Sub-Process
containing the Activities.

To be compensated, an Activity MUST have a boundary Compensation
Event or contain a Compensation Event Sub-Process.

®

Signal

This type of End indicates that a Signal will be broadcasted when the
End has been reached. Note that the Signal, which is broadcast to any
Process that can receive the Signal, can be sent across Process levels
or Pools, but is not a Message (that has a specific source and target).
The attributes of a Signal can be found on page 272.

®

Terminate

This type of End indicates that all Activities in the Process should be
immediately ended. This includes all instances of multi-instances. The
Process is ended without compensation or event handling.

O,

Business Process Model and Notation (BPMN), v2.0.2

247

Table 10.88 — End Event Types

Multiple This means that there are multiple consequences of ending the Process.
All of them will occur (e.g., there might be multiple Messages sent).
There is no specific EventDefinition subclass (see page 259) for
Multiple End Events. If the End Event has more than one associated
EventDefinition, then the Event will be displayed with the Multiple
Event marker (a pentagon—see the figure on the right).

Sequence Flow Connections

See “Sequence Flow Connections Rules” on page 40 for the entire set of objects and how they MAY be a source or target
of a Sequence Flow.

€ AnEnd Event MUST be a target for a Sequence Flow.
€ An End Event MAY have multiple incoming Sequence Flows.

The Flow MAY come from either alternative or parallel paths. For modeling convenience, each path MAY connect to a
separate End Event object. The End Event is used as a Sink for all tokens that arrive at the Event. All tokens that are
generated at the Start Event for that Process MUST eventually arrive at an End Event. The Process will be in a
running state until all zokens are consumed.

€ AnEnd Event MUST NOT be a source for Sequence Flows; that is, there MUST NOT be outgoing
Sequence Flows.

€ An exception to this is when an End Event is used in an Expanded Sub-Process and is attached to the
boundary of that Sub-Process. In this case, a Sequence Flow from the higher-level Process MAY
connect from that End Event in lieu of connecting from the actual boundary of the Sub-Process.

Message Flow Connections
See “Message Flow Connection Rules” on page 41 for the entire set of objects and how they MAY be a source or target
of a Message Flow.
NOTE: All Message Flows MUST connect two separate Pools. They MAY connect to the Pool boundary or to Flow
Objects within the Pool boundary. They MUST NOT connect two objects within the same Pool.

€ AnEnd Event MUST NOT be the target of a Message Flow; it can have no incoming Message Flows.

€ AnEnd Event MAY be the source of a Message Flow; it can have zero (0) or more outgoing Message
Flows. Each Message Flow leaving the End Event will have a Message sent when the Event is
triggered.

€ The Result attribute of the End Event MUST be set to Message or Multiple if there are any outgoing
Message Flows.

€ The Result attribute of the End Event MUST be set to Multiple if there is more than one outgoing
Message Flows.

10.5.4 Intermediate Event

As the name implies, the Intermediate Event indicates where something happens (an Event) somewhere between the
start and end of a Process. It will affect the flow of the Process, but will not start or (directly) terminate the Process.
Intermediate Events can be used to:

248 Business Process Model and Notation (BPMN), v2.0.2

- Show where Messages are expected or sent within the Process,
+ Show delays are expected within the Process,
+ Disrupt the normal flow through exception handling, or

 Show the extra work needed for compensation.

The Intermediate Event shares the same basic shape of the Start Event and End Event, a circle with an open center
so that markers can be placed within the circle to indicate variations of the Event.

4 AnlIntermediate Event is a circle that MUST be drawn with a double thin line (see Figure 10.72).

€ The use of text, color, size, and lines for an Intermediate Event MUST follow the rules defined in
“Use of Text, Color, Size, and Lines in a Diagram” on page 39 with the exception that the thickness of the line
MUST remain double so that the Intermediate Event can be distinguished from the Start and End
Events.

O

Figure 10.72 — Intermediate Event

One use of Intermediate Events is to represent exception or compensation handling. This will be shown by placing the
Intermediate Event on the boundary of a Task or Sub-Process (either collapsed or expanded). The Intermediate
Event can be attached to any location of the Activity boundary and the outgoing Sequence Flows can flow in any
direction. However, in the interest of clarity of the Diagram, we RECOMMEND that the modeler choose a consistent
location on the boundary. For example, if the Diagram orientation is horizontal, then the Intermediate Events can be
attached to the bottom of the Activity and the Sequence Flows directed down, then to the right. If the Diagram
orientation is vertical, then the Intermediate Events can be attached to the left or right side of the Activity and the
Sequence Flows directed to the left or right, then down.

Intermediate Event Triggers

There are twelve types of Intermediate Events in BPMN: None, Message, Timer, Escalation, Error, Cancel,
Compensation, Conditional, Link, Signal, Multiple, and Parallel Multiple. Each type of Intermediate Event will
have a different icon placed in the center of the Intermediate Event shape to distinguish one from another.

There are two ways that Intermediate Events are used in BPMN:

1. AnIntermediate Event that is placed within the normal flow of a Process can be used for one of two purposes.
The Event can respond to (“catch”) the Event trigger or the Event can be used to set off (“throw”) the Event
trigger.

2. An Intermediate Event that is attached to the boundary of an Activity can only be used to “catch” the Event
trigger.

Intermediate Events in Normal Flow

When a token arrives at an Intermediate Event that is placed within the normal flow of a Process, one of two things
will happen.

Business Process Model and Notation (BPMN), v2.0.2 249

- Ifthe Event is used to “throw” the Event trigger, then trigger of the Event will immediately occur (e.g., the
Message will be sent) and the token will move down the outgoing Sequence Flow.

« Ifthe Event is used to “catch” the Event trigger, then the foken will remain at the Event until the trigger occurs (e.g.,
the Message is received). Then the token will move down the outgoing Sequence Flow.

Ten of the twelve Intermediate Events can be used in normal flow as shown in Table 10.89.

Table 10.89 — Intermediate Event Types in Normal Flow

Trigger Description Marker

None The None Intermediate Event is only valid in normal flow, i.e., it MAY Throw
NOT be used on the boundary of an Activity. Although there is no specific
trigger for this Event, it is defined as throw Event. It is used for modeling
methodologies that use Events to indicate some change of state in the

Process.

There is no specific EventDefinition subclass (see page 259) for
None Intermediate Events. If the (throw) Intermediate Event has no
associated EventDefinition, then the Event MUST be displayed
without a marker (see the figure on the right).

O

Message A Message Intermediate Event can be used to either send a Message Throw
or receive a Message.

When used to “throw” the Message, the Event marker MUST be filled
(see the upper figure on the right). When used to “catch” the Message,
then the Event marker MUST be unfilled (see the lower figure on the
right). This causes the Process to continue if it was waiting for the Catch
Message, or changes the flow for exception handling.

The actual Participant from which the Message is received can be
identified by connecting the Event to a Participant using a Message Flow
within the definitional Collaboration of the Process — see Table 10.1.
See page 91 for more details on Messages.

®

©

Timer In normal flow the Timer Intermediate Event acts as a delay mechanism Catch
based on a specific time-date or a specific cycle (e.g., every Monday at
9am) can be set that will trigger the Event. This Event MUST be dis-
played with a clock marker (see the figure on the right).

@

250 Business Process Model and Notation (BPMN), v2.0.2

Trigger

Description

Marker

Escalation

In normal flow, the Escalation Intermediate Event raises an Escalation.
Since this is a Throw Event, the arrowhead marker will be filled (see the

figure to the right).

Throw

Compensation

In normal flow, this Intermediate Event indicates that compensation is
necessary. Thus, it is used to "throw" the Compensation Event, and the
Event marker MUST be filled (see figure on the right). If an Activity is
identified, and it was successfully completed, then that Activity will be
compensated. The Activity MUST be visible from the Compensation
Intermediate Event, i.e., one of the following MUST be true:

* The Compensation Intermediate Event is contained in normal
flow at the same level of Sub-Process.

* The Compensation Intermediate Event is contained in a
Compensation Event Sub-Process which is contained in the Sub-
Process containing the Activity.

If no Activity is identified, all successfully completed Activities visible
from the Compensation Intermediate Event are compensated, in
reverse order of their Sequence Flows. Visible means one of the
following:

* The Compensation Intermediate Event is contained in normal
flow and at the same level of Sub-Process as the Activities.

* The Compensation Intermediate Event is contained in a
Compensation Event Sub-Process which is contained in the Sub-
Process containing the Activities.

To be compensated, an Activity MUST have a boundary Compensation
Event, or contain a Compensation Event Sub-Process.

Conditional

This type of Event is triggered when a condition becomes true. A
condition is a type of Expression. The attributes of an Expression can
be found on page 82.

Catch

Business Process Model and Notation (BPMN), v2.0.2

251

Link The Link Intermediate Events are only valid in normal flow, i.e., they Throw
MAY NOT be used on the boundary of an Activity. A Link is a
mechanism for connecting two sections of a Process. Link Events can
be used to create looping situations or to avoid long Sequence Flow
lines. Link Event uses are limited to a single Process level (i.e., they
cannot link a parent Process with a Sub-Process). Paired Intermediate Catch
Events can also be used as “Off-Page Connectors” for printing a Process
across multiple pages. They can also be used as generic “Go To” objects
within the Process level. There can be multiple source Link Events, but

there can only be one target Link Event.

When used to “throw” to the tfarget Link, the Event marker will be filled
(see the top figure on the right). When used to “catch” from the source
Link, the Event marker will be unfilled (see the bottom figure on the right).

QO:®

Signal This type of Event is used for sending or receiving Signals. A Signal is Throw
for general communication within and across Process levels, across
Pools, and between Business Process Diagrams. A BPMN sSignal is
similar to a signal flare that shot into the sky for anyone who might be
interested to notice and then react. Thus, there is a source of the Signal,
but no specific intended target. This type of Intermediate Event can send
or receive a Signal if the Event is part of a normal flow. The Event can
only receive a Signal when attached to the boundary of an Activity. The
Signal Event differs from an Error Event in that the Signal defines a
more general, non-error condition for interrupting Activities (such as the
successful completion of another Activity) as well as having a larger
scope than Error Events. When used to “catch” the Signal, the Event
marker will be unfilled (see the middle figure on the right). When used to
“throw” the signal, the Event marker will be filled (see the top figure on
the right). The attributes of a Signal can be found on page 272.

®

Catch

>

Multiple This means that there are multiple triggers assigned to the Event. If used Throw
within normal flow, the Event can “catch” the trigger or “throw” the trig-
gers. When attached to the boundary of an Activity, the Event can only
“catch” the trigger. When used to “catch” the trigger, only one of the
assigned friggers is REQUIRED and the Event marker will be unfilled
(see the middle figure on the right). When used to “throw” the trigger (the Catch
same as a Multiple End Event), all the assigned triggers will be thrown

and the Event marker will be filled (see the top figure on the right).
There is no specific EventDefinition subclass (see page 259) for
Multiple Intermediate Events. If the Intermediate Event has more than
one associated EventDefinition, then the Event will be displayed with
the Multiple Event marker.

©:@®

252 Business Process Model and Notation (BPMN), v2.0.2

Parallel Multiple

This means that there are multiple triggers assigned to the Event. If used
within normal flow, the Event can only “catch” the frigger. When attached
to the boundary of an Activity, the Event can only “catch” the trigger.
Unlike the normal Multiple Intermediate Event, all of the assigned
triggers are REQUIRED for the Event to be triggered.

The Event marker will be an unfilled plus sign (see the figure on the right).
There is no specific EventDefinition subclass (see page 259) for
Parallel Multiple Intermediate Events. If the Intermediate Event has
more than one associated EventDefinition and the
parallelMultiple attribute of the Intermediate Event is frue, then the
Event will be displayed with the Parallel Multiple Event marker.

Catch

Intermediate Events Attached to an Activity Boundary

Table 10.90 describes the Intermediate Events that can be attached to the boundary of an Activity.

Table 10.90 - Intermediate Event Types Attached to an Activity Boundary

the Activity to which the Event is attached is implicitly set to false.

Trigger Description Marker
Message A Message arrives from a participant and triggers the Event. If a Interrupting
Message Event is attached to the boundary of an Activity, it will change
the normal flow into an exception flow upon being triggered. ©
For a Message Event that interrupts the Activity to which it is attached,
the boundary of the Event is solid (see upper figure on the right). Note
that if using this notation, the attribute cancelactivity of the Activity Non-
to which the Event is attached is implicitly set to frue. Interrupting
For a Message Event that does not interrupt the Activity to which it is
attached, the boundary of the Event is dashed (see lower figure on the 2=
right). Note that if using this notation, the attribute cancelActivity of ’| l)
the Activity to which the Event is attached is implicitly set to false. \.g =7
The actual Participant from which the Message is received can be
identified by connecting the Event to a Participant using a Message Flow
within the definitional Collaboration of the Process — see Table 10.1.
Timer A specific time-date or a specific cycle (e.g., every Monday at 9am) can Interrupting
be set that will trigger the Event. If a Timer Event is attached to the
boundary of an Activity, it will change the normal flow into an exception
flow upon being triggered.
For a Timer Event that interrupts the Activity to which it is attached, the
boundary of the Event is solid (see upper figure on the right). Note that if Non-
using this notation, the attribute cancelaActivity of the Activity to Interrupting
which the Event is attached is implicitly set to true.
For a Timer Event that does not interrupt the Activity to which it is Y/ — §\
attached, the boundary of the Event is dashed (see lower figure on the ’\I I
right). Note that if using this notation, the attribute cancelaActivity of X -_:9

Business Process Model and Notation (BPMN), v2.0.2

253

Table 10.90 — Intermediate Event Types Attached to an Activity Boundary

Escalation

This type of Event is used for handling a named Escalation. If attached
to the boundary of an Activity, the Intermediate Event catches an
Escalation. In contrastto an Error, an Escalation by default is
assumed to not abort the Activity to which the boundary Event is
attached. However, a modeler can decide to override this setting by using
the notation described in the following:

« For an Escalation Event that interrupts the Activity to which it is
attached, the boundary of the Event is solid (see upper figure on the
right). Note that if using this notation, the attribute cancelActivity of
the Activity to which the Event is attached is implicitly set to true.

« For an Escalation Event that does not interrupt the Activity to
which it is attached, the boundary of the Event is dashed (see lower
figure on the right). Note that if using this notation, the attribute
cancelActivity of the Activity to which the Event is attached is
implicitly set to false.

Interrupting

Non-
Interrupting

72\
/4 1
\ Y/}

N

Error

A catch Intermediate Error Event can only be attached to the boundary
of an Activity, i.e., it MAY NOT be used in normal flow. If used in this
context, it reacts to (catches) a named Error, orto any Error if a name

is not specified.

Note that an Error Event always interrupts the Activity to which it is
attached, i.e., there is not a non-interrupting version of this Event. The
boundary of the Event thus always solid (see figure on the right).

Interrupting

Cancel

This type of Intermediate Event is used within a Transaction Sub-
Process. This type of Event MUST be attached to the boundary of a Sub-
Process. It SHALL be triggered if a Cancel End Event is reached within
the Transaction Sub-Process. It also SHALL be triggered if a
TransactionProtocol “Cancel” Message has been received while the

transaction is being performed.

Note that a Cancel Event always interrupts the Activity to which it is
attached, i.e., there is not a non-interrupting version of this Event. The
boundary of the Event thus always solid (see figure on the right).

Interrupting

Compensation

When attached to the boundary of an Activity, this Event is used to
"catch" the Compensation Event, thus the Event marker MUST be
unfilled (see figure on the right). The Event will be triggered by a thrown
compensation targeting that Activity. When the Event is triggered, the
Compensation Activity that is associated to the Event will be performed
(see page 301).

Note that the interrupting a non-interrupting aspect of other Events does
not apply in the case of a Compensation Event. Compensations can
only be triggered after completion of the Activity to which they are
attached. Thus they cannot interrupt the Activity. The boundary of the
Event is always solid.

254

Business Process Model and Notation (BPMN), v2.0.2

Table 10.90 — Intermediate Event Types Attached to an Activity Boundary

of an Activity. In this context, it will change the normal flow into an excep-
tion flow upon being triggered. The Signal Event differs from an Error
Event in that the Signal defines a more general, non-error condition for
interrupting Activities (such as the successful completion of another
Activity) as well as having a larger scope than Error Events. When used
to “catch” the signal, the Event marker will be unfilled. The attributes of
a Signal can be found on page 272.

For a Signal Event that interrupts the Activity to which it is attached, the
boundary of the Event is solid (see upper figure on the right). Note that if
using this notation, the attribute cancelaActivity of the Activity to
which the Event is attached is implicitly set to true.

For a Signal Event that does not interrupt the Activity to which it is
attached, the boundary of the Event is dashed (see lower figure on the
right). Note that if using this notation, the attribute cancelactivity of
the Activity to which the Event is attached is implicitly set to false.

Conditional This type of Event is triggered when a condition becomes true. A Interrupting
condition is a type of Expression. The attributes of an Expression can X
be found page 82. If a Conditional Event is attached to the boundary of ‘E’
an Activity, it will change the normal flow into an exception flow upon —
being triggered.
For a Conditional Event that interrupts the Activity to which it is Non-
attached, the boundary of the Event is solid (see upper figure on the Interrupting
right). Note that if using this notation, the attribute cancelaActivity of -
the Activity to which the Event is attached is implicitly set to frue. " = \\
For a Conditional Event that does not interrupt the Activity to which it is \‘)
attached, the boundary of the Event is dashed (see lower figure on the S=/
right). Note that if using this notation, the attribute cancelaActivity of
the Activity to which the Event is attached is implicitly set to false.

Signal The Signal Event can receive a Signal when attached to the boundary | Interrupting

>

Non-
Interrupting

/

% AN

_—

Ell

\)

W=z

Business Process Model and Notation (BPMN), v2.0.2

255

Table 10.90 — Intermediate Event Types Attached to an Activity Boundary

attached, the boundary of the Event is solid (see the upper figure to the
right). Note that if using this notation, the attribute cancelaActivity of
the Activity to which the Event is attached is implicitly set to true.

For a Parallel Multiple Event that does not interrupt the Activity to which
it is attached, the boundary of the Event is dashed (see the lower figure to
the right). Note that if using this notation, the attribute cancelactivity
of the Activity to which the Event is attached is implicitly set to false.

Multiple A Multiple Event indicates that there are multiple triggers assigned to the | Interrupting
Event. When attached to the boundary of an Activity, the Event can only
“catch” the trigger. In this case, only one of the assigned triggers is
REQUIRED and the Event marker will be unfilled upon being triggered,
the Event that occurred will change the normal flow into an exception
flow. Non-
There is no specific EventDefinition subclass (see page 259) for Interrupting
Multiple Intermediate Events. If the Intermediate Event has more than PEXS
. . . Y PN
one associated EventDefinition, then the Event will be displayed I‘ |)
with the Multiple Event marker. \§ =7
For a Multiple Event that interrupts the Activity to which it is attached,
the boundary of the Event is solid (see upper figure on the right). Note
that if using this notation, the attribute cancelactivity of the Activity
to which the Event is attached is implicitly set to true.
For a Multiple Event that does not interrupt the Activity to which it is
attached, the boundary of the Event is dashed (see lower figure on the
right). Note that if using this notation, the attribute cancelactivity of
the Activity to which the Event is attached is implicitly set to false.
Parallel This means that there are multiple triggers assigned to the Event. When | Interrupting
Multiple attached to the boundary of an Activity, the Event can only “catch” the
trigger. Unlike the normal Multiple Intermediate Event, all of the
assigned triggers are REQUIRED for the Event to be triggered. The
Event marker will be an unfilled plus sign (see the figures on the right).
There is no specific EventDefinition subclass (see page 259) for Non-
Parallel Multiple Intermediate Events. If the Intermediate Event has Interrupting
more than one associated EventDefinition and the -
parallelMultiple attribute of the Intermediate Event is frue, then the 7T ‘\\
Event will be displayed with the Parallel Multiple Event marker. (\ \'
For a Parallel Multiple Event that interrupts the Activity to which it is §=5

Attributes for Boundary Events

For boundary Events, the following additional attributes exists:

» The BoundaryEvent element inherits the attributes and model associations of CatchEvent (see Table 8.44).

Table 8.46 presents the additional attributes and model associations of the Boundary Event element.

256

Business Process Model and Notation (BPMN), v2.0.2

Table 10.91 — Boundary Event attributes

Attribute Name

Description/Usage

attachedTo: Activity

Denotes the Activity that boundary Event is attached to.

cancelActivity:
boolean

Denotes whether the Activity should be canceled or not, i.e., whether the boundary
catch Event acts as an Error or an Escalation. If the Activity is not canceled,

multiple instances of that handler can run concurrently.
This attribute cannot be applied to Error Events (where it's always frue), or
Compensation Events (where it doesn’t apply).

Table 10.92 specifies whether the cancel Activity attribute can be set on a boundary Event depending on the
EventDefinition it catches.

Table 10.92 — Possible Values of the cancelActivity Attribute

Trigger Possible Values for the cancelActivity Attribute

None N/A as this event cannot be attached to the Activity border.

Message Truelfalse

Timer Truelfalse

Escalation Truelfalse

Error True

Cancel True

Compensation N/A as the scope was already executed and can no longer be canceled when
compensation is triggered.

Conditional Truelfalse

Signal Truelfalse

Multiple Truelfalse if all Event triggers allow this option (see this table for details). Otherwise the more restric-
tive option, i.e., Yes in case any Error or cancel triggers are used.

Activity Boundary Connections

An Intermediate Event can be attached to the boundary of an Activity under the following conditions:

€ (One or more) Intermediate Events MAY be attached directly to the boundary of an Activity.

€ To be attached to the boundary of an Activity, an Intermediate Event MUST be one of the following
triggers (EventDefinition): Message, Timer, Error, Escalation, Cancel, Compensation,
Conditional, Signal,Multiple, and Parallel Multiple.

€4 Anlintermediate Event with a Cancel trigger MAY be attached to a Sub-Process boundary only if the
Transaction attribute of the Sub-Process is set to true.

Business Process Model and Notation (BPMN), v2.0.2 257

Sequence Flow Connections

See “Sequence Flow Connections Rules” on page 40 for the entire set of objects and how they MAY be a source or target
of a Sequence Flow.

€ Ifthe Intermediate Event is attached to the boundary of an Activity:

€ The Intermediate Event MUST NOT be a target for a Sequence Flow; it cannot have an incoming
Sequence Flows.

¢ The Intermediate Event MUST be a source for a Sequence Flow.

€ Multiple Sequence Flows MAY originate from an Intermediate Event. For each Sequence
Flow that has the Intermediate Event as a source, a new parallel path SHALL be generated.

€ An exception to this: an Intermediate Event with a Compensation trigger MUST NOT have
an outgoing Sequence Flow (it MAY have an outgoing Association).

€ The Intermediate Events with the following triggers (EventDefinition) MAY be used in normal flow:
None, Message, Timer, Escalation, Compensation, Conditional, Link, Signal,Multiple, and
ParallelMultiple. Thus, the following MUST NOT: Cancel and Error.

€ Ifthe Intermediate Event is used within normal flow:

€ Intermediate Events MUST be a target of a Sequence Flow.
NOTE: This is a change from BPMN 1.2 semantics, which allowed some Intermediate Events to not have an incoming
Sequence Flow.

€ AnlIntermediate Event MAY have multiple incoming Sequence Flows.
NOTE: If the Event has multiple incoming Sequence Flows, then this is considered uncontrolled flow. This means that
when a foken arrives from one of the Paths, the Event will be enabled (to catch or throw). It will not wait for the arrival of
tokens from the other paths. If another token arrives from the same path or another path, then a separate instance of the Event

will be created. If the flow needs to be controlled, then the flow should converge with a Gateway that precedes the Event (see
page 286 for more information on Gateways).

¢ Anlntermediate Event MUST be a source for a Sequence Flow.

€ Multiple Sequence Flows MAY originate from an Intermediate Event. For each Sequence Flow that
has the Intermediate Event as a source, a new parallel path SHALL be generated.

€ An exception to this: a source Link Intermediate Event (as defined below), it is NOT REQUIRED to have
an outgoing Sequence Flow.

€ A Link Intermediate Event MUST NOT be both a farget and a source of a Sequence Flow.

To define the use of a Link Intermediate Event as an “Off-Page Connector” or a “Go To” object:

€ A Link Intermediate Event MAY be the target (target Link) or a source (source Link) of a Sequence
Flow, but MUST NOT be both a farget and a source.

& Ifthere is a source Link, there MUST be a matching target Link (they have the same name).
€ There MAY be multiple source Links for a single target Link.
@ There MUST NOT be multiple target Links for a single source Link.

Message Flow Connections

See “Message Flow Connection Rules” on page 41 for the entire set of objects and how they MAY be a source or target
of a Message Flow.

258 Business Process Model and Notation (BPMN), v2.0.2

NOTE: All Message Flows MUST connect two separate Pools. They MAY connect to the Pool boundary or to Flow
Objects within the Pool boundary. They MUST NOT connect two objects within the same Pool.

€ A Message Intermediate Event MAY be the farget for a Message Flow; it can have one incoming

Message Flow.

€ A Message Intermediate Event MAY be a source for a Message Flow; it can have one outgoing

Message Flow.

@ A Message Intermediate Event MAY have an incoming Message Flow or an outgoing Message Flow,

but not both.

10.5.5 Event Definitions

Event Definitions refers to the triggers of Catch Events (Start and receive Intermediate Events) and the
Results of Throw Events (End Events and send Intermediate Events). The types of Event Definitions are:

CancelEventDefinition, CompensationEventDefinition, ConditionalEventDefinition,

ErrorEventDefinition, EscalationEventDefinition, MessageEventDefinition,
LinkEventDefinition, SignalEventDefinition, TerminateEventDefinition, and
TimerEventDefinition (see Table 10.93). A None Event is determined by an Event that does not specify an

Event Definition. A Multiple Event is determined by an Event that specifies more than one Event Definition. The
different types of Events (Start, End, and Intermediate) utilize a subset of the available types of Event Definitions.

Table 10.93 — Types of Events and their Markers

Business Process Model and Notation (BPMN), v2.0.2

Types Start Intermediate End
Top- Event Event Catching Boundary Boundary Throwing
Level Sub-Process Sub-Process Interrupting | Non-
Interrupting Non- Interrupting
Interrupting
None : :
Message P 2=a
=) &
\\ - ’, ‘ \\ = ’,
Timer
TN 2=
® O 0| &
Error : I 5
Escalation - -
w | W oy, ®
\ / L\} n
Nos N
Cancel ‘I ®
2

59

Table 10.93 — Types of Events and their Markers

Types Start Intermediate End
Top- Event Event Catching Boundary Boundary Throwing
Level Sub-Process Sub-Process Interrupting | Non-
Interrupting Non- Interrupting
Interrupting
Compensation I ‘I l E
Conditional - -
B =)
1 1=
=, = y!
Link ‘: I
Signal o= | 4RY,
'\ ! (lA,'l
.=’ =7
Terminate @
Multiple =
N 23
() QO @
© © © ©
Parallel =
-~ 22N
Multiple P @ @ Ly
\\ - /’ \§ =;

The following sub clauses will present the attributes common to all Event Definitions and the specific attributes for the
Event Definitions that have additional attributes. Note that the Cancel and Terminate Event Definitions do not have
additional attributes.

Event Definition Metamodel

Figure 10.73 shows the class diagram for the abstract class EventDefinition. When one of the EventDefinition
sub-types (e.g., TimerEventDefinition) is defined it is contained in Definitions, or a contained
EventDefinition contained in a throw/catch Event.

260 Business Process Model and Notation (BPMN), v2.0.2

Roothlement

o Poundstion)

EveniDefrvtiody
Troen K}
| Lindel weni D Bt Terminsalel vend Delinition | CompsrisatelventDe frion Temert yerdDedinition Comultional veniDedinition
{Fram Dvants) {From Cvarta) {hrosm: B et TPraan Erants) hrom Ewenitn
4 1 : Sl & walF i Cormyakiter | Besclean
ol 0.1 0.1 Q.1 .
g T + laget 0.1 ® 1ok
T & 0.3 0.1
a.t & J1hA Ly + lirmbvcle | prembate s teeluation
ErrorEvent D fnitien CancelEventDefinition | Acteaty Expression
(Prem Everts) {Fr o Everaly [Trm Auteeities| [Fram Coewnes]
& SFoNConpensaton | Bockoan + tondien
& EEatEuannty | irtege
& tompltionuantity | Inbeges
*anisgol veritDe i Usealabiond weistDalinition Sigrall veniDelinition
[Friam Tvantsd froem H e) [From Cvanda
Bl g el + opertorfled | g & rrarssagefiel + e @atiorfal . i
o1 .1 11K s e
[Faroe Ciyreration Fiessane Escalation Sigral
|Irem Carron| it S Hrom Carman) [Prem Evenis) (Peor Evenits|
& Mame | Strng & Name | Shng & Naime | Sting & N | Shing & e | Shrng
& oo ; Bing & Irplreriiaboritel ; Eeamenl & ecalonCods ; Shing .
B s
14 Snsbaiied a ¢, * Fnciednf .4+ S DR
| ItemiDefrwtacn

T —
& Bk nd © e ind
& thchunsfled | Murvert
p HCokechor | Bookaan

Figure 10.73 — EventDefinition Class Diagram

The EventDefinition element inherits the attributes and model associations of BaseElement (see Table 8.5)
through its relationship to RootElement, but does not contain any additional attributes or model associations.

The ErrorEventDefinition, EscalationEventDefinition, and SignalEventDefinition subclasses
comprise of attributes to carry data. The data is defined as part of the Events package. The
MessageEventDefinition subclass comprises of an attribute that refers to a Message which is defined as part of

the Collaboration package.

The following sub clauses will present the sub-types of EventDefinitions.

Cancel Event

Cancel Events are only used in the context of modeling Transaction Sub-Processes (see page 176 for more details
on Transactions). There are two variations: a catch Intermediate Event and an End Event.

€ The catch Cancel Intermediate Event MUST only be attached to the boundary of a Transaction Sub-
Process and, thus, MAY NOT be used in normal flow.

€ The Cancel End Event MUST only be used within a Transaction Sub-Process and, thus, MAY NOT be
used in any other type of Sub-Process or Process.

Figure 10.74 shows the variations of Cancel Events.

Business Process Model and Notation (BPMN), v2.0.2 261

Figure 10.74 — Cancel Events

The CancelEventDefinition element inherits the attributes and model associations of BaseElement (see Table
8.5) through its relationship to the EventDefinition element (see page 259).

Compensation Event

Compensation Events are used in the context of triggering or handling compensation (see page 301 for more details
on compensation). There are four variations: a Start Event, both a catch and throw Intermediate Event, and an End
Event.

€ The Compensation Start Event MAY NOT be used for a fop-level Process.
€ The Compensation Start Event MAY be used for an Event Sub-Process.

@ The catch Compensation Intermediate Event MUST only be attached to the boundary of an Activity and,
thus, MAY NOT be used in normal flow.

€ The throw Compensation Intermediate Event MAY be used in normal flow.
€ The Compensation End Event MAY be used within any Sub-Process or Process.

Figure 10.75 shows the variations of Compensation Events.

WOO®

Figure 10.75 — Compensation Events

Figure 10.76 displays the class diagram for the CompensationEventDefinition.

| compensateEventDefinition
(From Events)
[Eg, waitForCompletion : Boolean

0.1 + activityRef
= Activity
(From Activities)
[Eg, isForCompensation Boolean
[Eg startQuantity : Integer
[Eg completionQuantity : Integer

Figure 10.76 — CompensationEventDefinition Class Diagram
The CompensationEventDefinition element inherits the attributes and model associations of BaseElement

(see Table 8.5) through its relationship to the EventDefinition element (see page 259). Table 10.94 presents the
additional attributes and model associations of the CompensationEventDefinition element.

262 Business Process Model and Notation (BPMN), v2.0.2

Table 10.94 — CompensationEventDefinition attributes and model associations

Attribute Name Description/Usage

activityRef: Activity [0..1] | For a Start Event:
This Event “catches” the compensation for an Event Sub-Process. No further
information is REQUIRED. The Event Sub-Process will provide the Id necessary
to match the Compensation Event with the Event that threw the compensation,
or the compensation will have been a broadcast.

For an End Event:
The Activity to be compensated MAY be supplied. If an Activity is not supplied,

then the compensation is broadcast to all completed Activities in the current Sub-
Process (if present), or the entire Process instance (if at the global level).

For an Intermediate Event within normal flow:

The Activity to be compensated MAY be supplied. If an Activity is not supplied,
then the compensation is broadcast to all completed Activities in the current Sub-
Process (if present), or the entire Process instance (if at the global level). This
“throws” the compensation.

For an Intermediate Event attached to the boundary of an Activity:
This Event “catches” the compensation. No further information is REQUIRED. The
Activity the Event is attached to will provide the Id necessary to match the
Compensation Event with the Event that threw the compensation, or the
compensation will have been a broadcast.

waitForCompletion: For a throw Compensation Event, this flag determines whether the throw

boolean = true Intermediate Event waits for the triggered compensation to complete (the default),
or just triggers the compensation and immediately continues (the BPMN 1.2
behavior).

Conditional Event

Figure 10.77 shows the variations of Conditional Events.

o '/"\\ '/=\\
88

Figure 10.77 — Conditional Events

The ConditionalEventDefinition element inherits the attributes and model associations of BaseElement (see
Table 8.5) through its relationship to the EventDefinition element (see page 259). Table 10.95 presents the
additional model associations of the ConditionalEventDefinition element.

Figure 10.78 displays the class diagram for the ConditionalEventDefinition.

Business Process Model and Notation (BPMN), v2.0.2 263

] conditionalEventDefinition
(From Events)

1|+ condition

=] Expression
(From Common)

Figure 10.78 — ConditionalEventDefinition Class Diagram

The ConditionalEventDefinition element inherits the attributes and model associations of BaseElement (see
Table 8.5) through its relationship to the EventDefinition element (see page 259). Table 10.95 presents the
additional model associations of the ConditionalEventDefinition element.

Table 10.95 — ConditionalEventDefinition model associations

Attribute Name

Description/Usage

condition: Expression

The Expression might be underspecified and provided in the form of natural
language. For executable Processes (isExecutable = true), if the trigger is
Conditional, then a FormalExpression MUST be entered.

Error Event

Figure 10.79 shows the variations of Conditional Events.

®

Figure 10.79 — Error Events

Figure 10.80 displays the class diagram for the ErrorEventDefinition.

264

Business Process Model and Notation (BPMN), v2.0.2

] ErrorEventDefinition
(From Events)

-

0..1 + errorRef

=|Error

(From Common)
Eg name : 5tring
g errorCode : String
L

0.. 1.+ structureRef

= rtemDefinition
(From Common)
[Eg itemkind : Ttemkind
[Eg structureRef : Element
[Eg isCollection : Boolean

Figure 10.80 — ErrorEventDefinition Class Diagram
The ErrorEventDefinition element inherits the attributes and model associations of BaseElement (see Table

8.5) through its relationship to the EventDefinition element (see page 259). Table 10.96 presents the additional
attributes and model associations of the ErrorEventDefinition element.

Table 10.96 — ErrorEventDefinition attributes and model associations

Attribute Name Description/Usage

error: Error [0..1] If the trigger is an Error, then an Error payload MAY be provided.

Escalation Event Definition
Figure 10.81 shows the variations of Escalation Events.

7N 7\
/ A \ " 1\
\ ! 1\ n
N_7 N
Figure 10.81 — Escalation Events

Figure 10.82 displays the class diagram for the EscalationEventDefinition.

Business Process Model and Notation (BPMN), v2.0.2 265

| EscalationEventDefinition
(From Events)

-

0.1, + escalationRef
= Escalation
(From Events)
[Eg name : 5tring
[Eg escalationCode : String
®

0.1 4 structureRef

= rtemDefinition
(From Common)
Egitemkind : Ttemkind
g structureRef ; Element
[Cg isCollection ; Boolean

Figure 10.82 — EscalationEventDefinition Class Diagram
The EscalationEventDefinition element inherits the attributes and model associations of BaseElement (see

Table 8.5) through its relationship to the EventDefinition element (see page 259). Table 10.97 presents the
additional attributes and model associations of the EscalationEventDefinition element.

Table 10.97 — EscalationEventDefinition attributes and model associations

Attribute Name Description/Usage
escalationRef: Escalation If the triggeris an Escalation, then an Escalation payload MAY be
[0-1] provided

Link Event Definition

A Link Event is a mechanism for connecting two sections of a Process. Link Events can be used to create looping
situations or to avoid long Sequence Flow lines. The use of Link Events is limited to a single Process level (i.e.,
they cannot link a parent Process with a Sub-Process).

Figure 10.83 shows the variations of Link Events.

O

Figure 10.83 — Link Events

Paired Link Events can also be used as “Off-Page Connectors” for printing a Process across multiple pages. They can
also be used as generic “Go To” objects within the Process level. There can be multiple source Link Events, but there
can only be one target Link Event. When used to “catch” from the source Link, the Event marker will be unfilled (see
Figure 10.84: upper right). When used to “throw” to the target Link, the Event marker will be filled (see Figure 10.84:
upper: lower Left).

266 Business Process Model and Notation (BPMN), v2.0.2

Since Process models often extend beyond the length of one printed page, there is often a concern about showing how
Sequence Flow connections extend across the page breaks. One solution that is often employed is the use of Off-Page
connectors to show where one page leaves off and the other begins. BPMN provides Intermediate Events of type Link
for use as Off-Page connectors (see Figure 10.84 --Note that the figure shows two different printed pages, not two Pools
in one diagram). A pair of Link Events is used. One of the pair is shown at the end of one page. This Event is named
and has an incoming Sequence Flow and no outgoing Sequence Flows. The second Link Event is at the beginning
of the next page, shares the same name, and has an outgoing Sequence Flow and no incoming Sequence Flow.

- N Source
Link Event

Request Flights
within Parameters

Prepare and
Send Candidate
ltineraries

Receive
Confirmation

Request Rooms
within Parameters

Send Cancellation
Notice

Page 1

Target
Link Event

BOOk. Charge Send Confirmation
Reservations Buyer
Page 2

Figure 10.84 — Link Events Used as Off-Page Connector

Another way that Link Events can be used is as “Go To” objects. Functionally, they would work the same as for Off-
Page Connectors (described above), except that they could be used anywhere in the diagram on the same page or across
multiple pages. The general idea is that they provide a mechanism for reducing the length of Sequence Flow lines.
Some modelers can consider long lines as being hard to follow or trace. Go To Objects can be used to avoid very long

Business Process Model and Notation (BPMN), v2.0.2 267

Sequence Flows (see Figure 10.85 and Figure 10.86). Both diagrams will behave equivalently. For Figure 10.86, if the
“Order Rejected” path is taken from the Decision, then the token traversing the Sequence Flow would reach the source
Link Event and then “jump” to the target Link Event and continue down the Sequence Flow. The Process would
continue as if the Sequence Flow had directly connected the two objects.

Order rejected

Requested

Order Ship Order

Receive Order

Order accepte Fill Order

Close Order O

Request

Send Make Accept
Invoice Payment Payment
: A
Invoice

Figure 10.85 — A Process with a long Sequence Flow

To Close To Close

Requested

Order Order nejected

Ship Order

Receive

Order Fill Order

Close Order

Request
Send Make Accept
Invoice Payment Payment
Invoice

Figure 10.86 — A Process with Link Intermediate Events used as Go To Objects

Some methodologies prefer that all Sequence Flows only move in one direction; that is, forward in time. These
methodologies do not allow Sequence Flows to connect directly to upstream objects. Some consistency in modeling
can be gained by such a methodology, but situations that require looping become a challenge. Link Events can be used
to make upstream connections and create loops without violating the Sequence Flow direction restriction (see Figure
10.87).

268 Business Process Model and Notation (BPMN), v2.0.2

Configure Product Test Product YesPp Package Product

Reconfigure

o)

Reconfigure

Figure 10.87 — Link Events Used for looping

The LinkEventDefinition element inherits the attributes and model associations of BaseElement (see Table 8.5)
through its relationship to the EventDefinition element (see page 259). Table 10.98 presents the additional attributes
of the LinkEventDefinition element.

Table 10.98 — LinkEventDefinition attributes

Attribute Name

Description/Usage

name: string

If the trigger is a Link, then the name MUST be entered.

sources:
LinkEventDefinition [1..%]

Used to reference the corresponding 'catch’ or 'target' LinkEventDefinition, when
this LinkEventDefinition represents a 'throw' or 'source' LinkEventDefinition.

target: LinkEventDefinition

(1]

Used to reference the corresponding 'throw' or 'source' LinkEventDefinition,

when this LinkEventDefinition represents a 'catch’ or 'target' LinkEventDefinition.

Message Event Definition

Figure 10.88 shows the variations of Message Events.

/"\‘
=)
~_.7

Figure 10.88 — Message Events

Business Process Model and Notation (BPMN), v2.0.2

269

Figure 10.89 displays the class diagram for the MessageEventDefinition.

Q MessageEventDefinition
(From Events)

- -
0.1 + operationRef 0.1, + messageRef
] operation =] Message
(From Service) (from Common)
[Eg name : 5tring [5g name : String
[implementationRef : Element
+ message
0..1. 4+ itemRef
| ItemDefinition

[Eg itemkind © Tkemkind
[Eg structureRef : Element
[isCollection : Boolean

Figure 10.89 — MessageEventDefinition Class Diagram
The MessageEventDefinition element inherits the attributes and model associations of BaseElement (see Table

8.5) through its relationship to the EventDefinition element (see page 259). Table 10.99 presents the additional
model associations of the MessageEventDefinition element.

Table 10.99 — MessageEventDefinition model associations

Attribute Name Description/Usage

messageRef: Message [0..1] The Message MUST be supplied (if the i sExecutable attribute of the
Process is set to frue).

operationRef: Operation [0..1] This attribute specifies the Operation that is used by the Message Event.
It MUST be specified for executable Processes.

Multiple Event
For a Start Event:

If the trigger is Multiple, there are multiple ways of starting the Process. Only one of them is necessary to trigger the
start of the Process. The EventDefinition subclasses will define which triggers apply

For an End Event:

If the Result is Multiple, there are multiple consequences of ending the Process. All of them will occur. The
EventDefinition subclasses will define which Results apply.

For an Intermediate Event within normal flow:

If the trigger is Multiple, only one EventDefinition is REQUIRED to catch the trigger. When used to throw, all
of the EventDefinitions are considered and the subclasses will define which Results apply.

270 Business Process Model and Notation (BPMN), v2.0.2

For an Intermediate Event attached to the boundary of an Activity:
If the trigger is Multiple, only one EventDefinition is REQUIRED to “catch” the trigger.

Figure 10.90 shows the variations of Multiple Events.

Figure 10.90 — Multiple Events

None Event

None Events arc Events that do not have a defined EventDefinition. There are three (3) variations of None
Events: a Start Event, a catch Intermediate Event, and an End Event (see Figure 10.91).

€@ The None Start Event MAY be used for a fop-level Process or any type of Sub-Process (except an
Event Sub-Process).

€ The None Start Event MAY NOT be used for an Event Sub-Process.

@ The catch None Intermediate Event MUST only be used in normal flow and, thus, MAY NOT be attached to
the boundary of an Activity.

€ The None End Event MAY be used within any Sub-Process or Process.

Figure 10.91 shows the variations of None Events.

Figure 10.91 — None Events
Parallel Multiple Event
For a Start Event:

« Ifthe trigger is Multiple, there are multiple triggers REQUIRED to start the Process. All of them are necessary to
trigger the start of the Process. The EventDefinition subclasses will define which triggers apply. In addition,
the parallelMultiple attribute of the Start Event MUST be set to frue.

For an Intermediate Event within normal flow:

« Ifthe triggeris Multiple, all of the defined EventDefinitions are REQUIRED to trigger the Event. In
addition, the parallelMultiple attribute of the Intermediate Event MUST be set to true.

For an Intermediate Event attached to the boundary of an Activity:

« If'the trigger is Multiple, all of the defined EventDefinitions are REQUIRED to trigger the Event. In addition,
the parallelMultiple attribute of the Intermediate Event MUST be set to frue.

Figure 10.92 shows the variations of Parallel Multiple Events.

Business Process Model and Notation (BPMN), v2.0.2 271

Figure 10.92 — Multiple Events

Signal Event

] signalEventDefinition
(from Events)

0.1 + signalRef
] signal

(from Events)

®

0..1 + structureRef

| TtemDefinition
(From Common)

Figure 10.93 — SignalEventDefinition Class Diagram

Figure 10.94 shows the variations of Signal Events.

PRrE S s=N

Y. G
UNTINTAY,
L4 NX=7

Figure 10.94 — Signal Events
The SignalEventDefinition element inherits the attributes and model associations of BaseElement (see Table

8.5) through its relationship to the EventDefinition element (see page 259). Table 10.100 presents the additional
model associations of the ConditionalSignalDefinition element.

Table 10.100 — SignalEventDefinition model associations

Attribute Name Description/Usage

signalRef: Signal [0..1] If the trigger is a Signal, then a Signal is provided.

Terminate Event

Figure 10.95 shows the Terminate Event.

272 Business Process Model and Notation (BPMN), v2.0.2

Figure 10.95 — Terminate Event

The TerminateEventDefinition element inherits the attributes and model associations of BaseElement (see
Table 8.5) through its relationship to the EventDefinition element (see page 259).

Timer Event

Figure 10.96 shows the variations of Timer Events.

Figure 10.96 — Timer Events
The TimerEventDefinition element inherits the attributes and model associations of BaseElement (see Table

8.5) through its relationship to the EventDefinition element (see page 259). Table 10.101 presents the additional
model associations of the TimerEventDefinition element.

Table 10.101 — TimerEventDefinition model associations

Attribute Name Description/Usage

timeDate: Expression [0..1] If the trigger is a Timer, then a t imeDate MAY be entered. Timer attributes are
mutually exclusive and if any of the other Timer attributes is set, t imeDate MUST
NOT be set (if the i sExecutable attribute of the Process is set to frue). The
return type of the attribute t imeDate MUST conform to the ISO-8601 format for date
and time representations.

timeCycle: Expression [0..1] If the trigger is a Timer, then a t imeCycle MAY be entered. Timer attributes are
mutually exclusive and if any of the other Timer attributes is set, timeCycle MUST
NOT be set (if the i sExecutable attribute of the Process is set to frue). The
return type of the attribute timeCycle MUST conform to the ISO-8601 format for
recurring time interval representations.

timeDuration: Expression [0..1] | |f the trigger is a Timer, then a timeDuration MAY be entered. Timer attributes
are mutually exclusive and if any of the other Timer attributes is set, timeDuration
MUST NOT be set (if the i sExecutable attribute of the Process is set to frue).
The return type of the attribute t imeDuration MUST conform to the ISO-8601
format for time interval representations.

Business Process Model and Notation (BPMN), v2.0.2 273

10.5.6 Handling Events

BPMN provides advanced constructs for dealing with Events that occur during the execution of a Process (i.c., the
“catching” of an Event). Furthermore, BPMN supports the explicit creation of an Event in the Process (i.c., the
“throwing” of an Event). Both catching and throwing of an Event as well as the resulting Process behavior is referred
to as Event handling. There are three types of Event handlers: those that start a Process, those that are part of the normal
Sequence Flow, and those that are attached to Activities, either via boundary Events or via separate inline handlers
in case of an Event Sub-Process.

Handling Start Events

There are multiple ways in which a Process can be started. For single Start Events, handling consists of starting a new
Process instance each time the Event occurs. Sequence Flows leaving the Event are then followed as usual. For
multiple Start Events, BPMN supports several modeling scenarios that can be applied depending on the scenario.

Exclusive start: the most common scenario for starting a Process is its instantiation by exactly one out of many
possible Start Events. Each occurrence of one of these Events will lead to the creation of a new Process instance.
The following example shows two Events connected to a single Activity (see Figure 10.97). At runtime, each
occurrence of one of the Events will lead to the creation of a new instance of the Process instance and activation of the
Activity. Note that a single Multiple Start Event that contains the Message Event Definitions would behave in
the same way.

Message 1

Activity

t

Message 2

Figure 10.97 — Exclusive start of a Process

A Process can also be started via an Event-Based Gateway, as in the following example (Figure 10.98).

274 Business Process Model and Notation (BPMN), v2.0.2

T

.;&.

Parse E-Mail ~

é'Iiranscribe Process
Fax Request

Handle SMS }——

b

Figure 10.98 — A Process initiated by an Event-Based Gateway

In that case, the first matching Event will create a new instance of the Process, and waiting for the other Events
originating from the same decision stops, following the usual semantics of the Event-Based Exclusive Gateway. Note
that this is the only scenario where a Gateway can exist without an incoming Sequence Flows.

It is possible to have multiple groups of Event-Based Gateways starting a Process, provided they participate in the
same Conversation and hence share the same correlation information. In that case, one Event out of each group needs
to arrive; the first one creates a new Process instance, while the subsequent ones are routed to the existing instance,
which is identified through its correlation information.

Event synchronization: if the modeler requires several disjoint Start Events to be merged into a single Process
instance, then the following notation MUST be applied (Figure 10.99).

@ Activity

Figure 10.99 — Event synchronization at Process start

The Parallel Start Event MAY group several disjoint Start Events each of which MUST occur once in order for an
instance of the Process to be created. Sequence Flows leaving the Event are then followed as usual.

See page 440 for the execution semantics for the Event Handling of Start Events.

Handling Events within normal Sequence Flow (Intermediate Events)

For Intermediate Events, the handling consists of waiting for the Event to occur. Waiting starts when the
Intermediate Event is reached. Once the Event occurs, it is consumed. Sequence flows leaving the Event are
followed as usual.

Business Process Model and Notation (BPMN), v2.0.2 275

Handling Events attached to an Activity (Intermediate boundary Events and Event Sub-Processes)

For boundary Events, handling consists of consuming the Event occurrence and either canceling the Activity the Event
is attached to, followed by normal Sequence Flows leaving that Activity, or by running an Event Handler without
canceling the Activity (only for Message, Signal, Timer and Conditional Events, not for Error Events).

An interrupting boundary Event is defined by a true value of its cancelActivity attribute. Whenever the Event
occurs, the associated Activity is terminated. A downstream foken is then generated, which activates the next element of
the Process (connected to the Event by an unconditional Sequence Flow called an exception flow).

For non-interrupting boundary Events, the cancelActivity attribute is set to false. Whenever the Event occurs, the
associated Activity continues to be active. As a token is generated for the Sequence Flow from the boundary Event in
parallel to the continuing execution of the Activity, care MUST be taken when this flow is merged into the main flow of
the Process — typically it should be ended with its own End Event.

The following example shows a fragment (see Figure 10.100) from a trip booking Process. It contains a Sub-Process
that consists of a main part, and three Event Sub-Processes to deal with Events within the same context: an error
Event Sub-Process that cancels the Sub-Process, a Message Event Sub-Process that updates the state of the
Sub-Process while allowing it to continue, and a Compensation Event Sub-Process.

276 Business Process Model and Notation (BPMN), v2.0.2

Notify

—»(Customer

Retry Limit | |nyalid cC
Exceeded

Booking

X @
Getc(a::: o T Cancel Charge
. Flight Credit Card
Information &

Book Hotel
e Cancel
Hotel
<Kl

" "Update Credit Card Information

~ Update
ll\le Credit Card ()
Info :

Handle Compensation

Update

@ @ @ Customer ()

Booking ~ Flight ~ Hotel Record

Handle Booking Error —
@ Custpmer .
i Retry Limit Failed
Bookin .
Erro; 2g Exceeded _—Booking

Booking
Error 1

Booking
Error 2

Figure 10.100 — Example of inline Event Handling via Event Sub-Processes

The following example (see Figure 10.101) shows the same fragment of that Process, using boundary Event handlers
rather than inline Event Sub-Processes. Note that in this example, the handlers do not have access to the context of
the “Booking” Sub-Process, as they run outside of it. Therefore, the actually compensation logic is shown as a black
box.

Business Process Model and Notation (BPMN), v2.0.2 277

Notify
s —»| Customer
Retry Limit | hyalid cc
Exceeded

Booking

e 1 Update

& credit card -

Info

Get Credit
Card
Information

Charge
Credit Card

i

)
Undo

@ """ > Booking
KEH

Notify
Customer
Failed
Booking

Retry Limit
Exceeded

Booking
Error 2

\

Figure 10.101 — Example of boundary Event Handling

Note that there is a distinction between interrupting and non-interrupting Events and the handling of these Events,
which is described in the sub clauses below. For an interrupting Event (Error, Escalation, Message, Signal, Timer,
Conditional, Multiple, and Parallel Multiple), only one Event Sub-Process for the same Event Declaration MUST
be modeled. This excludes any further non-interrupting handlers for that Event Declaration.

The reason for this restriction lies in the nature of interrupting Event Sub-Processes and boundary Events. They
interrupt normal execution of the parent Activity and after their completion, the parent Activity is immediately
terminated. This implies that only one such handler can be executed at a time. However, this does not restrict the modeler
in specifying several interrupting handlers, if each handler refers to a different Event Declaration.

For non-interrupting Events (Escalation, Message, Signal, Timer, Conditional, Multiple, and Parallel Multiple),
an unlimited number of Event Sub-Processes for the same Event Declaration can be modeled and executed in
parallel. At runtime, they will be invoked in a non-deterministic order. The same restrictions apply for boundary Events.
During execution of a non-interrupting Event Sub-Process, execution of the parent Activity continues as normal.

If for a given Sub-Process, both an inline Event Sub-Process and a boundary Event handler are modeled that
Process the same EventDefinition, the following semantics apply:

€ If the inline Event Sub-Process “re-throws” the Event after completion, the boundary Event is triggered.

278 Business Process Model and Notation (BPMN), v2.0.2

@ If the inline Event Sub-Process completes without “re-throwing” the Event, the Activity is considered to
have completed and normal Sequence Flow resumes. In other terms, the Event Sub-Process “absorbs” the
Event.

mtelztr_rulp;ing Event Handlers (Error, Escalation, Message, Signal, Timer, Conditional, Multiple, and Parallel
ultiple

Interrupting Event Handlers are those that have the cancelActivity attribute is set to true. Whenever the Event
occurs, regardless of whether the Event is handled inline or on the boundary, the associated Activity is interrupted. If an
inline error handler is specified (in case of a Sub-Process), it is run within the context of that Sub-Process. If a
boundary Error Event is present, Sequence Flows from that boundary Event are then followed. The parent Activity
is canceled after either the error handler completes or Sequence Flow from the boundary Event is followed.

In the example above, the “Booking” Sub-Process has an Error handler that defines what should happen in case a
“Booking” Error occurs within the Sub-Process, namely, the already performed bookings are canceled using
compensation. The Error handler is then continued outside the Sub-Process through a boundary Error Event.

I\N,|0|I1t-_inlte)rrupting Event Handlers (Escalation, Message, Signal, Timer, Conditional, Multiple, and Parallel
ultiple

Interrupting Event Handlers are those that have the cancelActivity attribute is set to false.

For Event Sub-Processes, whenever the Event occurs it is consumed and the associated Event Sub-Process is
performed. If there are several Events that happen in parallel, then they are handled concurrently, i.e., several Event
Sub-Process instances are created concurrently. The non-interrupting Start Event indicates that the Event Sub-
Process instance runs concurrently to the Sub-Process proper.

For boundary Events, whenever the Event occurs the handler runs concurrently to the Activity. If an Event Sub-
Process is also specified for that Event (in case of a Sub-Process), it is run within the context of that Sub-Process.
Then, Sequence Flows from the boundary Event are followed. As a token is generated for the Sequence Flow from
the boundary Event in parallel to the continuing execution of the Activity, care MUST be taken when this flow is
merged into the main flow of the Process — typically it should be ended with its own End Event.

In the example above, an Event Handler allows to update the credit card information during the “Booking” Sub-
Process. It is triggered by a credit card information Message: such a Message can be received whenever the control
flow is within the main body of the Sub-Process. Once such a Message is received, the Activities within the
corresponding Event Handler run concurrently with the Activities within the body of the Sub-Process.

See “Intermediate Events” on page 440 for the exact semantics of boundary Intermediate Events and “Event Sub-
Processes” on page 440 for the operational semantics of non-interrupting Event Sub-Processes.

Handling End Events

For a Terminate End Event, all remaining active Activities within the Process are terminated.

A Cancel End Event is only allowed in the context of a Transaction Sub-Process and, as such, cancels the Sub-
Process and aborts an associated Transaction of the Sub-Process.

For all other End Events, the behavior associated with the EventDefinition is performed. When there are no
further active Activities, then the Sub-Process or Process instance is completed. See page 443 for exact semantics.

Business Process Model and Notation (BPMN), v2.0.2 279

10.5.7 Scopes

A scope describes the context in which execution of an Activity happens. This consists of the set of:
- Data Objects available (including Datalnput and DataOutput)
- Events available for catching or throwing triggers

- Conversations going on in that scope

In general, a scope contains exactly one main flow of Activities which is started, when the scope gets activated. Vice
versa, all Activities are enclosed by a scope. Scopes are hierarchically nested.

Scopes can have several scope instances at runtime. They are also hierarchically nested according to their generation. In
a scope instance several tokens can be active.

Scope instances in turn have a lifecycle containing among others the states:
« Activated
« In execution
» Completed
+ In Compensation
» Compensation
* In Error
+ In Cancellation

» Cancelled

BPMN has the following model elements with scope characteristics:
« Choreography
« Pool
+ Sub-Process
« Task
- Activity
* Multi-instances body
Scopes are used to define the semantics of:
+ Visibility of Data Objects (including Datalnput and DataOutput)
- Event resolution

- Starting/stopping of foken execution

The Data Objects, Events, and correlation keys described by a scope can be explicitly modeled or implicitly
defined.

280 Business Process Model and Notation (BPMN), v2.0.2

10.5.8 Events Package XML Schemas

Table 10.102 — BoundaryEvent XML schema

<xsd:element name="boundaryEvent" type="tBoundaryEvent" substitutionGroup="flowElement"/>
<xsd:complexType name="tBoundaryEvent">
<xsd:complexContent>
<xsd:extension base="tCatchEvent">
<xsd:attribute name="cancelActivity" type="xsd:boolean" default="true"/>
<xsd:attribute name="attachedToRef" type="xsd:QName"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.103 — CancelEventDefinition XML schema

<xsd:element name="cancelEventDefinition" type="tCancelEventDefinition" substitutionGroup="eventDefinition"/>
<xsd:complexType name="tCancelEventDefinition">
<xsd:complexContent>
<xsd:extension base="tEventDefinition"/>
</xsd:complexContent>
</xsd:complexType>

Table 10.104 — CatchEvent XML schema

<xsd:element name="catchEvent" type="tCatchEvent"/>
<xsd:complexType name="tCatchEvent" abstract="true">
<xsd:complexContent>
<xsd:extension base="tEvent">
<xsd:sequence>
<xsd:element ref="dataOutput" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="dataOutputAssociation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="outputSet" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="eventDefinition" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="eventDefinitionRef" type="xsd:QName" minOccurs="0" maxOc-
curs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="parallelMultiple" type="xsd:boolean" default="false"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.105 — CancelEventDefinition XML schema

<xsd:element name="cancelEventDefinition" type="tCancelEventDefinition" substitutionGroup="eventDefinition"/>
<xsd:complexType name="tCancelEventDefinition">
<xsd:complexContent>
<xsd:extension base="tEventDefinition"/>
</xsd:complexContent>
</xsd:complexType>

Business Process Model and Notation (BPMN), v2.0.2 281

Table 10.106 — CompensateEventDefinition XML schema

<xsd:element name="compensateEventDefinition" type="tCompensateEventDefinition" substitutionGroup="event-
Definition"/>
<xsd:complexType name="tCompensateEventDefinition">
<xsd:complexContent>
<xsd:extension base="tEventDefinition">
<xsd:attribute name="waitForCompletion" type="xsd:boolean"/>
<xsd:attribute name="activityRef" type="xsd:QName"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.107 — ConditionalEventDefinition XML schema

<xsd:element name="conditionalEventDefinition" type="tConditionalEventDefinition" substitutionGroup="eventDef-
inition"/>
<xsd:complexType name="tConditionalEventDefinition">
<xsd:complexContent>
<xsd:extension base="tEventDefinition">
<xsd:sequence>
<xsd:element name="condition" type="tExpression"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.108 — ErrorEventDefinition XML schema

<xsd:element name="errorEventDefinition" type="tErrorEventDefinition" substitutionGroup="eventDefinition"/>
<xsd:complexType name="tErrorEventDefinition">
<xsd:complexContent>
<xsd:extension base="tEventDefinition">]
<xsd:attribute name="errorRef" type="xsd:QName"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.109 — EscalationEventDefinition XML schema

<xsd:element name="escalationEventDefinition" type="tEscalationEventDefinition
substitutionGroup="eventDefinition"/>
<xsd:complexType name="tEscalationEventDefinition">
<xsd:complexContent>
<xsd:extension base="tEventDefinition">
<xsd:attribute name="escalationRef" type="xsd:QName"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

282 Business Process Model and Notation (BPMN), v2.0.2

Table 10.110 — Event XML schema

<xsd:element name="event" type="tEvent" substitutionGroup="flowElement"/>
<xsd:complexType name="tEvent" abstract="true">
<xsd:complexContent>
<xsd:extension base="tFlowNode"/>
</xsd:complexContent>
</xsd:complexType>

Table 10.111 — EventDefinition XML schema

<xsd:element name="eventDefinition" type="tEventDefinition"/>
<xsd:complexType name="tEventDefinition" abstract="true">
<xsd:complexContent>
<xsd:extension base="tBaseElement"/>
</xsd:complexContent>
</xsd:complexType>

Table 10.112 — ImplicitThrowEvent XML schema

<xsd:element name="implicitThrowEvent" type="tImplicitThrowEvent" substitutionGroup="flowElement"/>
<xsd:complexType name="timplicitThrowEvent">
<xsd:complexContent>
<xsd:extension base="tThrowEvent"/>
</xsd:complexContent>
</xsd:complexType>

Table 10.113 — IntermediateCatchEvent XML schema

<xsd:element name="intermediateCatchEvent" type="tIntermediateCatchEvent" substitutionGroup="flowElement"/
>
<xsd:complexType name="tIntermediateCatchEvent">
<xsd:complexContent>
<xsd:extension base="tCatchEvent"/>
</xsd:complexContent>
</xsd:complexType>

Table 10.114 — IntermediateThrowEvent XML schema

<xsd:element name="intermediateThrowEvent" type="tIntermediate ThrowEvent" substitutionGroup="flowEle-
ment"/>
<xsd:complexType name="tIntermediateThrowEvent">
<xsd:complexContent>
<xsd:extension base="tThrowEvent"/>
</xsd:complexContent>
</xsd:complexType>

Table 10.115 — LinkEventDefinition XML schema

<xsd:element name="linkEventDefinition" type="tLinkEventDefinition" substitutionGroup="eventDefinition"/>
<xsd:complexType name="tLinkEventDefinition">

Business Process Model and Notation (BPMN), v2.0.2 283

<xsd:complexContent>
<xsd:extension base="tEventDefinition">
<xsd:sequence>
<xsd:element name="source" type="xsd:QName" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="target" type="xsd:QName" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.116 — MessageEventDefinition XML schema

<xsd:element name="messageEventDefinition" type="tMessageEventDefinition" substitutionGroup="eventDefini-
tion"/>
<xsd:complexType name="tMessageEventDefinition">
<xsd:complexContent>
<xsd:extension base="tEventDefinition">
<xsd:sequence>
<xsd:element name="operationRef" type="xsd:QName" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="messageRef" type="xsd:QName"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.117 — Signal XML schema

<xsd:element name="signal" type="tSignal" substitutionGroup="reusableElement"/>
<xsd:complexType name="tSignal">
<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="structureRef" type="xsd:QName"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.118 — SignalEventDefinition XML schema

<xsd:element name="signalEventDefinition" type="tSignalEventDefinition" substitutionGroup="eventDefinition"/>
<xsd:complexType name="tSignalEventDefinition">
<xsd:complexContent>
<xsd:extension base="tEventDefinition">
<xsd:attribute name="signalRef" type="xsd:QName"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

284 Business Process Model and Notation (BPMN), v2.0.2

Table 10.119 — StartEvent XML schema

<xsd:element name="startEvent" type="tStartEvent" substitutionGroup="flowElement"/>
<xsd:complexType name="tStartEvent">
<xsd:complexContent>
<xsd:extension base="tCatchEvent">
<xsd:attribute name="isInterrupting" type="xsd:boolean" default="true"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.120 — TerminateEventDefinition XML schema

<xsd:element name="terminateEventDefinition" type="tTerminateEventDefinition" substitutionGroup="eventDefini-
tion"/>
<xsd:complexType name="tTerminateEventDefinition">
<xsd:complexContent>
<xsd:extension base="tEventDefinition"/>
</xsd:complexContent>
</xsd:complexType>

Table 10.121 — ThrowEvent XML schema

<xsd:element name="throwEvent" type="tThrowEvent"/>
<xsd:complexType name="tThrowEvent" abstract="true">
<xsd:complexContent>
<xsd:extension base="tEvent">
<xsd:sequence>
<xsd:element ref="datalnput" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="datalnputAssociation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="inputSet" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="eventDefinition" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="eventDefinitionRef" type="xsd:QName" minOccurs="0" maxOc-
curs="unbounded"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.122 — TimerEventDefinition XML schema

<xsd:element name="timerEventDefinition" type="tTimerEventDefinition" substitutionGroup="eventDefinition"/>
<xsd:complexType name="tTimerEventDefinition">
<xsd:complexContent>
<xsd:extension base="tEventDefinition">
<xsd:choice>
<xsd:element name="timeDate" type="tExpression" minOccurs="0" maxOccurs="1"/>
<xsd:element name="timeDuration" type="tExpression" minOccurs="0" maxOccurs="1"/>
<xsd:element name="timeCycle" type="tExpression" minOccurs="0" maxOccurs="1"/>
</xsd:choice>
</xsd:extension>

Business Process Model and Notation (BPMN), v2.0.2 285

</xsd:complexContent>
</xsd:complexType>

10.6 Gateways

Gateways are used to control how Sequence Flows interact as they converge and diverge within a Process. If the
flow does not need to be controlled, then a Gateway is not needed. The term “Gateway” implies that there is a gating
mechanism that either allows or disallows passage through the Gateway. As tokens arrive at a Gateway they can be
merged together on input and/or split apart on output as the Gateway mechanisms are invoked.

A Gateway is a diamond, which has been used in many flow chart notations for exclusive branching and is familiar to
most modelers.

€ A Gateway is a diamond that MUST be drawn with a single thin line (see Figure 10.102).

Figure 10.102 — A Gateway

€@ The use of text, color, size, and lines for a Gateway MUST follow the rules defined in “Use of Text,
Color, Size, and Lines in a Diagram” on page 39 with the exception that:

Gateways, like Activities, are capable of consuming or generating additional tokens, effectively controlling
the execution semantics of a given Process. The main difference is that Gateways do not represent ‘work’
being done and they are considered to have zero effect on the operational measures of the Process being
executed (cost, time, etc.).

Gateways can define all the types of Business Process Sequence Flow behavior: Decisions/branching
(exclusive, inclusive, and complex), merging, forking, and joining. Thus, while the diamond has been used
traditionally for exclusive decisions, BPMN extends the behavior of the diamonds to reflect any type of
Sequence Flow control. Each type of Gateway will have an internal indicator or marker to show the type of
Gateway that is being used (see Figure 10.103).

286 Business Process Model and Notation (BPMN), v2.0.2

Exclusive or

Event-Based

A
®@ @

Parallel
Event-Based

Inclusive

Complex

Parallel

+

Figure 10.103 — The Different types of Gateways

The Gateway controls the flow of both diverging and converging Sequence Flows. That is, a single Gateway could
have multiple input and multiple output flows. Modelers and modeling tools might want to enforce a best practice of a
Gateway only performing one of these functions. Thus, it would take two sequential Gateways to first converge and
then to diverge the Sequence Flows.

Business Process Model and Notation (BPMN), v2.0.2 287

| BaseFlement
(from Foundation)
g id : String + documentation
C]) N
| FlowElement

(From Common)
[Eg name : 5tring

| Documentation
(From Foundation)
[Eg, text : String
[Eg, textFormat : String

“«enumerations
[E] GatewayDirection
(from Gateways)

wenumeration:
EventBasedGatewayType
(Ffrom Gateways)
= Parallel
= Exclusive

| EventBasedGateway
(From Gateways)

=1 Unspecified

= Converging [Eg instantiate : Boolean

[Eg eventGatewayType ! EventBasedGatewayType

| FlowNode = Diverging
(From Common) =1 Mixed
Q Gateway

(From Gateways)

| ComplexGateway
(From Gateways)

- parallelGateway
(From Gateways)

= InclusiveGateway
(from Gateways)

= ExclusiveGateway
(From Gateways)

+ complexGateway . * 0.1

+ inclusiveGateway
* + complexGateway

+ exclusiveGateway

0.1 4 default 0.1, + default
=] sequenceFlow 0.1
(From Common) + defadt + activationCondition | 0..1
g isImmediate : Boolean =
- _ Expression
+ conditionExpression {From Common)
0.1 0.1

Figure 10.104 — Gateway class diagram

Gateways are described in this sub clause on an abstract level. The execution semantics of Gateways is detailed on
page 434.

10.6.1 Sequence Flow Considerations

NOTE: Although the shape of a Gateway is a diamond, it is not a requirement that incoming and outgoing Sequence Flows
MUST connect to the corners of the diamond. Sequence Flows can connect to any position on the boundary of the Gateway
shape.

This sub clause applies to all Gateways. Additional Sequence Flow Connection rules are specified for each type of
Gateway in the sub clauses below.

€ A Gateway MAY be a target for a Sequence Flow. It can have zero (0), one (1), or more incoming
Sequence Flows.

€ If the Gateway does not have an incoming Sequence Flow, and there is no Start Event for the
Process, then the Gateway’s divergence behavior, depending on the type of Gateway (see below),
SHALL be performed when the Process is instantiated.

288 Business Process Model and Notation (BPMN), v2.0.2

€ A Gateway MAY be a source of a Sequence Flow; it can have zero, one, or more outgoing Sequence
Flows.

€ A Gateway MUST have either multiple incoming Sequence Flows or multiple outgoing Sequence Flows
(i.e., it MUST merge or split the flow).

€ A Gateway with a gatewayDirection of unspecified MAY have both multiple incoming and
outgoing Sequence Flows.

€ A Gateway with a gatewayDirection of mixed MUST have both multiple incoming and outgoing
Sequence Flows.

€ A Gateway with a gatewayDirection of converging MUST have multiple incoming Sequence
Flows, but MUST NOT have multiple outgoing Sequence Flows.

€ A Gateway with a gatewayDirection of diverging MUST have multiple outgoing Sequence
Flows, but MUST NOT have multiple incoming Sequence Flows.

10.6.2 Exclusive Gateway

A diverging Exclusive Gateway (Decision) is used to create alternative paths within a Process flow. This is basically
the “diversion point in the road” for a Process. For a given instance of the Process, only one of the paths can be taken.

A Decision can be thought of as a question that is asked at a particular point in the Process. The question has a defined
set of alternative answers. Each answer is associated with a condition Expression that is associated with a Gateway’s
outgoing Sequence Flows.

@ The Exclusive Gateway MAY use a marker that is shaped like an “X” and is placed within the Gateway
diamond (see Figure 10.106) to distinguish it from other Gateways. This marker is NOT REQUIRED
(see Figure 10.105).

€@ A diagram SHOULD be consistent in the use of the “X” internal indicator. That is, a diagram SHOULD NOT
have some Gateways with an indicator and other Gateways without an indicator.

Condition 1

Default

~——

Figure 10.105 — An Exclusive Data-Based Decision (Gateway) Example without the Internal Indicator

Business Process Model and Notation (BPMN), v2.0.2 289

Condition 1

Default

~——

Figure 10.106 — A Data-Based Exclusive Decision (Gateway) Example with the Internal Indicator

NOTE: as a modeling preference, the Exclusive Gateways shown in examples within this document will be shown without
the internal indicator.

A default path can optionally be identified, to be taken in the event that none of the conditional Expressions evaluate
to true. If a default path is not specified and the Process is executed such that none of the conditional Expressions
evaluates to frue, a runtime exception occurs.

A converging Exclusive Gateway is used to merge alternative paths. Each incoming Sequence Flow token is routed
to the outgoing Sequence Flow without synchronization.

= Gateway = AlowNode
(From Gateways) (From Common)
g datewayDirection : GatewayDirection

+ sourceRef |1 1 4 targetRef
| ExclusiveGateway
(From Gateways)
-
0.1 + default + outgoing |* * 4+ incoming
| sequenceFlow
(From Commen)
g isimmediate : Boolean
0.1

0.1+ conditionExpression

| Expression
(From Common)

Figure 10.107 — Exclusive Gateway class diagram

The Exclusive Gateway clement inherits the attributes and model associations of Gateway (see Table 8.46). Table
10.123 presents the additional attributes and model associations of the Exclusive Gateway element.

290 Business Process Model and Notation (BPMN), v2.0.2

Table 10.123 — ExclusiveGateway Attributes & Model Associations

Attribute Name Description/Usage

default: SequenceFlow [0..1] The Sequence Flow that will receive a token when none of the
conditionExpressions on other outgoing Sequence Flows evaluate
to true. The default Sequence Flow should not have a
conditionExpression. Any such Expression SHALL be ignored.

10.6.3 Inclusive Gateway

A diverging Inclusive Gateway (Inclusive Decision) can be used to create alternative but also parallel paths within a
Process flow. Unlike the Exclusive Gateway, all condition Expressions are evaluated. The #rue evaluation of one
condition Expression does not exclude the evaluation of other condition Expressions. All Sequence Flows with
a true evaluation will be traversed by a foken. Since each path is considered to be independent, all combinations of the
paths MAY be taken, from zero to all. However, it should be designed so that at least one path is taken.

€ The Inclusive Gateway MUST use a marker that is in the shape of a circle or an “O” and is placed within the
Gateway diamond (see Figure 10.108) to distinguish it from other Gateways.

Condition 1

Default

~——

Figure 10.108 — An example using an Inclusive Gateway

A default path can optionally be identified, to be taken in the event that none of the conditional Expressions evaluate
to true. If a default path is not specified and the Process is executed such that none of the conditional Expressions
evaluates to true, a runtime exception occurs.

A converging Inclusive Gateway is used to merge a combination of alternative and parallel paths. A control flow token
arriving at an Inclusive Gateway MAY be synchronized with some other fokens that arrive later at this Gateway. The
precise synchronization behavior of the Inclusive Gateway can be found on page 291.

Business Process Model and Notation (BPMN), v2.0.2 291

] Gateway = FowNode
(From Gateways) (From Common)

[Eg gatewayDirection : GatewayDirection

+sourceRef | 1 1 | + targetRef
= InclusiveGateway
(from Gateways)
L
0.1, + default + outgoing | * * | +incoming

| sequenceFlow
(From Common)

g isImmediate : Boolean
0.1

0.1+ conditionExpression

E Expression
(From Common)

Figure 10.109 - Inclusive Gateway class diagram

The Inclusive Gateway element inherits the attributes and model associations of Gateway (see Table 8.46). Table
10.124 presents the additional attributes and model associations of the Inclusive Gateway element.

Table 10.124 - InclusiveGateway Attributes & Model Associations

Attribute Name Description/Usage

default: SequenceFlow [0..1] The Sequence Flow that will receive a token when none of the
conditionExpressions on other Sequence Flows evaluate to true.
The default Sequence Flow should not have a conditionExpression.
Any such Expression SHALL be ignored.

10.6.4 Parallel Gateway

A Parallel Gateway is used to synchronize (combine) parallel flows and to create parallel flows.

€ The Parallel Gateway MUST use a marker that is in the shape of a plus sign and is placed within the Gateway
diamond (see Figure 10.110) to distinguish it from other Gateways.

292 Business Process Model and Notation (BPMN), v2.0.2

s

Figure 10.110 — An example using an Parallel Gateway

Parallel Gateways are used for synchronizing parallel flow (see Figure 10.111).

Figure 10.111 — An example of a synchronizing Parallel Gateway

A Parallel Gateway creates parallel paths without checking any conditions; each outgoing Sequence Flow receives a
token upon execution of this Gateway. For incoming flows, the Parallel Gateway will wait for all incoming flows
before triggering the flow through its outgoing Sequence Flows.

Business Process Model and Notation (BPMN), v2.0.2 293

£l Gateway £l HowNode
(From Gateways) (From Common)
[Eg @atewayDirection : GatewayDirection

+ sourceRef | 1 + targetRef | 1
-
+ outgoing + incoming | *
| ParallelGateway =] SequenceFlow
(From Gateways) (From Common)

Figure 10.112 — Parallel Gateway class diagram

The Parallel Gateway clement inherits the attributes and model associations of Gateway (see Table 8.46), but adds no
additional attributes or model associations.

10.6.5 Complex Gateway

The Complex Gateway can be used to model complex synchronization behavior. An Expression
activationCondition is used to describe the precise behavior. For example, this Expression could specify that
tokens on three out of five incoming Sequence Flows are needed to activate the Gateway. What tokens are produced
by the Gateway is determined by conditions on the outgoing Sequence Flows as in the split behavior of the Inclusive
Gateway. If fokens arrive later on the two remaining Sequence Flows, those fokens cause a reset of the Gateway and
new token can be produced on the outgoing Sequence Flows. To determine whether it needs to wait for additional
tokens before it can reset, the Gateway uses the synchronization semantics of the Inclusive Gateway.

@ The Complex Gateway MUST use a marker that is in the shape of an asterisk and is placed within the
Gateway diamond (see Figure 10.113) to distinguish it from other Gateways.

Alternative 1 »

Alternative 2

%*

Alternative 3

Alternative 4

——

Figure 10.113 — An example using a Complex Gateway

294 Business Process Model and Notation (BPMN), v2.0.2

The Complex Gateway has, in contrast to other Gateways, an internal state, which is represented by the boolean
instance attribute waitingForStart, which is initially t#7ue and becomes false after activation. This attribute can be
used in the conditions of the outgoing Sequence Flows to specify where fokens are produced upon activation and where
tokens are produced upon reset. It is RECOMMENDED that each outgoing Sequence Flow either get a token upon
activation or upon reset but not both. At least one outgoing Sequence Flow should receive a token upon activation but
a token MUST NOT be produced upon reset.

Figure 10.114 shows the class diagram for the Complex Gateway.

| Gateway = HowNode
(From Gateways) (From Common)
[Eg gatewayDirection | GatewayDirection

+ targetRef 1 + sourceRef | 1

| ComplexGateway
(From Gateways)

+ activationCondition | 0.1 -

+ default: 0.1 ™+ incoming 4+ putgoing
| Expression | SequenceFlow
(From Common) 0.1 0.1 (From Common)

Eg ismmediate : Boolean
+ conditionExpression

Figure 10.114 — Complex Gateway class diagram

The Complex Gateway clement inherits the attributes and model associations of Gateway (see Table 8.46). Table
10.125 presents the additional model associations of the Complex Gateway clement.

Table 10.125 — Complex Gateway model associations

Attribute Name Description/Usage
FOCtZ‘]’a“°"C°“di“°“: Expression Determines which combination of incoming tokens will be synchronized for

activation of the Gateway.

default: SequenceFlow [0..1] The Sequence Flow that will receive a token when none of the
conditionExpressions on other Sequence Flows evaluate to true.
The default Sequence Flow should not have a
conditionExpression. Any such Expression SHALL be ignored.

Business Process Model and Notation (BPMN), v2.0.2 295

Table 10.126 — Instance attributes related to the Complex Gateway

Attribute Name Description/Usage

activationCount: integer Refers at runtime to the number of tokens that are present on an incoming
Sequence Flow of the Complex Gateway.

waitingForStart: boolean = true Represents the internal state of the Complex Gateway. It is either waiting
for start (=true) or waiting for reset (=false).

10.6.6 Event-Based Gateway

The Event-Based Gateway represents a branching point in the Process where the alternative paths that follow the
Gateway are based on Events that occur, rather than the evaluation of Expressions using Process data (as with an
Exclusive or Inclusive Gateway). A specific Event, usually the receipt of a Message, determines the path that will
be taken. Basically, the decision is made by another Participant, based on data that is not visible to Process, thus,
requiring the use of the Event-Based Gateway.

For example, if a company is waiting for a response from a customer they will perform one set of Activities if the
customer responds “Yes” and another set of Activities if the customer responds “No.” The customer’s response
determines which path is taken. The identity of the Message determines which path is taken. That is, the “Yes”
Message and the “No” Message arc different Messages—i.c., they are not the same Message with different values
within a property of the Message. The receipt of the Message can be modeled with an Intermediate Event with a
Message rrigger or a Receive Task. In addition to Messages, other triggers for Intermediate Events can be used,
such as Timers.

The Event Gateway shares the same basic shape of the Gateways, a diamond, with a marker placed within the
diamond to indicate variations of the Gateway.

€ An Event Gateway is a diamond that MUST be drawn with a single thin line.

@ The use of text, color, size, and lines for an Event Gateway MUST follow the rules defined in “Use of
Text, Color, Size, and Lines in a Diagram” on page 39.

€ The marker for the Event Gateway MUST look like a catch Multiple Intermediate Event (see Figure 10.115).

AN\
\ @)
N

Figure 10.115 — Event-Based Gateway

Unlike other Gateways, the behavior of the Event Gateway is determined by a configuration of elements, rather than
the single Gateway.

4 An Event Gateway MUST have two or more outgoing Sequence Flows.

@ The outgoing Sequence Flows of the Event Gateway MUST NOT have a conditionExpression.

296 Business Process Model and Notation (BPMN), v2.0.2

The objects that are on the target end of the Gateway’s outgoing Sequence Flows are part of the configuration of the
Gateway.

€ Event-Based Gateways are configured by having ouzgoing Sequence Flows target an Intermediate Event
or a Receive Task in any combination (see Figure 10.116 and Figure 10.117) except that:

€ If Message Intermediate Events are used in the configuration, then Receive Tasks MUST NOT be
used in that configuration and vice versa.

€ Receive Tasks used in an Event Gateway configuration MUST NOT have any attached
Intermediate Events.

€ Only the following Intermediate Event triggers are valid: Message, Signal, Timer, Conditional,
and Multiple (which can only include the previous triggers). Thus, the following Intermediate Event
triggers are not valid: Error, Cancel, Compensation, and Link.

@ Target elements in an Event Gateway configuration MUST NOT have any additional incoming Sequence
Flows (other than that from the Event Gateway).

Request

Response

1 Day

Figure 10.116 — An Event-Based Gateway example using Message Intermediate Events

Receive
Message 1

Request ER-:-;c-:-;ive
Reponse Message 2

1 Day

Figure 10.117 — An Event-Based Gateway example using Receive Tasks

Business Process Model and Notation (BPMN), v2.0.2 297

When the first Event in the Event Gateway configuration is triggered, then the path that follows that Event will used
(a token will be sent down the Event’s outgoing Sequence Flows). All the remaining paths of the Event Gateway
configuration will no longer be valid. Basically, the Event Gateway configuration is a race condition where the first
Event that is triggered wins.

There are variations of the Event Gateway that can be used at the start of the Process. The behavior and marker of the
Gateway will change.

Event Gateways can be used to instantiate a Process. By default the Gateway’s instantiate attribute is false,
but if set to true, then the Process is instantiated when the first Event of the Gateway’s configuration is triggered.

€ Ifthe Event Gateway’s instantiate attribute is set to frue, then the marker for the Event Gateway looks
like a Multiple Start Event (see Figure 10.118).

©

Figure 10.118 — Exclusive Event-Based Gateway to start a Process

In order for an Event Gateway to instantiate a Process, it MUST not have any incoming Sequence Flows.

In some situations a modeler might want the Process to be instantiated by one of a set of Messages while still
requiring all of the Messages for the working of the same Process instance. To handle this, there is another variation
of the Event Gateway.

¢ Ifthe Event Gateway’s instantiate attribute is set to #rue and the eventGatewayType attribute is set to
Parallel, then the marker for the Event Gateway looks like a Parallel Multiple Start Event
(see Figure 10.119).

€ The Event Gateway’s instantiate attribute MUST be set to true in order for the
eventGatewayType attribute to be setto Parallel (i.e., for Event Gateway’s that do not instantiate
the Process MUST be Exclusive—a standard Parallel Gateway can be used to include parallel
Events in the middle of a Process).

@)

Figure 10.119 — Parallel Event-Based Gateway to start a Process

The Parallel Event Gateway is also a type of race condition. In this case, however, when the first Event is triggered
and the Process is instantiated, the other Events of the Gateway configuration are not disabled. The other Events are
still waiting and are expected to be triggered before the Process can (normally) complete. In this case, the Messages
that trigger the Events of the Gateway configuration MUST share the same correlation information.

298 Business Process Model and Notation (BPMN), v2.0.2

L] Gateway
(From Gateways)
[Eg gatewayDirection : GatewayDirection

| EventBasedGateway
(From Gateways)
[instantiate : Boolean

g eventGateway Type : EventBasedGatewayType

wenumeration:
[EventBasedGatewayType
(From Gateways)
= Parallel
= Exclusive

e] Activity
(From Events) (From Activities)
[IsForCompensation : Boolean
[Eg startQuantity © Integer
g completionQuantity © Integer

| FlowNode

(From Common)

+ targetRef 1 + sourceRef | 1

+ incoming | * + putgoing *

| SequenceFlow
(From Common)

Figure 10.120 — Event-Based Gateway class diagram

The Event-Based Gateway clement inherits the attributes and model associations of Gateway (see Table 8.46). Table
10.127 presents the additional attributes and model associations of the Event-Based Gateway element.

Table 10.127 — EventBasedGateway Attributes & Model Associations

Attribute Name

Description/Usage

instantiate: boolean = false

When frue, receipt of one of the Events will instantiate the Process
instance.

eventGatewayType:
EventGatewayType = Exclusive
{ Exclusive | Parallel }

The eventGatewayType determines the behavior of the Gateway when

used to instantiate a Process (as described above).
The attribute can only be setto parallel whenthe instantiate attribute is set

to true.

Event-Based Gateways can be used at the start of a Process, without having to be a target of Sequence Flows.
There can be multiple such Event-Based Gateways at the start of a Process. Ordinary Start Events and Event-
Based Gateways can be used together.

Business Process Model and Notation (BPMN), v2.0.2 299

10.6.7 Gateway Package XML Schemas

Table 10.128 — ComplexGateway XML schema

<xsd:element name="complexGateway" type="tComplexGateway" substitutionGroup="flowElement"/>
<xsd:complexType name="tComplexGateway">
<xsd:complexContent>
<xsd:extension base="tGateway">
<xsd:sequence>
<xsd:element name="activationCondition" type="tExpression" minOccurs="0" maxOc-
curs="1"/>
</xsd:sequence>
<xsd:attribute name="default" type="xsd:IDREF"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.129 — EventBasedGateway XML schema

<xsd:element name="eventBasedGateway" type="tEventBasedGateway" substitutionGroup="flowEle-
ment"/>
<xsd:complexType name="tEventBasedGateway">
<xsd:complexContent>
<xsd:extension base="tGateway">
<xsd:attribute name="instantiate" type="xsd:boolean" default="false"/>
<xsd:attribute name="eventGatewayType" type="tEventBasedGatewayType" default="Exclu-
sive"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="tEventBasedGatewayType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="Exclusive"/>
<xsd:enumeration value="Parallel"/>
</xsd:restriction>
</xsd:simpleType>

Table 10.130 — ExclusiveGateway XML schema

<xsd:element name="exclusiveGateway" type="tExclusiveGateway" substitutionGroup="flowElement"/>
<xsd:complexType name="tExclusiveGateway">
<xsd:complexContent>
<xsd:extension base="tGateway">
<xsd:attribute name="default" type="xsd:IDREF" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.131 — Gateway XML schema

<xsd:element name="gateway" type="tGateway" abstract="true"/>
<xsd:complexType name="tGateway">
<xsd:complexContent>
<xsd:extension base="tFlowElement">
<xsd:attribute name="gatewayDirection" type="tGatewayDirection" default="Unspecified"/>
</xsd:extension>

300 Business Process Model and Notation (BPMN), v2.0.2

</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="tGatewayDirection">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="Unspecified"/>
<xsd:enumeration value="Converging"/>
<xsd:enumeration value="Diverging"/>
<xsd:enumeration value="Mixed"/>
</xsd:restriction>
</xsd:simpleType>

Table 10.132 - InclusiveGateway XML schema

<xsd:element name="inclusiveGateway" type="tInclusiveGateway" substitutionGroup="flowElement"/>
<xsd:complexType name="tInclusiveGateway">
<xsd:complexContent>
<xsd:extension base="tGateway">
<xsd:attribute name="default" type="xsd:IDREF" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.133 — ParallelGateway XML schema

<xsd:element name="parallelGateway" type="tParallelGateway" substitutionGroup="flowElement"/>
<xsd:complexType name="tParallelGateway">
<xsd:complexContent>
<xsd:extension base="tGateway"/>
</xsd:complexContent>
</xsd:complexType>

10.7 Compensation

Compensation is concerned with undoing steps that were already successfully completed, because their results and
possibly side effects are no longer desired and need to be reversed. If an Activity is still active, it cannot be compensated,
but rather needs to be canceled. Cancellation in turn can result in compensation of already successfully completed
portions of an active Activity, in case of a Sub-Process.

Compensation is performed by a compensation handler. A compensation handler performs the steps necessary to reverse
the effects of an Activity. In case of a Sub-Process, the compensation handler has access to Sub-Process data at the
time of its completion (“snapshot data”).

Compensation is triggered by a throw Compensation Event, which typically will be raised by an error handler, as part
of cancellation, or recursively by another compensation handler. That Event specifies the Activity for which
compensation is to be performed, either explicitly or implicitly.

Business Process Model and Notation (BPMN), v2.0.2 301

10.7.1 Compensation Handler

A compensation handler is a set of Activities that are not connected to other portions of the BPMN model. The
compensation handler starts with a catch Compensation Event. That catch Compensation Event cither is a
boundary Event, or, in case of a Compensation Event Sub-Process, the handlers Start Event.

A compensation handler connected via a boundary Event can only perform “black-box” compensation of the original
Activity. This compensation is modeled with a specialized Compensation Activity, which is connected to the boundary
Event through an Association (see Figure 10.121). The Compensation Activity, which can be either a Task or a
Sub-Process, has a marker to show that it is used for compensation only and is outside the normal flow of the
Process.

Book Hotel

Cancel

Figure 10.121- Compensation through a boundary Event

A Compensation Event Sub-Process is contained within a Process or a Sub-Process (sece Figure 10.122). Like
the Compensation Activity, the Compensation Event Sub-Process is outside the normal flow of the Process.
The Event Sub-Process, which is marked with a dotted line boundary, can access data that is part of its parent, a
snapshot at the point in time when its parent completed. A Compensation Event Sub-Process can recursively trigger
compensation for Activities contained in its parent.

302 Business Process Model and Notation (BPMN), v2.0.2

Booking

: Handle Com pensation :
: _ Update 3
’ @ 4} (} Customer . :
!Booking Flight Hotel Record :
» ,
H H

Figure 10.122 — Monitoring Class Diagram

It is possible to specify that a Sub-Process can be compensated without having to define the compensation handler. The
Sub-Process attribute compensable, when set, specifies that default compensation is implicitly defined, which
recursively compensates all successfully completed Activities within that Sub-Process.

The example in 10.122, above contains a custom Compensation Event Sub-Process, triggered by a Compensation
Start Event. Note that this compensation handler deviates from default compensation in that it runs Compensation
Activities in an order different from the order in the forward case; it also contains an additional Activity adding
Process logic that cannot be derived from the body of the Sub-Process itself.

10.7.2 Compensation Triggering

Compensation is triggered using a compensation throw Event, which can either be an Intermediate or an End
Event. The Activity that needs to be compensated is referenced. If the Activity is clear from the context, it doesn’t have
to be specified and defaults to the current Activity. A typical scenario for that is an inline error handler of a Sub-
Process that cannot recover the error, and as a result would trigger compensation for that Sub-Process. If no Activity
is specified in a “global” context, all completed Activities in the Process are compensated.

By default, compensation is triggered synchronously, that is, the compensation throw Event waits for the completion of
the triggered compensation handler. Alternatively, compensation can just be triggered without waiting for its completion,
by setting the throw Compensation Event’s waitForCompletion attribute to false.

Multiple instances typically exist for Loop or Multi-Instance Sub-Processes. Each of these has its own instance of
its Compensation Event Sub-Process, which has access to the specific snapshot data that was current at the time of
completion of that particular instance. Triggering compensation for the Multi-Instance Sub-Process individually

Business Process Model and Notation (BPMN), v2.0.2 303

triggers compensation for all instances within the current scope. If compensation is specified via a boundary
compensation handler, this boundary compensation handler also is invoked once for each instance of the Multi-Instance
Sub-Process in the current scope.

10.7.3 Relationship between Error Handling and Compensation

The following items define the relationship between error handling and compensation:

» Compensation employs a “presumed abort principle,” with the following consequences: Compensation of a failed
Activity results in a null operation.

« When an Activity fails, i.e., is left because an error has been thrown, it’s the error handlers responsibility to ensure
that no further compensation will be necessary once the error handler has completed.

+ If no error Event Sub-Process is specified for a particular Sub-Process and a particular error, the default
behavior is to automatically call compensation for all contained Activities of that Sub-Process if that error is
thrown, ensuring the behavior for auditing and monitoring.

10.8 Lanes

A Lane is a sub-partition within a Process (often within a Pool) and will extend the entire length of the Process level,
either vertically (see Figure 10.122) or horizontally (see Figure 10.123). Text associated with the Lane (e.g., its name
and/or that of any Process element attribute) can be placed inside the shape, in any direction or location, depending on
the preference of the modeler or modeling tool vendor. Our examples place the name as a banner on the left side (for
horizontal Pools) or at the top (for vertical Pools) on the other side of the line that separates the Pool name, however,
this is not a requirement.

€ A Lane is a square-cornered rectangle that MUST be drawn with a solid single line (see Figure 10.123 and
Figure 10.124).

@ The label for the Lane MAY be placed in any location and direction within the Lane, but MUST NOT be
separated from the contents of the Lane by a single line (except in the case that there are sub-Lanes within
the Lane).

304 Business Process Model and Notation (BPMN), v2.0.2

Name
Name | Name

Figure 10.123 — Two Lanes in a Vertical Pool

Name
Name | Name

Figure 10.124 — Two Lanes in a horizontal Pool

Lanes are used to organize and categorize Activities within a Pool. The meaning of the Lanes is up to the modeler.
BPMN does not specify the usage of Lanes. Lanes are often used for such things as internal roles (e.g., Manager,
Associate), systems (e.g., an enterprise application), an internal department (e.g., shipping, finance), etc. In addition,
Lanes can be nested (see Figure 10.125) or defined in a matrix. For example, there could be an outer set of Lanes for
company departments and then an inner set of Lanes for roles within each department.

Business Process Model and Notation (BPMN), v2.0.2 305

Supplier

Sell to

3
© Customer
n
[}
% Accumulate
] Require-
o ments
o
(o))
£
©
=<
©
= %]
2 Verify
? Require- ()
8 ments
a
2
= Consulting Bugs
>
2 Required Diagnosed
8 Bug List
2
2 Develop Develop ®
£ Product Patch
0

Figure 10.125 — An Example of Nested Lanes

Figure 10.126 shows the Lane class diagram. When a Lane is defined it is contained within a LaneSet, which is
contained within a Process.

306

Business Process Model and Notation (BPMN), v2.0.2

| Process | SsubProcess = BaseElement
(from Process) (From Activities) (From Foundation)
[Eg processType @ ProcessType == triggeredByEvent : Boolean Eg id : String
[Eg isClosed : Boolean

+ partitionElermentRef /" 0..1
0..1 + partitionElement

=] FlowElementsContainer

(From Common) + flowElements %Fﬂ%ﬂé?:n’::ﬁ?t
1 * | [Gg name : String
0.1
+ flowElementsContainer
=] HowNode
(From Common)

+ flowhodeRefs | *

-

#+ laneSets + flanes & 0.1
] LaneSet + laneSet + lanes ElLane
(From Process) (from Process)
[Eg name : 5tring 1 * g name : String

0.1 0.1

+ parentlLane
+ childLaneSet

Figure 10.126 — The Lane class diagram

The LaneSet element defines the container for one or more Lanes. A Process can contain one or more LaneSets.
Each LaneSet and its Lanes can partition the Flow Nodes in a different way.

The LaneSet element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 10.134
presents the additional attributes and model associations of the LaneSet element.

Table 10.134 — LaneSet attributes and model associations

Attribute Name Description/Usage

name: sting [0..1] The name of the LaneSet. A LaneSet is not visually displayed on a BPMN

diagram. Consequently, the name of the LaneSet is not displayed as well.

process: Process The Process owning the LaneSet
lanes: Lane [0.."] One or more Lane elements, which define a specific partition in the LanesSet.
parentLane: Lane [0..1] The reference to a Lane element which is the parent of this LaneSet.

A Lane clement defines one specific partition in a LaneSet. The Lane can define a partition element that specifies the
value and element type, a tool can use to determine the list of Flow Nodes to be partitioned into this Lane. All Lanes in
a single LaneSet MUST define partition element of the same type, e.g., all Lanes in a LaneSet reference a Resource
as the partition element, but each Lane references a different Resource instance.

The Lane element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 10.135
presents the additional attributes and model associations of the Lane element.

Business Process Model and Notation (BPMN), v2.0.2 307

Table 10.135 — Lane attributes and model associations

Attribute Name Description/Usage
name: string The name of the Lane
partitionElement: A reference to a BaseElement that specifies the partition value and partition

BaseElement [0.-1] type. Using this partition element a BPMN compliant tool can determine the

FlowElements that have to be partitioned in this Lane.

gartitliETnEler:\%anef: A reference to a BaseElement that specifies the partition value and partition
aseElement [0..1] type. Using this partition element a BPMN compliant tool can determine the
FlowElements that have to be partitioned in this Lane.

Fohi:?La"eset: LaneSet A reference to a LaneSet element for embedded Lanes.
flowNodeRefs: The list of FlowNodes partitioned into this Lane according to the

FlowNode [0..* .
owNode [0.] partitionElement defined as part of the Lane element.

10.9 Process Instances, Unmodeled Activities, and Public Processes

A Process can be executed or performed many times, but each time is expected to follow the steps laid out in the
Process model. For example, the Process in Figure 10.1 will occur every Friday, but each instance is expected to
perform Task “Receive Issue List,” then Task “Review Issue List,” and so on, as specified in the model. Each instance
of a Process is expected to be valid for the model, but some instances might not, for example if the Process has
manual Activities, and the performers have not had proper instruction on how to carry out the Process.

In some applications it is useful to allow more Activities and Events to occur when a Process is executed or
performed than are contained in the Process model. This enables other steps to be taken as needed without changing the
Process. For example, instances of the Process in Figure 10.1 might execute or perform an extra Activity between
Task “Receive Issue List” and Task “Review Issue List.” These instances are still valid for the Process model in
Figure 10.1, because the instances still execute or perform the Activities in the Process, in the order they are modeled
and under conditions specified for them.

There are two ways to specify whether unmodeled Activities are allowed to occur in Process instances:

« Ifthe 1sClosed attribute of a Process has a value of false or no value, then interactions, such as sending and
receiving Messages and Events, MAY occur in an instance without additional flow elements in the Process.
Unmodeled interactions can still be restricted on particular Sequence Flow in the Process (see next bullet). If the
isClosed attribute of a Process has a value of frue, then interactions, such as sending and receiving Messages
and Events, MAY NOT occur without additional flow elements in the Process. This restriction overrides any
unmodeled interactions allowed by Sequence Flows in the next bullet.

« Ifthe i sTmmediate attribute of a Sequence Flow in a Process has a value of false, then other Activities and
interactions not modeled in the Process MAY be executed or performed during the Sequence Flow. If the
isImmediate attribute has a value of true, then Activities and interactions not modeled in the Process MAY
NOT be executed or performed during Sequence Flow. In non-executable Processes (isExecutable attribute
has value false, or defaults to false), Sequence Flows with no value for i sTmmediate are treated as if the

308 Business Process Model and Notation (BPMN), v2.0.2

value were false. In executable Processes (isExecutable attribute has value true, or defaults to true),
Sequence Flows with no value for i sImmediate are treated as if the value were true. Executable Processes
cannot have a false value for the i sImmediate attribute.

Restrictions on unmodeled Activities specified with isClosed and isImmediate apply only under executions or
performances (instances) of the Process containing the restriction. These Activities MAY occur in instances of other
Processes.

When a Process allows Activities to occur that the Process does not model, those Activities might appear in other
Process models. The executions or performances (instances) of these other Processes might be valid for the original
Process. For example, a Process might be defined similar to the one in Figure 10.1 that adds an extra Activity
between Task “Receive Issue List” and Task “Review Issue List.” The Process in Figure 10.1 might use isClosed or
isImmediate to allow other Activities to occur in between Task “Receive Issue List” and Task “Review Issue List.”
When the Process is executed or performed, then instances of the other Process (the one with the extra step in
between Task “Receive Issue List” and Task “Review Issue List”) will be valid for the Process in Figure 10.1.
Modelers can declare that they intend all instances of one Process will be valid for another Process using the supports
association between the Processes. During development of these Processes, support might not actually hold, because
the association just expresses modeler intent.

A common use for model support is between private and public Processes, see “Overview” (page 21). A public
Process contains Activities visible to external parties, such as Participants in a Collaboration, while a private
Process includes other Activities that are not visible to external parties. The hidden Activities in a private Process
are not modeled in the public Process. However, it is expected that instances of the private Process will appear to
external parties as if they could be instances of the public Process. This means the private Process supports the public
Process (it is expected that all instances of the private Process will be valid for the public one).

A Process that supports another, as a private Process can to a public Process, does not need to be entirely similar to
the other Process. It is only REQUIRED that instances of the Process appear as if they could be instance of the other
Process. For example Figure 10.127 shows a public Process at the top with a Send Task and Receive Task. A
supporting private Process is shown at the bottom. The private Process sends and receives the same Messages, but
using Events instead of Tasks. It also introduces Activities not modeled in the public Process. However all instances
of the private Process will appear as if they could be instances of the public one, because the Messages are sent and
received in the order REQUIRED by the public Process, and the public Process allows unmodeled Activities to
occur.

[]
Public Process A - B

Private Process

Figure 10.127 — One Process supporting to another

Business Process Model and Notation (BPMN), v2.0.2 309

In practice, a public Process looks like an underspecified private Process. Anything not specified in the public
Process is determined by the private one. For example, if none of the outgoing Sequence Flows for an Exclusive
Gateway have conditionExpressions, the private Process will determine which one of the Activities targeted
by the Sequence Flows will occur. Another example is a Timer Event with no EventDefinition. The private
Process will determine when the timer goes off.

10.10 Auditing

The Auditing element and its model associations allow defining attributes related to auditing. It leverages the BPMN
extensibility mechanism. This element is used by FlowElements and Process. The actual definition of auditing
attributes is out of scope of this International Standard. BPMN 2.0 implementations can define their own set of attributes
and their intended semantics.

| Process

(From Process)
[5G processType : ProcessType
g isClosed : Boolean
g isExecutable : Boolean

0.1

0.1 + auditing

| BaseElement] Auditing
(From Foundation) (From Process)
Egid : String

1
0.1 + auditing

* |, + documentation

0.1
| Documentation =] FlowElement
(From Foundation) (from Comman)
[Eg text : String [Eg name : 5ting

[, textFormat : String

Figure 10.128 — Auditing Class Diagram

10.11 Monitoring

The Monitoring and its model associations allow defining attributes related to monitoring. It leverages the BPMN
extensibility mechanism. This element is used by FlowElements and Process. The actual definition of monitoring
attributes is out of scope of this International Standard. BPMN 2.0.2 implementations can define their own set of
attributes and their intended semantics.

310 Business Process Model and Notation (BPMN), v2.0.2

= Process

(from Process)
[Eg processType @ ProcessType
[Eg isClosed : Boolean
[Eg isExecutable : Boolean

0.1
0.1 + monitoring
= Monitoring
Q BaseElement (from Process)
(From Foundation)
g id : String
1
0.1 monitoring
« |+ documentation 0.1
=] Documentation =] AlowElement
(From Foundation) (From Common)
[E text : String [Eg name : 5tring

5 textFormat @ String

Figure 10.129 — Monitoring Class Diagram

10.12 Process Package XML Schemas

Table 10.136 — Process XML schema

<xsd:element name="process" type="tProcess" substitutionGroup="rootElement"/>
<xsd:complexType name="tProcess">
<xsd:complexContent>
<xsd:extension base="tCallableElement">
<xsd:sequence>
<xsd:element ref="auditing" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="monitoring" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="processRole" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="property" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="laneSet" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="flowElement" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="artifact" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="resourceRole" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="correlationSubcription" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="supports" type="xsd:QName" minOccurs="0" maxOc-
curs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="processType" type="tProcessType" default="None"/>
<xsd:attribute name="isExecutable" type="xsd:boolean"use="optional"/>
<xsd:attribute name="isClosed" type="xsd:boolean" default="false"/>
<xsd:attribute name="definitionalCollaborationRef" type="xsd:QName" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:simpleType name="tProcessType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="None"/>
<xsd:enumeration value="Public"/>
<xsd:enumeration value="Private"/>
</xsd:restriction>
</xsd:simpleType>

Business Process Model and Notation (BPMN), v2.0.2 311

Table 10.137 — Auditing XML schema

<xsd:element name="auditing" type="tAuditing"/>
<xsd:complexType name="tAuditing">
<xsd:complexContent>
<xsd:extension base="tBaseElement"/>
</xsd:complexContent>
</xsd:complexType>

Table 10.138 — GlobalTask XML schema

<xsd:element name="globalTask" type="tGlobalTask" substitutionGroup="rootElement"/>
<xsd:complexType name="tGlobalTask">
<xsd:complexContent>
<xsd:extension base="tCallableElement">
<xsd:sequence>
<xsd:element ref="resourceRole" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.139 — Lane XML schema

<xsd:element name="lane" type="tLane"/>
<xsd:complexType name="tLane">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element name="partitionElement" type="tBaseElement" minOccurs="0" maxOc-
curs="1"/>
<xsd:element name="flowNodeRef" type="xsd:IDREF" minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element name="childLaneSet" type="tLaneSet" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="partitionElementRef" type="xsd:QName"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.140 — LaneSet XML schema

<xsd:element name="laneSet" type="tLaneSet"/>
<xsd:complexType name="tLaneSet">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element ref="lane" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

312 Business Process Model and Notation (BPMN), v2.0.2

Table 10.141- Monitoring XML schema

<xsd:element name="monitoring" type="tMonitoring"/>
<xsd:complexType name="tMonitoring">
<xsd:complexContent>
<xsd:extension base="tBaseElement"/>
</xsd:complexContent>
</xsd:complexType>

Table 10.142 — Performer XML schema

<xsd:element name="performer" type="tPerformer" substitutionGroup="resourceRole"/>
<xsd:complexType name="tPerformer">
<xsd:complexContent>
<xsd:extension base="tResourceRole"/>
</xsd:complexContent>
</xsd:complexType>

Business Process Model and Notation (BPMN), v2.0.2 313

314 Business Process Model and Notation (BPMN), v2.0.2

11 Choreography

11.1 General

NOTE: The content of this clause is REQUIRED for BPMN Choreography Modeling Conformance or for BPMN Complete
Conformance. However, this clause is NOT REQUIRED for BPMN Process Modeling Conformance, BPMN Process
Execution Conformance, or BPMN BPEL Process Execution Conformance. For more information about BPMN
conformance types, see page 1.

A Choreography is a type of process, but differs in purpose and behavior from a standard BPMN Process. A standard
Process, or an Orchestration Process (see page 143), is more familiar to most process modelers and defines the flow
of Activities of a specific PartnerEntity or organization. In contrast, Choreography formalizes the way business
Participants coordinate their interactions. The focus is not on orchestrations of the work performed within these
Participants, but rather on the exchange of information (Messages) berween these Participants.

Another way to look at Choreography is to view it as a type of business contract between two or more organizations.

This entails Message (document) exchanges in an orderly fashion: e.g., first a retailer sends a purchase order request to
a supplier; next the supplier either confirms or rejects intention to investigate the order; then supplier proceeds to
investigate stock for line-items and seeks outside suppliers if necessary; accordingly the supplier sends a confirmation or
rejection back; during this period the retailer can send requests to vary the order, etc.

Message exchanges between partners go beyond simple request-response interactions into multi-cast, contingent
requests, competing receives, streaming, and other service interaction patterns (REF for SIP). Moreover, they cluster
around distinct scenarios such as: creation of sales orders; assignment of carriers of shipments involving different sales
orders; managing the “red tape” of crossing customs and quarantine; processing payment and investigating exceptions. A
Choreography is a definition of expected behavior, basically a procedural business contract, between interacting
Participants (see page 111 for more information on Participants). It brings Message exchanges and their logical relation
as Conversations into view. This allows partners to plan their Business Processes for inter-operation without
introducing conflicts. An example of a conflict could arise if a retailer was allowed to send a variation on a purchase
order immediately after sending the initial request. The Message exchange sequences in Choreography models need
to be reflected in the orchestration Processes of participants. A Choreography model makes it possible to derive the
Process interfaces of each partner’s Process (REF: Decker & Weske, 2007).

To leverage the familiarity of flow charting types of Process models, BPMN Choreographies also have “activities”
that are ordered by Sequence Flows. These “activities” consist of one or more interactions between Participants.
These interactions are often described as being message exchange patterns (MEPs). A MEP is the atomic unit
(“Activity”) of a Choreography.

Some MEPs involve a single Message (e.g., a “Customer” requests an “Order” from a “Supplier”’). Other MEPs will
involve two Messages in a request and response format (e.g., a “Supplier” request a “Credit Rating” from a “Financial
Institution,” who then returns the “Credit Rating” to the “Supplier”). There can be even more complex MEPs that involve
error Messages, for example.

A single MEP can be defined as a BPMN Choreography Task (see page 323). Thus, a Choreography defines the
order in which Choreography Tasks occur. Sub-Choreographies allow the composition/decomposition of
Choreographies.

Business Process Model and Notation (BPMN), v2.0.2 315

Choreographies are designed in BPMN to allow stand-alone, scalable models of these Participant interactions.
However, since BPMN provides other Business Process modeling views, Choreographies are designed to fit
within BPMN Collaboration diagrams to display the relationship between the Choreography and Orchestration
Processes thus expanding BPMN 1.2 capabilities (see page 107 for more information on Collaborations, and page
361 for Choreographies within Collaborations).

Figure 11.1 displays the metamodel of the key BPMN elements that contribute to Choreography modeling. The sub
clauses of this clause will describe the characteristics of these elements and how they are used in a Choreography.

aphy [RootElement it Correlationkey + chorecgrat Tank | Chareograpey | ask
{Frem Chersagr ash) [Friem Foundation) RO {Frem Comman] 0.1 iFrom Chereogrsphyilctiite)
S 3 e :© Shing
L2 & menegefioeiial
" Messageriow
o i, ;I-Ldﬂ.'l:l'dlr.r = MeLagArnwT {From Collaben stian}
. Collalsor ation a o Mdimes | S
{Pecen Coslpbsar ption) + cormtaonissocbions 1
- & N | NG - T Conversationissodlation
& Closed | Booksan et i I EONARIOCHTIONS (fvorm Cistrem watmi |
& choepcgraphyRal
1 = + o By
+ colabaon abon & olaboraton 1.1 *:
Participant * | chareographyActivity
{From Callibis atian) + PeaTgRa bopan [Friem Chareage sphyhdtnitiad)
& N | ST & BonTvoe | CharesgrapinLoon,
+ mestagefowinodstionn) .
| MewagoRow Ausociation
{Trom C ol ation) 4 matrgiartopantial 1 + parsopanthsh
GlobalChoreographyTack + @obaChoreog me Tas
{friom Ehes-sag agshry) " e
(e Comman]
0.1 - -] calicharsography
Wl Chansng vy Ar i)
+ caleciChoraographyRed ¢ CalChorpogr b Aty
+ participarmAsmocatons = = . + calChorecgraph ALty
< Farticipant Association
(e Colabver atwry] + RaEERAn ARSI I SubCharsagraphn
[Pt o eggn g At ltiad]
BT o ey ach
o | +artfacts
= Artifaet
rm Atifacti)
i MlowillementsCovetainoer 1 ! Mowlemenid
[ram Comment + RawTamrenty [From Common
2 & N - St
+ pantane

Figure 11.1 — The Choreography metamodel

The Choreography element inherits the attributes and model associations of Collaboration (see Table 9.1) and of
FlowElementContainer (see Table 8.45), but does not have any additional attributes or model associations.

NOTE: The Collaboration attribute choreographyRef is not applicable to Choreography.

316 Business Process Model and Notation (BPMN), v2.0.2

11.2 Basic Choreography Concepts

A key to understanding Choreographies and how they are used in BPMN is their relationship to Pools (see page 111
for more information on Pools). Choreographies exist outside of or in between Pools. A Process, within a Pool,
represents the work of a specific PartnerEntity (e.g., “FedEx”), often substituted by a PartnerRole (e.g.,
“Shipper”) when a PartnerEntity is not identified and can be decided later. The PartnerEntity/PartnerRole
is called a Participant in BPMN. Pools are the graphical representation of Participants. A Choreography, on the other
hand, is a different kind of process. A Choreography defines the sequence of interactions between Participants. Thus,
a Choreography does not exist in a single Pool, it is not the purview of a single Participant. Each step in the
Choreography involves two or more Participants (these steps are called Choreography Activities, see below). This
means that the Choreography, in BPMN terms, is defined outside of any particular Pool.

The key question that needs to be continually asked during the development of a Choreography is “what information
do the Participants in the Choreography have?” Basically, each Participant can only understand the status of the
Choreography through observable behavior of the other Participants; which are the Messages that have been sent
and received. If there are only two Participants in the Choreography, then it is very simple; both Participants will be
aware of who is responsible for sending the next Message. However, if there are more than two Participants, then the
modeler needs to be careful to sequence the Choreography Activities in such a way that the Participants know when
they are responsible for initiating the interactions.

Figure 11.2 presents a sample Choreography. The details of Choreography behavior and elements will be described
in the sub clause below.

The bands display the names of the
Participants (Roles/Entities)
~|Additional Participants can be added on
" |additional bands (for Sub-Processes)

{Message

| want to see . I need my
the Doctor E] | feel S'CKE medicine E
Patient Patient Patient Patient
<) Doctor Handle Handle Handle O
Request Symptoms Prescription Medicine
Dr. Office Dr. Office Dr. Qiffice Dr. Office
Go see the [Pickup your " Here is your [KC
medicine, then -
Doctor

*.. medicine
leave

The Message is shaded, so it
is not the initiating Message

*.[The unshaded Participant is
the initiator of the Activity

Figure 11.2 — An example of a Choreography

To illustrate the correspondence between Collaboration and Choreography, consider an example from logistics.
Figure 11.3 shows a Collaboration where the Pools are expanded to reveal orchestration details per participant (for
Shipper, Retailer etc.). Message Flows connect the elements in the different Pools related to different participants,
indicating Message exchanges. For example, a Planned Order Variations Message is sent by the Supplier to the
Retailer; the corresponding send and receive have been modeled using regular BPMN messaging Activities. Also, a

Business Process Model and Notation (BPMN), v2.0.2 317

number of Messages of the same type being sent. For example, a number of Retailer Order and Delivery Variations
Messages can be sent from the Retailer to the Supplier, indicated by respective multi-instances constructs (for brevity,
the actual elements for sending/receiving inside the multi-instances construct have been omitted).

5]] 5]]
Receive Send o | Receive Send
Message Message | Message Message

A

Shipper
Consignee

(5] 4
Receive Send
Message Message
x o
0]
T

|
1
|
|
tion E
Received

|

|

. } H
Shipment f————_—_—_———— S |_Delivery | Proposed | Confirma-

1

|

plar.y Proposed Plan o st
Variation == ————————————— — — Plan & Cosf JPlan land.C
| Variation | ‘ariation T

Send
Message

=
Receive
Message

& ~ X] = =]

= O_> Send Receive Receive Send Receive Receive Send

U% Message Message Message Message Message Message Message
’

V

A
1 |
1 |
| !
| |
| |
1 | 1

S =
Send Receive
Message Message
Planned Order& _| Deliver Updated PO, | PO & Confirma-,

PO &

1 1 |
1 1 |
| | |
| 1 |
| 1 (
1 L |
1 1 ! L riotized)
Order Delivery CheckpoinE &Delwery Delivery [YJ tion of E H De\ivery[zj S'C"hae'ﬂe[zj
Variations T Variations T Request T Schedule Modmcatlons Schedule H | Schedule T 1
| i ! I]
I I ! I |
i ! ! ! I

I
¥ &
Rece\ve Send Send J Receive Send Send Receive Send Receive
Message Message Message ' Message Message Message Message Message Message

Retailer

Figure 11.3 — A Collaboration diagram logistics example

The scenario modeled in Figure 11.3 entails shipment planning for the next supply replenishment variations: the Supplier

confirms all previously accepted variations for delivery with the Retailer; the Retailer sends back a number of further
possible variations; the Supplier requests to the Shipper and Consignee possible changes in delivery; accordingly, the
Retailer interacts with the Consignee and Supplier for final confirmations.

A problem with model interconnections for complex Choreographies is that they are vulnerable to errors.
Interconnections might not be sequenced correctly, since the logic of Message exchanges is considered from each
partner at a time. This in turn leads to deadlocks. For example, consider the PartnerRole of Retailer in Figure 11.3
and assume that, by error, the order of Confirmation Delivery Schedule and Retailer Confirmation received (far right)
were swapped. This would result in a deadlock since both Retailer and Consignee would wait for the other to send a

Message. Deadlocks in general, however, are not that obvious and might be difficult to recognize in a Collaboration.

Figure 11.4 shows the Choreography corresponding to the Collaboration of Figure 11.3.

318 Business Process Model and Notation (BPMN), v2.0.2

Supplier
Supplier Supplier
— Provide ltem » Deliver ltem
Shipper Shipper
0
Supplier Supplier Supplier Shipper v
. Deliver —
Planned Order Order & Delivery .
O_> Variations Variations » Checkpoint L +>)
) Request
Retailer Retailer Retailer Supplier A
Supplier Supplier
- Provide Item » Deliver ltem —
Consignee Consignee
()
Consignee
Supplier Supplier Consignee Consignee Supplier Supplier
Finalized PO Accept PO and Retailer Confirmation of PO and Delive Update PO
O<— and Delivery |« Delivery -t Confirmation Delivery -t Schedule Modrsy -t and Delivery f«—
Schedule Schedule Received Schedule) Schedule
Retailer Retailer Retailer (Retailer Retailer Retailer

Figure 11.4 — The corresponding Choreography diagram logistics example

11.3 Data

A Choreography does not have a central control mechanism and there is no mechanism for maintaining any central
Process (Choreography) data. Thus, any element in a Process that would normally depend on conditional or
assignment expressions, would not have any central source for this data to be maintained and understood by all the
Participants involved in the Choreography.

As mentioned above, neither Data Objects nor Repositories are used in Choreographies. Both of these elements
are used exclusively in Processes and require the concept of a central locus of control. Data Objects are basically
variables and there would be no central system to manage them. Data can be used in expressions that are used in
Exclusive Gateways, but only that data which has been sent through a Message in the Choreography.

11.4 Use of BPMN Common Elements

Some BPMN elements are common to both Process and Choreography diagrams, as well as Collaboration; they
are used in these diagrams. The next few sub clauses will describe the use of Messages, Message Flows,
Participants, Sequence Flows, Artifacts, Correlations, Expressions, and Services in Choreography.

The key graphical elements of Gateways and Events are also common to both Choreography and Process. Since
their usage has a large impact, they are described in major sub clauses of this clause (see page 339 for Events and page
344 for Gateways).

Business Process Model and Notation (BPMN), v2.0.2 319

11.4.1 Sequence Flow

Sequence Flows are used within Choreographies to show the sequence of the Choreography Activities, which
can have intervening Gateways. They are used in the same way as they are in Processes. They are only allowed to
connect with other Flow Objects. For Processes, they can only connect Events, Gateways, and Activities. For
Choreographies, they can only connect Events, Gateways, and Choreography Activities (see Figure 11.5).

Sequence Flow will
Jdefine the order of
Choreography elements

Buyer Buyer

O—> Place Order —> Confirm Order |—#

Seller Seller

Figure 11.5 — The use of Sequence Flows in a Choreography

There are two additional variations of Sequence Flows:

» Conditional Sequence Flows: Conditions can be added to Sequence Flows in two situations:

 From Gateways: Outgoing Sequence Flows have conditions for Exclusive and Inclusive Gateways. The
data referenced in the conditions need to be visible to two or more Participants in the Choreography. The data
becomes visible if it is part of a Message that had been sent (previously) within the Choreography. See page
344 and page 351 for more information about how Exclusive and Inclusive Gateways are used in
Choreography.

» From Choreography Activities: Outgoing Sequence Flows MAY have conditions for Choreography
Activities. Since these act similar to Inclusive Gateways, the Conditional Sequence Flows can be used
in Choreographies. The conditions have the same restrictions that apply to the visibility of the data for
Gateways.

+ Default Sequence Flows: For Exclusive Gateways, Inclusive Gateways, and Choreography Activities
that have Conditional Sequence Flows, one of the outgoing Sequence Flows MAY be a Default Sequence
Flow. Because the other outgoing Sequence Flows will have appropriately visible of data as described above, the
Participants would know if all the other conditions would be false, thus the Default Sequence Flow would be
selected and the Choreography would move down that Sequence Flow.

In some applications it is useful to allow additional Messages that are not part of the defined Choreography model to
be sent between Participants when the Choreography is carried out. This enables Participants to exchange other
Messages as needed without changing the Choreography. There are two ways to specify this:

+ Ifthe i sClosed attribute (from Collaboration) of a Choreography has a value of false or no value, then
Participants MAY send Messages to each other without additional Choreography Activities in the
Choreography. Unmodeled messaging can be restricted on particular Sequence Flows in the Choreography,
see next bullet. If the i sC1osed attribute of a Choreography has a value of true, then Participants MAY NOT send
Messages to each other without additional Choreography Activities in the Choreography. This restriction
overrides any unmodeled messaging allowed by Sequence Flows in the next bullet.

320 Business Process Model and Notation (BPMN), v2.0.2

+ Ifthe i sTmmediate attribute of a Sequence Flow has a value of false or no value, then Participants MAY send
Messages to each other between the elements connected by the Sequence Flow without additional
Choreography Activities in the Choreography. If the i sTmmediate attribute of a Sequence Flow has a
value of true, then Participants MAY NOT send Messages to each other between the elements connected by the
Sequence Flow without additional Choreography Activities in the Choreography. The value of
isImmediate attribute of a Sequence Flow has no effect if the 1 sC1osed attribute of the containing
Choreography has a value of frue.

Restrictions on unmodeled messaging specified with 1sClosed and isImmediate applies only under the
Choreography containing the restriction. PartnerEntities and PartnerRoles of the Participants MAY send
Messages to each other under other Choreographies, Collaborations, and Conversations.

11.4.2 Artifacts

Both Text Annotations and Groups can be used within Choreographies and all BPMN diagrams. There are no
restrictions on their use.

11.5 Choreography Activities

A Choreography Activity represents a point in a Choreography flow where an interaction occurs between two or
more Participants.

The Choreography Activity class is an abstract element, sub-classing from FlowElement (as shown in Figure 11.6).
When Choreography Activities are defined they are contained within a Choreography or a Sub-Choreography,
which are FlowElementContainers (other FlowElementContainers are not allowed to contain
Choreography Activities).

Business Process Model and Notation (BPMN), v2.0.2 321

] Participant o "
(From Collaboration) .

g name : 5tring + participantRefs

1 -

+initiatingParticipantRef

=] subChoreography
(From ChoreographyActivities)

[55 loopType : ChoreographyLoopType

| FlowElement

(From Common)

[Eg name : String

=] FlowNode

(From Common)

] CorrelationKey
(From Common)
& name : 5tring

| choreographyActivity

(From ChoreographyActivities) + correlationkeys

0.1 *
= choreographyTask =] callchoreography «enumerations
(From ChoreographyActivities) (From ChoreographyActivities) [ChoreographyLoopType
- = Mone
0 = Standard

+ choreographyTask + calChoreographyActivity = MultinstanceSequentia

= MultilnstanceParallel

1.2% messageFlowRef + calledChoreographyRef 0..1

] choreography
(From Choreography)

] MessageFlow
(From Collaboration)

[Eg name @ String

Figure 11.6 — The metamodel segment for a Choreography Activity

The Choreography Activity element inherits the attributes and model associations of FlowElement (see Table 8.44)
through its relationship to FlowNode. Table 11.1 presents the additional model associations of the Choreography

Activity element.

Table 11.1 — Choreography Activity Model Associations

Attribute Name

Description/Usage

participantRefs: Participant [2..*]

A Choreography Activity has two or more Participants (see page 113 for
more information on Participants).

ChoreographyLoopType = None

initiatingParticipantRef: One of the Participants will be the one that initiates the Choreography
Participant Activity
loopType: A Choreography Activity MAY be performed once or MAY be repeated.

The loopType attribute will determine the appropriate marker for the
Choreography Activity (see below).

correlationKeys:
CorrelationKey [0..*]

This association specifies correlationKeys used by the Message Flow
in the Choreography Activity, including Sub-Choreographies and called
Choreographies.

322

Business Process Model and Notation (BPMN), v2.0.2

11.5.1 Choreography Task

A Choreography Task is an atomic Activity in a Choreography Process. It represents an Interaction, which is one
or two Message exchanges between two Participants. Using a Collaboration diagram to view these elements (see
page 107 for more information on Collaboration), we would see the two Pools representing the two Participants of the
Interaction (see Figure 11.7). The communication between the Participants is shown as a Message Flow.

<
=
®
o
Q
=

@©

o

|
VA

m

-—

c

@©
2
Q
=

©
o

Figure 11.7 — A Collaboration view of Choreography Task elements

In a Choreography diagram, this Interaction is collapsed into a single object, a Choreography Task. The name of
the Choreography Task and each of the Participants are all displayed in the different bands that make up the shape’s
graphical notation. There are two or more Participant Bands and one Task Name Band (see Figure 11.8).

€ The Participant Band of the Participant that does not initiate the interaction MUST be shaded with a light fill.

Initiating
Participant .
Band [Participant A
Choreography
Task Name |- Task Name
Band

Participant - Participant B
Band

Figure 11.8 — A Choreography Task

Business Process Model and Notation (BPMN), v2.0.2 323

<
-]
g Send
© Message
=
© =
g :
|
Initiating
Message

Receive

Message

Participant B

Figure 11.9 — A Collaboration view of a Choreography Task

The interaction defined by a Choreography Task can be shown in an expanded format through a Collaboration
diagram (see Figure 11.9 and see page 107 for more information on Collaborations). In the Collaboration view, the

Participants of the Choreography Task Participant Band’s will be represented by Pools. The interaction between
them will be a Message Flow.

Initiating
Message

(Participant A)

Choreography
Task Name

| Participant B

Return EI
Message

Figure 11.10 — A two-way Choreography Task

324 Business Process Model and Notation (BPMN), v2.0.2

% Send

and Receive

Messages

Participant A

Initiating [Return
Message Message
l |

|

Receive Send

Message : Message

Participant B

Additional Internal
Activities may occur *
between

Figure 11.11 — A Collaboration view of a two-way Choreography Task

In a Choreography Diagram, the Choreography Task object shares the same shape as a Task or any other BPMN
Activity, which is a rectangle that has rounded corners.

€@ A Choreography Task is a rounded corner rectangle that MUST be drawn with a single line.
@ The use of text, color, size, and lines for a Choreography Task MUST follow the rules defined in

“Use of Text, Color, Size, and Lines in a Diagram” on page 39.

The three bands in the Choreography Task shape provide the distinction between this type of Task and an
Orchestration Task (in a traditional BPMN diagram).

The Message sent by either one or both of the Participants of the Choreography Task can be displayed (see Figure
11.10, above). The Message icon is shown tethered to the Participant that is the sender of the Message.

€ Ifthe Message is the initiating Message of the Choreography Task, then the Message icon MUST be
unfilled.

€ Ifthe Message is a return Message for the Choreography Task, then the Message icon MUST have a
light fill.

Note that Messages can be tethered to a Call Choreography that references a GlobalChoreographyTask, but
cannot be used for Sub-Choreographies or Call Choreography that references another Choreography.

As with a standard Orchestration Task, the Choreography Task MAY have internal markers to show how the
Choreography Task MAY be repeated. There are two types of internal markers (see Figure 11.12):

€ A Choreography Task MAY have only one of the three markers at one time.

€ The marker for a Choreography Task that is a standard loop MUST be a small line with an arrowhead that
curls back upon itself. The 1oopType of the Choreography Task MUST be Standard.

Business Process Model and Notation (BPMN), v2.0.2 325

€ The marker for a Choreography Task that is parallel multi-instance MUST be a set of three vertical lines.
The 1oopType of the Choreography Task MUST be MultiInstanceParallel.

€@ The marker for a Choreography Task that is sequential multi-instance MUST be a set of three horizontal
lines. The 1oopType of the Choreography Task MUST be MultilInstanceSequential.

The marker that is present MUST be centered at the bottom of the Task Name Band of the shape.

Participant A) [Participant A) [Participant A)
Choreography Choreography Choreography
Task Name Task Name Task Name

1] =
Participant B Participant B Participant B

Figure 11.12 — Choreography Task Markers

Participant A

(]

Send

Message

Message|<_7|

Participant B

Receive

Message

Figure 11.13 — The Collaboration view of a looping Choreography Task

326

Business Process Model and Notation (BPMN), v2.0.2

Participant A

Receive
Message

Participant B

Figure 11.14 — The Collaboration view of a Parallel Multi-Instance Choreography Task

There are situations when a Participant for a Choreography Task is actually a multi-instance Participant. A multi-
instance Participant represents a situation where there are more than one possible related Participants (PartnerRoles/
PartnerEntities) that might be involved in the Choreography. For example, in a Choreography that involves
the shipping of a product, there can be more than one type of shipper used, depending on the destination. When a
Participant in a Choreography contains multiple instances, then a multi-instance marker will be added to the
Participant Band for that Participant (see Figure 11.15).

@ The marker for a Choreography Task that is multi-instance MUST be a set of three vertical lines.
€ The marker that is present MUST be centered at the bottom of the Participant Band of the shape.

The width of the Participant Band will be expanded to contain both the name of the Participant and the multi-instance
marker.

Participant A

Choreography
Task Name

Participant B
\ il J

Figure 11.15 — A Choreography Task with a multiple Participant

Business Process Model and Notation (BPMN), v2.0.2 327

]

Send
Message

Participant A

Message |i7|

™

Receive

Message

Participant B

Figure 11.16 — A Collaboration view of a Choreography Task with a multiple Participant

The Choreography Task element inherits the attributes and model associations of Choreography Activity (see
Table 11.1). Table 11.2 presents the additional model associations of the Choreography Task clement.

Table 11.2 — Choreography Task Model Associations

Attribute Name Description/Usage

messageFlowRef: Message Flow

[1.4]

Although not graphical represented, Choreography Task contains one or
more Message Flows that represent the interaction(s) between the
Participants referenced by the Choreography Task.

11.5.2 Sub-Choreography

A Sub-Choreography is a compound Activity in that it has detail that is defined as a flow of other Activities, in this
case, a Choreography. Each Sub-Choreography involves two or more Participants. The name of the Sub-
Choreography and each of the Participants are all displayed in the different bands that make up the shape’s graphical
notation. There are two or more Participant Bands and one Sub-Process Name Band.

The Sub-Choreography can be in a collapsed view that hides its details (see Figure 11.17) or a Sub-Choreography
can be expanded to show its details (a Choreography Process) within the Choreography Process in which it is

contained (see Figure 11.19). In the collapsed form, the Sub-Process object uses a marker to distinguish it as a Sub-
Choreography, rather than a Choreography Task.

The Sub-Process marker MUST be a small square with a plus sign (+) inside. The square MUST be positioned at the
bottom center of the Sub-Process Name Band within the shape.

€ The Participant Band of the Participant that does not initiate the interaction MUST be shaded with a light fill.

328 Business Process Model and Notation (BPMN), v2.0.2

Initiating

Participant .
Band [Participant A
Choreography
Sub-Process |... |Sub-Process
N e "Iiame Band
Earticipant ~L Participant B
Band

Figure 11.17— A Sub-Choreography

Figure 11.18 shows an example of a potential Collaboration view of the above Sub-Choreography.

<€

€

g

K3)

h =

©

o
T o &~ T &1
L I I T
([R T
v L Ll v]3iwv

m

€

©

fe3

.8

g

Figure 11.18 — A Collaboration view of a Sub-Choreography

Business Process Model and Notation (BPMN), v2.0.2 329

Figure 11.19 shows an example of an expanded Sub-Choreography.

ParticipantA

ParticipantC

Choreography Sub-Process N ame

a
a
S

[Participant C) [Participant A)
Choreography .| Choreography
Task Name | Task Name
| ParticipantB _ Participant C)

M

\ ParticipantB

Figure 11.19 — An expanded Sub-Choreography

Figure 11.20 shows an example of a potential Collaboration view of the above Sub-Choreography.

<
= .
.8 Receive
Q Message
=
©
o
m
=]
g Send
.Q Message
=
©
a o
M weY]
5 Y 1
= = 7
< Receive Send
© Message Message
S
o

Figure 11.20 — A Collaboration view of an expanded Sub-Choreography

330

Business Process Model and Notation (BPMN), v2.0.2

The Parent Sub-Choreography (Expanded)

The Choreography Activity shares the same shape as a Sub-Process or any other BPMN Activity, which is in this
state.

@ A Sub-Choreography is a rounded corner rectangle that MUST be drawn with a single thin line.

@ The use of text, color, size, and lines for a Sub-Choreography MUST follow the rules defined in “Use of
Text, Color, Size, and Lines in a Diagram” on page 39.

The three or more partitions in the Sub-Choreography shape provide the distinction between this type of Task and an
Orchestration Sub-Process (in a traditional BPMN diagram).

It is possible for a Sub-Choreography to involve more than two Participants. In this case, an additional Participant
Band will be added to the shape for each additional Participant (see Figure 11.21). The ordering and position of the
Participant Band (either in the upper or lower positions) is up to the modeler or modeling tool. In addition, any
Participant Band beyond the first two optional; it is displayed at the discretion of the modeler or modeling tool.
However, each Participant Band that is added MUST be added to the upper and lower sections of the Sub-
Choreography in an alternative manner.

S - Participant A

Par;ffC] an;t = Participant C

articipan Choreography

Choreography Sub-Process
Task Name N + °

_ Participant D

Participant B Participant B

Figure 11.21 — Sub-Choreography (Collapsed) with More than Two Participants

As with a standard Orchestration Sub-Process, the Sub-Choreography MAY have internal markers to show how the
Sub-Choreography MAY be repeated. There are two types of internal markers (see Figure 11.22):

¢ A Sub-Choreography MAY have only one of the three markers at one time.

@ The marker for a Sub-Choreography that is a standard loop MUST be a small line with an arrowhead that
curls back upon itself. The 1oopType of the Sub-Choreography MUST be Standard.

@ The marker for a Sub-Choreography that is parallel multi-instance MUST be a set of three vertical lines. The
loopType of the Sub-Choreography MUST be MultiInstanceParallel.

@ The marker for a Sub-Choreography that is sequential multi-instance MUST be a set of three horizontal
lines. The 1oopType of the Sub-Choreography MUST be MultiInstanceSequential.

€ The marker that is present MUST be centered at the bottom of the Sub-Process Name Band of the shape.

Business Process Model and Notation (BPMN), v2.0.2 331

Participant A

Participant A)

Participant A)

Choreography
Sub-Process

bojEsi

Choreography
Sub-Process

Name
[+

Choreography
Sub-Process

Nz

Participant B

ParticipantB |

ParticipantB |

Figure 11.22 — Sub-Choreography Markers

There are situations when a Participant for a Sub-Choreography is actually a multi-instance Participant. A multi-
instance Participant represents a situation where there are more than one possible related Participants (PartnerRoles/
PartnerEntities) that can be involved in the Choreography. For example, in a Choreography that involves the
shipping of a product, there can be more than one type of shipper used, depending on the destination. When a Participant
in a Choreography contains multiple instances, then a multi-instance marker will be added to the Participant Band
for that Participant (see Figure 11.23).

@ The marker for a Sub-Choreography that is multi-instance MUST be a set of three vertical lines.
€ The marker that is present MUST be centered at the bottom of the Participant Band of the shape.

€ The width of the Participant Band will be expanded to contain both the name of the Participant and the
multi-instance marker.

Participant A
Choreography
Sub-Process
Name
[+
Participant B
\ Il J

Figure 11.23 — Sub-Choreography Markers with a multi-instance Participant

This includes Compensation Event Sub-Processes (contained within a Sub-Choreography) as well as the
external Compensation Activity connected through an Association.

The Sub-Choreography clement inherits the attributes and model associations of Choreography Activity (see Table
11.1) and FlowElementsContainer (see Table 8.45). Table 11.3 presents the additional model associations of the
GlobalChoreographyTask element:

Table 11.3 — Sub-Choreography Model Associations

Attribute Name Description/Usage

artifacts: Artifact [0.."] This attribute provides the list of Artifacts that are contained within the Sub-

Choreography.

332 Business Process Model and Notation (BPMN), v2.0.2

11.5.3 Call Choreography

A Call Choreography identifies a point in the Process where a global Choreography or a Global Choreography
Task is used. The Call Choreography acts as a place holder for the inclusion of the Choreography element it is
calling. This pre-defined called Choreography element becomes a part of the definition of the parent Choreography.

A Call Choreography object shares the same shape as the Choreography Task and Sub-Choreography, which is
a rectangle that has rounded corners, two or more Participant Bands, and an Activity Name Band. However, the
target of what the Choreography Activity calls will determine the details of its shape.

& Ifthe Call Choreography calls a Global Choreography Task, then the shape will be the same as a
Choreography Task, but the boundary of the shape MUST have a thick line (see Figure 11.24).

€ Ifthe Call Choreography calls a Choreography, then there are two options:

@ The details of the called Choreography can be hidden and the shape will be the same as a collapsed Sub-
Choreography, but the boundary of the shape MUST have a thick line (see Figure 11.25).

@ The details of the called Choreography can be shown and the shape will be the same as an expanded Sub-
Choreography, but the boundary of the shape MUST have a thick line (see Figure 11.26).

Figure 11.24 — A Call Choreography calling a Global Choreography Task

Figure 11.25 — A Call Choreography calling a Choreography (Collapsed)

Business Process Model and Notation (BPMN), v2.0.2 333

Y
:
O

Figure 11.26 — A Call Choreography calling a Choreography (expanded)

] choreographyActivity] collaboration
(from ChoreographyActivities) (from Collaboration)
[Eg loopType : ChoreographyLoopType [Eg name : String

g isClosed : Boolean

+ collabaration *

+ choreographyRef, *

] callchoreography =] Choreography

(From Choreography#ctivities) (from Choreography)
+ caledChoreographyRef

- 0.1
0.1
- + participantAssociations
Q ParticipantAssociation Q GlobalChoreographyTask
(From Collaboration) (from Choreography)

Figure 11.27- The Call Choreography class diagram

The Call Choreography element inherits the attributes and model associations of ChoreographyActivity (see
Figure 11.27 and Table 11.1). Table 11.4 presents the additional model associations of the Call Choreography element.

334 Business Process Model and Notation (BPMN), v2.0.2

Table 11.4 — Call Choreography Model Associations

Attribute Name Description/Usage

calledChoreographyRef: The element to be called, which will be either a Choreography or a

CallableElement [0..1] GlobalChoreographyTask.

participantAssociations: Specifies how Participants in a nested Choreography or
ParticipantAssociation [0.."] GlobalChoreographyTask match up with the Participants in the
Choreography referenced by the Call Choreography.

11.5.4 Global Choreography Task

A GlobalChoreographyTask is a reusable, atomic Choreography Task definition that can be called from within
any Choreography by a Call Choreography.

The GlobalChoreographyTask element inherits the attributes and model associations of Collaboration (see Table
9.1), through its relationship to Choreography. Table 11.5 presents the additional model associations of the
GlobalChoreographyTask element.

Table 11.5 — Global Choreography Task Model Associations

Attribute Name Description/Usage
?ititéfiﬂgFt’a“iCiPa“tRef: One of the Participants will be the one that initiates the G1obal
arlicipan Choreography Task.

A GlobalChoreographyTask is a restricted type of Choreography, it is an “empty” Choreography.
€ ACGlobalChoreographyTask MUST NOT contain any Flow Elements.

Since a GlobalChoreographyTask does not have any Flow Elements, it does not require
MessageFlowAssocations, ParticipantAssocations, ConversationAssocations, or Artifacts. It is
basically a set of Participants and Message Flows intended for reuse.

11.5.5 Looping Activities

Both Sub-Choreographies can have standard loops and multi-instances. Examples of Choreography Activities
with the appropriate markers can be seen in Figure 11.12 and Figure 11.22.

11.5.6 The Sequencing of Activities

There are constraints on how Choreography Activities can be sequenced (through Sequence Flows) in a
Choreography. These constraints are due to the limited visibility of the Participants, which only know of the progress
of the Choreography by the Messages that occur. When a Participant sends or receives a Message, then that

Business Process Model and Notation (BPMN), v2.0.2 335

Participant knows exactly how far the Choreography has progressed. This means that the ordering of Choreography
Activities need to take into account when the Participants send or receive Messages so that they Participants are NOT
REQUIRED to guess about when it is their turn to send a Message.

The basic rule of Choreography Activity sequencing is this:

@ The Initiator of a Choreography Activity MUST have been involved (as Initiator or Receiver) in the previous
Choreography Activity.

Of course, the first Choreography Activity in a Choreography does not have this constraint.

Figure 11.28 shows a sequence of two Choreography Activities that follow this constraint. “Participant B” is the
Initiator of “Choreography Task 2” after being the Receiver in “Choreography Task 1.” While there is no requirement that
“Participant B” sends the Message immediately, since there can be internal work that the Participant needs to do prior
to the Message. But in this situation there is no ambiguity that “Participant B” will be the Initiator of the next
Choreography Task. “Participant C” does not know exactly when the Message will arrive from “Participant B,” but
“Participant C” knows that one will arrive and there are not any additional requirements on the Participant until the
Message arrives.

N

¢
K
-

Partici‘pantA (ParticipantC
Choreography 3 Choreography
Task 1 Task 2
\ ParticipantB J L Partic!ipantB y

~
-t
S .

The Initiator ofa o
Choreography Task must ;* E

be involved inthe previous
Activity

Figure 11.28 — A valid sequence of Choreography Activities

Naturally, the sequence of Choreography Activities shown in Figure 11.28, above can be expanded into a
Collaboration diagram to show how the sequence can be enforced. Figure 11.29 shows the corresponding
Collaboration. The diagram shows how the Activities within the individual Pools fit with the design of the
Choreography.

336 Business Process Model and Notation (BPMN), v2.0.2

Participant A

m

€

@®

o

Q

=

]

o

o

= .
g Receive
5 Message
£

©

o

Figure 11.29 — The corresponding Collaboration for a valid Choreography sequence

When determining a valid sequence of Choreography Tasks, it is important to consider the type of Choreography
Tasks that are being used. A single Choreography Task can be used for one or two Messages. Most of the time
there will be one or two Messages for a Choreography Task. Figure 11.30 shows a sequence of Choreography
Tasks, the first one being a two-way interaction, where the initiator sends a Message and gets a response from the other
Participant.

&

Participant A P articipant A
Choreography) Choreography
Task 1 Task 2
ParticipantB Participant C

s

Figure 11.30 — A valid sequence of Choreography Activities with a two-way Activity

Business Process Model and Notation (BPMN), v2.0.2 337

Figure 11.31 shows the corresponding Collaboration and how the two Choreography Tasks are reflected in the
Processes within the Pools. The Choreography Task that has two Messages is reflected by three Process
Tasks. Usually in these cases, the initiating Participant will use a single Activity to handle both the sending and
receiving of the Messages. A BPMN Service Task can be used for this purpose and these types of Tasks are often
referred to as “request-response” Tasks for Choreography modelers.

A N\
< Send d
E and Receive send
o Message
© Messages
=
©
o
m
E .
8 R eceive
.g Message Message
[0
o
O
S Receive
o
‘© Message
£
@
o

Figure 11.31 — The corresponding Collaboration for a valid Choreography sequence with a two-way Activity

Figure 11.32 shows how a sequence of Choreography Activities can be designed that would be invalid in the sense
that an Initiating Participant would not know when the appropriate time would be to send a Message. In this example,
“Participant A” is scheduled to send a Message to “Participant C” after “Participant B” sends a Message to
“Participant C.” However, “Participant A” will not know when the Message from “Participant B” has been sent. So,
there is no way to enforce the sequence that is modeled in the Choreography.

Participant A Participant C

Choreography
Task 1

Choreography
Task 2

Participant B

Participant C

Participant A

Participant B

The Initiator of a
Choreography Task must
be involved in the previous
Activity

Figure 11.32 — An invalid sequence of Choreography Activities

338

Business Process Model and Notation (BPMN), v2.0.2

Figure 11.33 shows the Collaboration view of the above Choreography diagram. It becomes clear that “Participant
A” will not know the appropriate time to send Message “M3” to “Participant C.” If the Message is sent too soon, then
“Participant C” will not be prepared to receive it. Thus, as a Choreography, the model in Figure 11.32, above, cannot

be enforced.

Not Valid —

There is no way to
~lenforce the sequence of
S ‘M2” and “M3”

‘_‘:‘_‘_‘ﬁ

<
= (] V]
.8 Send
.g Message Message
m .
. [|
T
= = l = |
4 Receive Send
° Message Message ‘
T
g : 8 I
. I
L w2 |
$) l ‘
= =8 .
8 Receive Receive
3] l Message Message .
; I
& .
{ N

Figure 11.33 — The corresponding Collaboration for an invalid Choreography sequence

11.6 Events

11.6.1 Start Events

Start Events provide the graphical marker for the start of a Choreography. They are used much in the same way as

they are used for a Process (sece “Start Event” on page 237). This table shows how the types of Start Events are

applied to Choreography.

Business Process Model and Notation (BPMN), v2.0.2

339

Table 11.6 — Use of Start Events in Choreography

Type of Event Usage in Choreography?

None Yes. This is really just a graphical marker since the arrival of the first Message in the
Choreography is really the Trigger for the Choreography. Sub-Processes,
however, we should look at. The Parent Process can be considered the trigger.

Message No. A Message Start Event, in a stand-alone Choreography, has no way to show
who the senders or receivers of the Message should be. A Choreography Task
should be used instead. Thus, a None Start Event should be used as a graphical
marker for the “start” of the Choreography.

Timer Yes. All Participants have to have an agreement to the approximate time.

Escalation No. An Escalation is only visible to a single Participant. That Participant will have to
send a Message to the other Participants.

Error No. An Error is only visible to a single Participant. That Participant will have to send a
Message to the other Participants.

Compensation No. Compensation is handled within a single Participant (an orchestration
Process).

Conditional Yes. This is actually determined internal to Participant, but then the other Participants
know this has happened based the first interaction that follows.

Signal Yes. The source of the Signal is NOT REQUIRED (and might not even be a Participant
in the Choreography). There are no specific recipients of a Signal. All Participants of
the Choreography (to comply) MUST be able to see the Signal.

Multiple Yes. But they can only be Multiple Signals or Timers. As in Orchestration, this acts like
an OR. Any one of the incoming Signals will Trigger the Choreography. Any Signal
that follows would create a separate instance of the Choreography.

11.6.2 Intermediate

Events

Table 11.7— Use of Intermediate Events in Choreography

Type of Event

Usage in Choreography?

None: in Normal Flow

Yes. However, this really doesn’t have much meaning other than just document-
ing that a specific point has been reached in the Choreography. There would be
no Message exchange or any delay in the Choreography.

None: Attached to Activity
boundary

No. There would be no way for Participants to know when the Activity should be
interrupted.

340

Business Process Model and Notation (BPMN), v2.0.2

Table 11.7— Use of Intermediate Events in Choreography

Message: in Normal Flow

No. A Message Intermediate Event, in a stand-alone Choreography, has no
way to show who the senders or receivers of the Message should be. A
Choreography Task should be used instead. Also, would the Event be a Catch
or a Throw?

Message: Attached to
Activity boundary

Yes. Only for Choreography Tasks. The Intermediate Event has to be attached
to the Participant Band of the receiver of the Message (since it is a catch
Event). The sender of the message has to be the other Participant of the
Choreography Task.

Message: Use in Event
Gateway

No. A Message Intermediate Event, in a stand-alone Choreography, has no
way to show who the senders or receivers of the Message should be. A
Choreography Task should be used instead.

Timer: in Normal Flow

Yes. Time is not precise in Choreography. It is established by the last visible
Choreography Activity. The Participants involved in the Choreography Activity
that immediately precedes will have a rough approximation of the time—there
will be no exact synchronization.

For relative timers: Only the Participants involved in the Choreography Activity that
immediately precedes the Event would know the time. The sender of the Choreography
Activity that immediately follows the timer MUST be involved in the Choreography Activity
that immediately precedes the timer.

For absolute timers (full time/date): All Participants would know the time. There does not
have to be a relationship between the Participants of the Choreography Activities that are
on either side the timer.

The sender of the Choreography Activity that immediately follows the timer is the
Participant that enforces the timer.

Timer: Attached to Activity
boundary

Yes. Time is not exact in this case. It is established by the last visible Event. All
Participants will have a rough approximation of the time—there will be no exact
synchronization. This includes both interrupting and escalation Events.

The Participants of the Choreography Activity that has the attached timer all enforce the
timer.

For relative timers: They all have to be involved in the Choreography Activity that
immediately precedes the Activity with the attached timer.

For absolute timers (full time/date): All Participants would know the time. They all have to
be involved in the Choreography Activity that immediately precedes the Activity with the
attached timer.

Timer: Used in Event
Gateway

Yes. See Event-Based Gateway below.

Error: Attached to Activity
boundary

No. An Error is only visible to a single Participant. That Participant will have to
send a Message to the other Participants.

Escalation: Used in
Normal Flow

No. An Escalation is only visible to a single Participant. That Participant will have
to send a Message to the other Participants.

Business Process Model and Notation (BPMN), v2.0.2 341

Table 11.7— Use of Intermediate Events in Choreography

Escalation: Attached to Activity
boundary

No. An Escalation is only visible to a single Participant. That Participant will have
to send a Message to the other Participants.

Cancel: in Normal Flow

No. These are Throw Events. As with a Message Event, there would be no
indicator as to who is the source of the Cancel.

Cancel: Attached to Activity
boundary

Yes. These are Catch Events. As with a Message Event, they would be
attached to the Choreography Activity on the Participant Band that is receiv-
ing the Cancel. These would only be interrupting Events.

Compensation: in Normal
Flow

No. These are Throw Events. As with a Message, there would be no indicator
as to who is the source of the Cancel.

Compensation: Attached to
Activity boundary

Yes. These are Catch Events. As with a Message Event, they would be
attached to the Choreography Activity on the Participant Band that is receiv-
ing the Cancel.

Conditional: in Normal Flow

Yes. This is a delay that waits for a change in data to trigger the Event. The data
are to be visible to the Participants as it was data of a previously sent Message.

Conditional: Attached to
Activity boundary

Yes. This is an interruption that waits for a change in data to trigger the Event.
The data are to be visible to the Participants as it was data of a previously sent
Message.

Conditional: Used in Event
Gateway

Yes. This is a delay that waits for a change in data to trigger the Event. The data
are to be visible to the Participants as it was data of a previously sent Message.

Link: in Normal Flow

Yes. These types of Events merely create a virtual Sequence Flows. Thus, as
long as a Sequence Flow between two elements is valid (and within a
Choreography Process level), then a pair of Link Events can interrupt that
Sequence Flow.

Signal: in Normal Flow

Yes. Only Catch Events can be used. For Throw Signal Events, there would be
no indicator of who is the source Participant.

This would be a delay in the Choreography that waits for the Signal. The source of the
Signal is NOT REQUIRED (and might not even be a Participant in the Choreography).
There are no specific recipients of a Signal. All Participants of the Choreography (to
comply) MUST be able to see the Signal.

Signal: Attached to Activity
boundary

Yes. These are Catch Events. This would be an interruption in the Choreogra-
phy that waits for the Signal. The source of the Signal is NOT REQUIRED (and
might not even be a Participant in the Choreography). There are no specific
recipients of a Signal. All Participants of the Choreography (to comply) MUST
be able to see the Signal. This Event MUST NOT be attached to a Participant
Band or this would suggest that Participant is a specific recipient of the

Signal.

342

Business Process Model and Notation (BPMN), v2.0.2

Table 11.7— Use of Intermediate Events in Choreography

Signal: Used in Event
Gateway

Yes. These are Catch Events. This would be a delay in the Choreography that
waits for the Signal. The source of the Signal is NOT REQUIRED (and might not
even be a Participant in the Choreography). There are no specific recipients of
a Signal. All Participants of the Choreography (to comply) MUST be able to see
the Signal.

Multiple: in Normal Flow

Yes. But they can only be a collection of valid Catch Events. As in Orchestra-
tion, this acts like an OR. Any one of the incoming triggers will continue the
Choreography.

Multiple: Attached to
Activity Boundary

Yes. But they can only be a collection of valid Catch Events. As in Orchestra-
tion, this acts like an OR. Any one of the incoming triggers will interrupt the
Choreography Activity.

11.6.3 End Events

End Events provide a graphical marker for the end of a path within the Choreography.

Table 11.8 — Use of End Events in Choreography

Type of Event

Usage in Choreography?

None

Yes. This is really just a graphical marker since the sending of the previous
Message in the Choreography is really the end of the Choreography. The
Participants of the Choreography would understand that they would not expect
any further Message at that point.

Message

No. A Message End Event, in a stand-alone Choreography, has no way to
show who the senders or receivers of the Message should be. A
Choreography Task should be used instead. Thus, a None End Event should
be used as a graphical marker for the “end” of the Choreography.

Error

No. These are Throw Events and there would be no way to indicate the
Participant that is the source of the Error.

Escalation

No. These are Throw Events and there would be no way to indicate the
Participant that is the source of the Escalation.

Cancel

No. These are Throw Events. As with a Message Event, there would be no
indicator as to who is the source of the Cancel.

Compensation

No. These are Throw Events. As with a Message Event, there would be no
indicator as to who is the source of the compensation.

Signal

No. These are Throw Events. As with a Message Event, there would be no
indicator as to who is the source of the Signal.

Business Process Model and Notation (BPMN), v2.0.2 343

Table 11.8 — Use of End Events in Choreography

Multiple No. Since there are no valid End Event Results (Terminate doesn’t count) in
Choreography, there cannot be multiple of them.

Terminate Yes. However, there would be no specific ability to terminate the
Choreography, since there is no controlling system. In this case, all
Participants in the Choreography would understand that when the Terminate
End Event is reached (actually when the Message that precedes it occurs),
then no further messages will be expected in the Choreography, even if there
were parallel paths. The use of the Terminate End Event really only works
when there are only two Participants. If there are more than two Participants,
then any Participant that was not involved in the last Choreography Task would
not necessarily know that the Terminate End Event had been reached.

11.7 Gateways

In an Orchestration Process, Gateways are used to create alternative and/or parallel paths for that Process.
Choreography has the same requirement of alternative and parallel paths. That is, interactions between Participants can
happen in sequence, in parallel, or through exclusive selection. While the paths of Choreography follow the same basic
patterns as that of an Orchestration Process, the lack of a central mechanism to maintain data visibility, and that there
is no central evaluation, there are constraints as to how the Gateways are used in conjunction with the Choreography
Activities that precede and follow the Gateways. These constraints are an extension of the basic sequencing constraints
that was defined on page 335. The six (6) sub clauses that follow will define how the types of Gateways are used in
Choreography.

11.7.1 Exclusive Gateway

Exclusive Gateways (Decisions) are used to create alternative paths within a Process or a Choreography. For
details of how Exclusive Gateways are used within an Orchestration Process see page 289.

Exclusive Gateways are used in Choreography, but they are constrained by the lack of a central mechanism to store
the data that will be used in the Condition expressions of the Gateway’s outgoing Sequence Flows.
Choreographies MAY contain natural language descriptions of the Gateway’s Conditions to document the alternative
paths of the Choreography (e.g., “large orders” will go down one path while “small orders” will go down another path),
but such Choreographies would be underspecified and would not be enforceable. To create an enforceable
Choreography, the Gateway Conditions MUST be formal Condition Expressions. However:

€ The data used for Gateway Conditions MUST have been in a Message that was sent prior to (upstream from)
the Gateway.

€ More specifically, all Participants that are directly affected by the Gateway MUST have either sent or
received the Message(s) that contained the data used in the Conditions.

€ Furthermore, all these Participants MUST have the same understanding of the data. That is, the actual
values of the data cannot selectively change after a Participant has seen a Message. Changes to data
during the course of the Choreography MUST be visible to all the Participants affected by the
Gateway.

These constraints ensure that the Participants in the Choreography understand the basis (the actual value of the data)
for the decision behind the Gateway.

344 Business Process Model and Notation (BPMN), v2.0.2

One (1) or more Participants will actually “control” the Gateway decision; that is, these Participants make the decision
through the internal Orchestration Processes. The decision is manifested by the particular Message that occurs in the
Choreography (after the Gateway). This Message is the initiating Message of a Choreography Activity that

follows the Gateway. Thus, only the Participants that are the initiators of the Messages that follow the Gateway are
the ones that control the decision. This means that:

@ The initiating Participants of the Choreography Activities that follow the Gateway MUST have sent or
received the Message that provided the data upon which the decision is made.

€@ The Message that provides the data for the Gateway MAY be in any Choreography Activity prior to
the Gateway (i.e., it does not have to immediately precede Gateway).

ParticipantA

Choreography
Task 1

Decision?:

ParticipantB

Yes

P articipantA

Choreography
Task 2

ParticigantB

Participant C

Choreography
Task 3

ParticipantB

Figure 11.34 — An example of the Exclusive Gateway

Figure 11.35 shows the Collaboration that demonstrates how the above Choreography that includes an Exclusive
Gateway can be enforced.

Business Process Model and Notation (BPMN), v2.0.2

345

Receive
Message
<
I=
@®
2
Q
b=
(]
o
m
€
®
2
0
b=
©
o]
L Send
No Message
s [
L
L]
|
Yes |
o . I
- Decision? |
C
])
2
(&]
c \/
©
o .
Receive
Message
No

Figure 11.35 — The relationship of Choreography Activity Participants across the sides
of the Exclusive Gateway shown through a Collaboration

Usually, the initiators for the Choreography Activities that follow the Gateway will be the same Participant. That is,
there is only one Participant controlling the decision. Often, the receivers of the initiating Message for those
Choreography Activities will be the same Participant. However, it is possible that there could be different Participants
receiving the initiating Message for each Choreography Activity (see Figure 11.36).

346 Business Process Model and Notation (BPMN), v2.0.2

Participant A

Yes Choreography

Task 2
Participant A Participant B

Decision?,
Choreography
Task 1

Participant B Participant A
I Choreography

No Task 3
Participant C

Figure 11.36 — Different Receiving Choreography Activity Participants
on the output sides of the Exclusive Gateway

This configuration can only be valid if all the Participants in the Choreography Activities that follow the Gateway
have seen the data upon which the decision is made. If either “Participant B” or “Participant C” had not sent or received
a Message with the appropriate data, then that Participant would not be able to know if they are suppose to receive a
Message at that point in the Choreography. There is also the assumption that the value of the data is consistent from
the point of view of all Participants.

Figure 11.37 displays the corresponding Collaboration view of the above Choreography Exclusive Gateway
configuration.

Business Process Model and Notation (BPMN), v2.0.2 347

Yes Send
Message
< g
] -
[
o
] I
= |
©
o |
Message :
|
wl w
Yes Recieve
Message
m g
5 .
3 Receive
Qo Message
=
©
o
O
k=
(4]
Q.
S
b=
g
Recieve
Message

Figure 11.37 — The corresponding Collaboration view of the above
Choreography Exclusive Gateway configuration

The REQUIRED execution behavior of the Gateway and associated Choreography Activities are enforced through
the Business Processes of the Participants as follows:

€ Each Choreography Activity and the Sequence Flow connections are reflected in each Participant
Process.

€ The Gateway is reflected in the Process of each Participant Process that is an initiator of Choreography
Activities that follow the Gateway.

€ For the receivers in Choreography Activities that follow the Gateway, an Event-Based Gateway is
used to consume the associated Message (sent as an outcome of the Gateway). When a Participant is the
receiver of more than one of the alternative Messages, the corresponding receives follow the Event-Based
Gateway.

348 Business Process Model and Notation (BPMN), v2.0.2

If the Participant is the receiver of only one such Message, that is also consumed through a receive following the

Event-Based Gateway. This is because the Participant Process does not know whether it will receive a
Message (since the Gateway entails a choice of outcomes).

11.7.2 Event-Based Gateway

As described above, the Event-Based Gateway represents a branching point in the Process where the alternatives are
based on Events that occur at that point in the Process, rather than the evaluation of expressions using Process data.
For details of how Event-Based Gateways are used within an Orchestration Process see “Event-Based Gateway” on

page 296.

These Gateways are used in Choreography when the data used to make the decision is only visible to the internal
Processes of one Participant. That is, there has been no Message sent within the Choreography that would expose

the data used to make the decision. Thus, the only way that the other Participants can be aware of the results of the

decision is by the particular Message that arrives next.

€ On the right side of the Gateway: either
€ the senders MUST to be the same; or
€ the receivers MUST to be the same.

€ After the first Choreography Activity occurs, the other Choreography Activities for the

Gateway MUST NOT occur.

€ Message Intermediate Events MUST NOT be used in the Event-Based Gateway.
¢ Timer Intermediate Events MAY be used, but they restrict the participation in the Gateway.

@ For relative timers: All Participants on the right side of the Gateway MUST be involved in the
Choreography Activity that immediately precedes the Gateway.

€ For absolute timers (full time/date): All Participants on the right side of the Gateway MUST be involved in

the Choreography Activity that immediately precedes the Gateway.
€ Signal Intermediate Events MAY be used (they are visible to all Participants).

€ No other types of Intermediate Events are allowed.

Participant A

Choreography
Task 1

Participant B

Participant A

Choreography
Task 2

Participant B

Participant A

Decicion?

Choreography
Task 3

Participant B

Figure 11.38 — An example of an Event Gateway

Figure 11.39 displays the corresponding Collaboration view of the above Choreography Event Gateway configuration.

Business Process Model and Notation (BPMN), v2.0.2

349

[_
Yes Receive
< L Message
% Send A
72)
Q.
© Message \OJ> :
£
£ =3 |
Receive |
No Message |
|
|
Y Send :
Message |
b |
= Decision?,
o Receive |
3} Message |
=
©
o
.
No Message

Figure 11.39 — The corresponding Collaboration view of the above Choreography Event Gateway configuration

The REQUIRED execution behavior of the Event-Based Gateway and associated Choreography Activities are
enforced through the Business Processes of the Participants as follows:

- Each Choreography Activity and the Sequence Flow connections is reflected in each Participant Process.

+ If'the senders following the Gateway are the same, the Event-Based Gateway is reflected as an Exclusive
Gateway in that Participant’s Process. This is because the choice of which Message to send is determined by the
same Participant. If the senders are different, sending occurs through different Processes.

+ If'the receivers are the same, the senders can be the same or different. In this case, the Event-Based Gateway is
reflected in the receiver’s Process, with the different Message receives following the Gateway.

« If the receivers are different, the senders need to be the same. The Event-Based Gateway is reflected for different

receiver Processes such that the respective receive follows the Gateway. A time-out can be used to ensure that the
Gateway does not wait indefinitely.

350 Business Process Model and Notation (BPMN), v2.0.2

11.7.3 Inclusive Gateway

Inclusive Gateways are used for modeling points of synchronization of a number of branches, not all of which are
active, after which one or more alternative branches are chosen within a Choreography flow. For example, one of more
branches MAY be activated upstream, in parallel, depending on the nature of goods in an order (e.g., large orders, fragile
goods orders, orders belonging to pre-existing shipment contracts), and these are subsequently merged. The point of
merge results in one or more risk mitigating outcomes (e.g., special insurance protection needed, special packaging
needed, and different container categories needed). Inclusive Gateways are also used within an Orchestration
Process see page 291.

Like Exclusive Gateways, Inclusive Gateways are used in a Choreography, but they are constrained by the lack
of a central mechanism to store the data that will be used in the Condition expressions of the Gateway’s outgoing
Sequence Flows. Choreographies MAY contain natural language descriptions of the Gateway’s Conditions to
document the one more alternative paths of the Choreography (e.g., “special insurance protection needed,” “special
packaging needed,” and different “container category needed”), but such Choreographies would be underspecified and
would not be enforceable. To create an enforceable Choreography, the Gateway Conditions MUST be formal
Condition Expressions. In general the following rules apply for the Expressions.

Like the enforceability of the Exclusive Gateway, the Inclusive Gateway in a Choreography requires that the data
in the Expressions of the outgoing Sequence Flows of the Gateway be available to the initiators of the
Choreography Activities of outgoing Sequence Flows. This means that the initiators of these Choreography
Activities should also be senders or receivers of Messages in Choreography Activities immediately preceding the
Gateway. The major difference, however, is that the synchronizing behavior of the Inclusive Gateway can only be
enforced through one participant. Hence, the rules for enforceability are as follows:

@ The data used for Gateway Conditions MUST have been in a Message that was sent prior to (upstream from) the
Gateway.

€ More specifically, all Participants that are directly affected by the Gateway MUST have either sent or received
the Message(s) that contained the data used in the Conditions.

€ Furthermore, all these Participants MUST have the same understanding of the data. That is, the actual
values of the data cannot selectively change after a Participant has seen a Message. Changes to data
during the course of the Choreography MUST be visible to all the Participants affected by the
Gateway.

@ Merge: In order to enforce the synchronizing merge of the Gateway, the sender of the Choreography
Activity after the Gateway MUST participate in the Gateway immediately preceding the Gateway. This
ensures that the merge can be enforced. (This relies on the assumption of logical atomicity of a Choreography
Activity, otherwise the rule would require that all receivers are the same so that the Gateway is enforced in
the receiver’s Process only).

@ Split: In order to enforce the split side of the Gateway, the initiators of all Choreography Activities
immediately following the Gateway MUST be the same as the common sender or receiver of Choreography
Activities preceding the Gateway. The sender(s) of all the Choreography Activities after the Gateway
MUST be involved in all the Choreography Activities that immediately precede the Gateway.

Figure 11.40 shows an example of a Choreography with an Inclusive Gateway. The Gateway is enforced in the
corresponding Business Processes of the Participants involved. For the merge behavior to be enforced, the initiator
of Choreography Activities immediately following the Gateway participates in the Choreography Activities
immediately preceding the Gateway.

Business Process Model and Notation (BPMN), v2.0.2 351

EM1

Participant A

Choreography
Task 1

Participant B

EMZ

Participant D

Choreography
Task 1

Particibant C

Choreography
Task 1

Participant B

Participant B

Ems

Figure 11.40 — An example of a Choreography Inclusive Gateway configuration

352

Business Process Model and Notation (BPMN), v2.0.2

Send
Message

Participant A

Receive
M
e ’ essage
c
] Send
g Message
@ [N _
o Receive
Message
|
|
O =)
= = .
s Send g Receive
S Message © Message
€ €
© ©
o o

Figure 11.41 — The corresponding Collaboration view of the above Choreography Inclusive Gateway configuration

Figure 11.42, a variation of Figure 11.40 above, shows an example of a Choreography illustrating the enforcement of
the split behavior of the Inclusive Gateway. For the split behavior to be enforced, the initiators of Choreography
Activities immediately following the Gateway and the receiver of Choreography Activities immediately preceding
the Gateway are the same Participant (i.e., A).

Business Process Model and Notation (BPMN), v2.0.2 353

Participant A

Condition 1 Choreography

Task 2
Participant A Participant C

Decision?
Choreography O
Task 1

Participant B Participant A
I Choreography

Condition 2 Task 3
Participant C

Figure 11.42 — An example of a Choreography Inclusive Gateway configuration

354 Business Process Model and Notation (BPMN), v2.0.2

Condition 1

[

Receive

Message

Participant A

Send
Condition 2 Message

Send
Message

Participant B

Message

|

|

|
Condition }{

|

Decision? :

4|

Receive
Condition 2| Message

Participant C

4|

Receive
Message

Figure 11.43 — The corresponding Collaboration view of the above Choreography

Inclusive Gateway configuration

Business Process Model and Notation (BPMN), v2.0.2

355

Participant A

Choreography
Task 1

o

Participant B

Participant A

Condition 1

>

Choreography
Task 2

Participant C

Participant A

N

Condition 2

Choreography
Task 3

Participant D

Figure 11.44 — Another example of a Choreography Inclusive Gateway configuration

356

Business Process Model and Notation (BPMN), v2.0.2

[_
Condition 1 Receive
Message
=)
— Decision?
c
@®
o
O
i<
©
o
Condition 2
Condition 1
Message
< g
£ =3
o] Receive
© Message
i<
5
o
| Send
| Condition 2| Message
]
M1 | N |
|
|
@ |
c
© \/
Re3
0
T Send
o Message
|
]
|
Condition 1 I
|
o . I
— Decision?
@ |
4]
Re3
-9 @
i<
©
S [_
Receive
Condition 2| Message

Figure 11.45 — The corresponding Collaboration view of the above Choreography
Inclusive Gateway configuration

Business Process Model and Notation (BPMN), v2.0.2 357

11.7.4 Parallel Gateway

Parallel Gateways are used to create paths and are performed at the same time, within a Choreography flow. For
details of how Parallel Gateways are used within an Orchestration Process see page 292.

Since there is no conditionality for these Gateways, they are available as-is in Choreography. They create parallel
paths of the Choreography that all Participants are aware of.

@ The sender(s) of all the Activities after the Gateway MUST be involved in all the Activities that immediately
precede the Gateway.

€ [fthere is a chain of Gateways with no Choreography Activities in between, the Choreography
Activity that precedes the chain satisfies the above constraint.

Figure 11.46 shows the relationship of Choreography Activity Participants across the sides of the Parallel Gateway.

[Participant A)

I Choreography
Task 2

(Participant A)

Choreography
Task 1 I

| ParticipantB)

| ParticipantB J

[Participant C |

. 3 Choreography
Task 3

| ParticipantB |

Figure 11.46 — The relationship of Choreography Activity Participants
across the sides of the Parallel Gateway

Figure 11.47 shows the corresponding Collaboration view of the above Choreography Parallel Gateway
configuration.

358 Business Process Model and Notation (BPMN), v2.0.2

Send Receive
Message Message

Participant A

m
t .
3 Receive
9 Message
€
@©
o
Send
N Message
O
<
s Receive
© Message
©
o

Figure 11.47 — The corresponding Collaboration view of the above
Choreography Parallel Gateway configuration

The REQUIRED execution behavior of the Parallel Gateway and associated Choreography Activities are enforced
through the Business Processes of the Participants as follows:

€ Each Choreography Activity and the Sequence Flow connections is reflected in each Participant Process.

@ If the senders following the Parallel Gateway are the same, a Parallel Gateway is reflected in the sender’s
Process followed by Message sending actions to the corresponding receivers.

@ If the senders are different, the Parallel Gateway is manifested by Sequence Flows followed by the sending
action in each Process.

Business Process Model and Notation (BPMN), v2.0.2 359

11.7.5 Complex Gateway

Complex Gateways can model partial merges in Business Processes where when some but not all of a set of
preceding branches complete, the Gateway fires. This can be considered the discriminator/n-of-m join pattern1 and is not
supported through the inclusive OR merge since it is not concerned with sets of branches, but rather branches that have
tokens. Applied in Choreographies, Complex Gateways can model tendering and information canvassing use cases
where requests are sent to participants who respond at different times.

Consider an e-tender that sends a request for quote to multiple service providers (e.g., warehouse storage) in a
marketplace. The e-tender Process sends out requests to each service provider and anticipates their response through
three Choreography Activities. The response branches merge at a Complex Gateway to model the requirement that
when 66% responses have arrived, an assessment of the tender can proceed. The assessment occurs after the Complex
Gateway. If the assessment reports that the reserve amount indicated by the customer cannot be met, a new iteration of
the tender is made. A key issue is to ensure that the responses should not be mixed across tender iterations. A Terminate
End Event ensures that all Activities are terminated, when a tender has been successful.

Service Provider A

» Quote
Purchaser
h 4 — No
Purchaser Service Provider B v
Yes
Q—> Request for Quote ——— ——¥> Quote = *
Service Provider A Purchaser A 20f3 rSeusfngeent
. n —_— responses
SeN!ce Prov!der B recieved amount?
Service Provider C —
— Service Provider C
» Quote
Purchaser

Figure 11.48 — An example of a Choreography Complex Gateway configuration

1. http://www.workflowpatterns.com/patterns/control/advanced_branching/wcp9.php

360 Business Process Model and Notation (BPMN), v2.0.2

Request for
Quote recieved

Service Provider A

—_——

Quote
recieved

Request
Quotes

Purchaser

2 ofthe 3
responses
recieved

Assess the
Quotes
S

ufficient

reserve
amount?

—F———-——-=-=-—

Request for
Quote recieved

Service Provider B
Q-

Request for
Quote recieved

Service Provider C
Q-

Figure 11.49 — The corresponding Collaboration view of the above Choreography Complex Gateway configuration

11.7.6 Chaining Gateways

It is possible to chain Gateways. This means that a modeler can sequence two or more Gateways without any
intervening Choreography Activities, however the constraints on what participants can appear before and after the

chain MUST be observed.

11.8 Choreography within Collaboration

11.8.1 Participants

Participants are used in both Collaborations and Choreographies.

Business Process Model and Notation (BPMN), v2.0.2

361

11.8.2 Swimlanes

Swimlanes, both Pools and Lanes, are not used in Choreographies. Pools are used exclusively in
Collaborations (see page 113). Participants, which can be associated to Pools, however, are used in the Participant
Bands of Choreography Tasks (see page 323) and Sub-Choreographies (sce page 328). Pools can be used with
Choreography diagrams when in the context of a Collaboration diagram (see page 361).

Lanes are not used in Choreography diagrams since Lanes are sub-partitions of a Pool and Choreographies are
placed in between the Pools (if used in a Collaboration).

Figure 11.50 shows an example of a Choreography Process combined with Black Box Pools.

“Black Box” Pool

Patient

T ! i T3

b ! | L
I I I

| want to see | | feel sick | | |

the Doctor Izl | eelsic Izl | |

| | I need mylil [

| [I | medicine [

Elitiating I | I | I |
I I I

Message [. | [\

C) Doctor Handle Handle Handle O
Request Symptoms Prescription Medicine

| I | | [
I E] Goseethe | mplé:.kl.f yct>rl11rn Izl I | ,
| _ Doctor | edicine, the | Here is your
| iy | leave | I medicine
v 4 v . v 4
H Dr. Office
[The names of the Participants are not “|The unshaded Participant
displayed in the Participant Bands since is the initiator of the Task
the Pools will display those names

Figure 11.50 — An example of a Choreography Process combined with Black Box Pools

Figure 11.51 shows an example of a Choreography Process combined with Pools that contain Processes.

362 Business Process Model and Notation (BPMN), v2.0.2

(lCJ Send Doctor Receive Send Rece_lvg Se.m.j Receive
= . Prescription Medicine
© Request Appointment[| Symptoms ; Medicine
o Pickup Request
lliness
Occurs T A T ZP T |
l | | } | |
| | | l | |
———— -— _—- _——— - .
! | | | | | *{Orchestration
I | | | | | Process
| want to see |i7| | | feel sick | | need my |
the Doctor | E | medicine |
I | l | | |
O_> Doctor . Handle . Handle . Handle _>O
Request 7] Symptoms Prescription o Medicine
I | I | I i
I Go see the I P'C,kl_‘p your I Here is your
I Doctor I medicine, then I Izl medicine
| [——— k_\ leave —J [—
| | [[
[l
© ! i | '
£ Y L
o Recewe Send Receive Send Recgy e Send
& Doctor Appointment Symotoms Prescription Medicine Medicine
o Request pp ymp Pickup Request
3
(@]

Figure 11.51 — An example of a Choreography Process combined with Pools that contain Processes

Choreography Task in Combined View

Sub-Choreography in Combined View
11.9 XML Schema for Choreography

Table 11.9 — Choreography XML schema

<xsd:element name="choreography" type="tChoreography" substitutionGroup="collaboration"/>
<xsd:complexType name="tChoreography">
<xsd:complexContent>
<xsd:extension base="tCollaboration">

<xsd:sequence>
<xsd:element ref="flowElement" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Business Process Model and Notation (BPMN), v2.0.2 363

Table 11.10 — GlobalChoreographyTask XML schema

<xsd:element name="globalChoreographyTask" type="tGlobalChoreographyTask"
substitutionGroup="choreography"/>
<xsd:complexType name="tGlobalChoreographyTask">

<xsd:complexContent>
<xsd:extension base="tChoreography">
<xsd:attribute name="initiatingParticipantRef" type="xsd:QName"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 11.11 — ChoreographyActivity XML schema

<xsd:element name="choreographyActivity" type="tChoreographyActivity"/>
<xsd:complexType name="tChoreographyActivity" abstract="true">
<xsd:complexContent>
<xsd:extension base="tFlowNode">
<xsd:sequence>
<xsd:element name="participantRef" type="xsd:QName" minOccurs="2"
maxOccurs="unbounded"/>
<xsd:element name="correlationKey" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="initiatingParticipantRef" type="xsd:QName" use="required"/>
<xsd:attribute name="loopType" type="tChoreographyLoopType" default="None"/>

</xsd:extension>
</xsd:complexContent>
<xsd:complexType>
<xsd:simpleType name="tChoreographyLoopType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="None">
<xsd:enumeration value="Standard">
<xsd:enumeration value="MultilnstanceSequential">
<xsd:enumeration value="MultilnstanceParallel">
</xsd:restriction>
<xsd:simpleType>

Table 11.12 — ChoreographyTask XML schema

<xsd:element name="choreographyTask" type="tChoreographyTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tChoreographyTask">
<xsd:complexContent>
<xsd:extension base="tChoreographyActivity">

<xsd:sequence>
<xsd:element name="messageFlowRef" type="xsd:QName" minOccurs="1" maxOccurs="2"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

364 Business Process Model and Notation (BPMN), v2.0.2

Table 11.13 — CallChoreography XML schema

<xsd:element name="callChoreography" type="tCallChoreography" substitutionGroup="flowElement"/>
<xsd:complexType name="tCallChoreography">
<xsd:complexContent>
<xsd:extension base="tChoreographyActivity">
<xsd:sequence>
<xsd:element ref="participantAssociation" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="calledChoreographyRef" type="xsd:QName" use="optional"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 11.14 — SubChoreography XML schema

<xsd:element name="subChoreography" type="tSubChoreography" substitutionGroup="flowElement"/>
<xsd:complexType name="tSubChoreography">
<xsd:complexContent>
<xsd:extension base="tChoreographyActivity">
<xsd:sequence>
<xsd:element ref="flowElement" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="artifact" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Business Process Model and Notation (BPMN), v2.0.2

365

366 Business Process Model and Notation (BPMN), v2.0.2

12 BPMN Notation and Diagrams

12.1 BPMN Diagram Interchange (BPMN DI)

12.1.1 Scope

This clause specifies the meta-model and schema for BPMN 2.0.2 Diagram Interchange (BPMN DI). The BPMN DI is
meant to facilitate interchange of BPMN diagrams between tools rather than being used for internal diagram
representation by the tools. The simplest interchange approach to ensure the unambiguous rendering of a BPMN diagram
was chosen for BPMN DI. As such, BPMN DI does not aim to preserve or interchange any “tool smarts” between the
source and target tools (e.g., layout smarts, efficient styling, etc.).

BPMN DI does not address or define the interchange of color information. The use of alternative colors in BPMN is non
normative. The meaning or semantic of colors might vary from tool to tool or, from user to user, potentially leading to
miss-interpretations.

BPMN DI does not ascertain that the BPMN diagram is syntactically or semantically correct.

12.1.2 Diagram Definition and Interchange

The BPMN DI meta-model, similar to the BPMN abstract syntax meta-model, is defined as a MOF-based meta-model.
As such, its instances can be serialized and interchanged using XMI. BPMN DI is also defined by an XML schema. Thus
its instances can also be serialized and interchanged using XML.

Both BPMN DI meta-model and schema are harmonized with a draft version of the OMG Diagram Definition (DD)
standard. Annex B contains the relevant parts of the referenced DD specifications that were used as foundation for the
BPMN DI model and schema. The provided DD contains two main parts: the Diagram Commons (DC) and the Diagram
Interchange (DI). The DC defines common types like bounds and fonts, while the DI provides a framework for defining
domain specific diagram models. As a domain specific DI, BPMN DI defines a few new meta-model classes that derive
from the abstract classes from DI.

The focus of BPMN DI is the interchange of laid out shapes and edges that constitute a BPMN diagram. Each shape and
edge references a particular BPMN model element. The referenced BPMN model elements are all part of the actual
BPMN model. As such, BPMN DI is meant to only contain information that is neither present, nor derivable, from the
BPMN model whenever possible. Simply put, to render a BPMN diagram both the BPMN DI instance(s) and the
referenced BPMN model are REQUIRED.

From the BPMN DI perspective, a BPMN diagram is a particular snapshot of a BPMN model at a certain point in time.
Multiple BPMN diagrams can be exchanged referencing model elements from the same BPMN model. Each diagram may
provide an incomplete or partial depiction of the content of the BPMN model. BPMN DI does not ascertain that the
BPMN diagram is syntactically or semantically correct.

As described in Clause 15, a BPMN model package consists of one or more files. Each file may contain any number of
BPMN diagrams. The exporting tool is free to decide how many diagrams are exported and the importing tool is free to
decide if and how to present the contained diagrams to the user.

Business Process Model and Notation (BPMN), v2.0.2 367

12.1.3 How to Read this Clause

The normative BPMN 2.0 Diagram Interchange (BPMN DI) specification has three parts. Sub clause 12.2 defines BPMN
DI; an instance of the DI meta-model provided at Annex B. Sub clause 12.3 provides a library of the BPMN element
depictions and an unambiguous resolution between a referenced BPMN model element and its depiction. Finally, sub
clause 12.4 provides examples to support the interpretation of the specification. Some BPMN diagram depictions along
with their XML BPMN DI serializations are provided.

12.2 BPMN Diagram Interchange (DI) Meta-model

12.2.1 Overview

The BPMN DI is an instance of the DI meta-model provided at Annex B. The basic concept of BPMN DI, as with DI in
general, is that serializing a diagram [BPMNDiagram] for interchange requires the specification of a collection of shapes
[BPMNShape] and edges [BPMNEdge] on a plane [BPMNPlane].

BPMNPlane, BPMNShape, and BPMNEdge MUST reference exactly one abstract syntax BPMN element from the
BPMN model using the bpmnElement attribute. The only exception is for a Data Association connected to a Sequence
Flow (See Figure 10.68). This is a visual short cut that actually normalizes two Data Associations within the BPMN
model. In this case, the resolution is made from the BPMN DI attributes rather than the abstract syntax reference
[bpmnElement] (See Table 12.35).

The BPMN DI classes only define the visual properties used for depiction. All other properties that are REQUIRED for
the unambiguous depiction of the BPMN element are derived from the referenced bpmnElement.

Multiple depictions of a specific BPMN element in a single diagram is NOT allowed, except for Participants in a
choreography (i.e., Participant Bands). For example, it is not allowed to depict a Task twice in the same diagram, but it is
allowed to depict the same Task in two different diagrams.

BPMN diagrams may be an incomplete or partial depiction of the content of the BPMN model. Some BPMN elements
from a BPMN model may not be present in any of the diagram instances being interchanged.

BPMN DI does not provide for any containment concept. The BPMNPIlane is an ordered collection of mixed
BPMNShape(s) and BPMNEdge(s). The order of the BPMNShape(s) and BPMNEdge(s) inside a BPMNPlane determines
their Z-order (i.e., what is in front of what). BPMNShape(s) and BPMNEdge(s) that are meant to be depicted “on top” of
other BPMNShape(s) and BPMNEdge(s) MUST appear after them in the BPMNPlane. Therefore, the exporting tool
MUST order all BPMNShape(s) and BPMNEdge(s) such that the desired depiction can be rendered.

12.2.2 Abstract Syntax

This sub clause introduces the Abstract Syntax of BPMN DI. BPMN DI is an instance of the DI meta-model provided at
Annex B.

368 Business Process Model and Notation (BPMN), v2.0.2

DHE: EMa g e

Fay

{redefines diagram} {redefines roolElenment}

BPMHDiagram | % owningDiagram *+ plane BN
1 1

¢

” + pwmingDiagram

{subsets diagram}

{subsets style}

- + labalStida
.‘

BPMNL abelStyle

Figure 12.1 — BPMN Diagram

{redefines diagramElementy [radefines modelElemant)

EPMMPlawe | * Dlang * bprnElerment | pPimne:BaseEloment
* 0.1

Figure 12.2 — BPMN Plane

Di::LabeledShape «enumeration:
ParticipantBandKind
top_initiating
middle_initiating
hottom_initiating
top_nan_initiating
middle_non_initiating
hattorm_non_initiating

{subsets owningShape} {subsets ownedLabel}

+shape + label
BPMNShape - BPMHNLabel
+isHofizontal : Boolean [0.1] 0.1 0.1
+isExpanded : Boolean [0..1]
+isMarkeryisible : Boalean [0..1]
+ishlessagetisible : Boalean [0..1]
+ participantBandkind : ParticipantBandkind [0.1]] * 0.1 | BPMN--BaseElement
+ shape + bpmnElemen
1 0.1 {redefines diagramElement} {redefines modelElement}

+ participantBandShape + choreagraphyActivibyShape

Figure 12.3 — BPMN Shape

Business Process Model and Notation (BPMN), v2.0.2 369

Di::LabeledEdge «ehumerations
MessageVisibleKind

initiating
non_initiating
{subsets owningEdge} {subsets ownedLabel}
+edge *+label [ppynLabel
BPMNEdge -
0.1 0.1

+ mesgsageYisiblekind : MessageVisiblekind [0..1]

{redefines diagramElement}{redefines modelElement}

+ edge + bpmnElement | pppNe:BaseElement
3 0.1
+targetEdge =3 *| +sourceEdge
{redefines targetEdge} {redefines sourceEdge!
{redefines target} {redefines saurce}
+targetElement | 0.1 0.1 + sourceElement

DI::DiagramElement

Figure 12.4 —- BPMN Edge

Di:: Style

+labelStyle | ppmNLabelStyle
0.1 |+font:Font

Di::Label

Figure 12.5 — BPMN Label
12.2.3 Classifier Descriptions

12.2.3.1 BPMNDiagram [Class]
BPMNDiagram is a kind of diagram that depicts all or part of a BPMN model.

Description

BPMNDiagram represents a depiction of all or part of a BPMN model. It specializes DI::Diagram and redefines the root
element (the top most diagram element) to be of type BPMNPIlane. A BPMN diagram can also own a collection of
BPMNStyle elements that are referenced by BPMNLabel elements in the diagram. These style elements represent the
unique appearance styles used in the diagram.

Abstract Syntax
» Figure 12.1 - BPMN Diagram

370 Business Process Model and Notation (BPMN), v2.0.2

Generalizations
+ DI::Diagram
Associations
« +plane : BPMNPIlane [1] {redefines rootElement}
a BPMN plane element that is the container of all diagram elements in this diagram.
 + labelStyle : BPMNLabelStyle [*] {subsets style}

a collection of BPMN label styles that are owned by the diagram and referenced by label elements.

Table 12.1 — BPMNDiagram XML schema

<xsd:complexType name="BPMNDiagram">
<xsd:complexContent>
<xsd:extension base="di:Diagram">
<xsd:sequence>
<xsd:element ref="bpmndi:BPMNPIlane"/>
<xsd:element ref="bpmndi:BPMNLabelStyle" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

12.2.3.2 BPMNPIlane [Class]
A BPMNPlane is the BPMNDiagram container of BPMNShape and BPMNEdge.

Description

A BPMNPIane specializes DI::Plane and redefines its model element reference to be of type (BPMN) BaseElement. A
BPMNPIlane can only reference a BaseElement of the types: Process, SubProcess, AdHocSubProcess, Transaction,
Collaboration, Choreography or SubChoreography.

BPMNPlane element is always owned by a BPMNDiagram and represents the root diagram element of that diagram. The
plane represents a 2 dimensional surface with an origin at (0, 0) along the x and y axes with increasing coordinates to the
right and bottom. Only positive coordinates are allowed for diagram elements that are nested in a BPMNPlane. This
means that the union of all the nested elements’ bounds is deemed to be located at the plane’s origin point.

Abstract Syntax
+ Figure 12.1 - BPMN Diagram
+ Figure 12.2 - BPMN Plane
Generalizations

« DI::Plane

Business Process Model and Notation (BPMN), v2.0.2 371

Associations
« + bpmnElement : BaseElement [0..1] {redefines modelElement}

a reference to either a Process, SubProcess, AdHocSubProcess, Transaction, Collaboration, Choreography or
SubChoreography in a BPMN model.

Table 12.2 — BPMNPIlane XML schema

<xsd:complexType name="BPMNPIlane">
<xsd:complexContent>
<xsd:extension base="di:Plane">
<xsd:attribute name="bpmnElement" type="xsd:QName"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

12.2.3.3 BPMNShape [Class]
BPMNShape is a kind of shape that can depict a BPMN model element.
Description

BPMNShape represents a depiction of a (typically a node) BPMN model element. It specializes DI::LabeledShape and
redefines its model element reference to be of type (BPMN) BaseElement, allowing it to reference an element from a
BPMN model.

BPMNShape also contains an optional label of type BPMNLabel that can be nested in the shape when it has a visible
textual label with its own bounding box.

The shape also contains a number of normative notational options that can be specified for different types of BPMN
elements depicted by the shape. Those options, each represented by a separate property, and described below, allow for
recording the specific notational style desired for the shape.

All BPMNShape elements are owned directly by a BPMNPIlane (that is the root element in a BPMNDiagram), i.e., shapes
are not nested within each other in the BPMN DI model although they may appear that way when depicted. The bounds
of a BPMNShape are always relative to that plane’s origin point and are REQUIRED to be positive coordinates. Note that
the bounds’ x and y coordinates are the position of the upper left corner of the shape (relative to the upper left corner of
the plane).

Abstract Syntax
» Figure 12.3 - BPMN Shape
» Figure 12.4 - BPMN Edge
Generalizations

« DI::LabeledShape

372 Business Process Model and Notation (BPMN), v2.0.2

Attributes
- +isHorizontal : Boolean [0..1]

an optional attribute that should be used only for Pools and Lanes. It determines if it should be depicted
horizontally (true) or vertically (false).

- +isExpanded : Boolean [0..1]

an optional attribute that should be used only for SubProcess, AdHocSubProcess, Transaction,
SubChoreographies, CallActivities, and CallChoreographies. It determines if it should be depicted expanded
(true) or collapsed (false).

« +isMarkerVisible : Boolean [0..1]

an optional attribute that should be used only for Exclusive Gateway. It determines if the marker should be
depicted on the shape (true) or not (false).

« + participantBandKind : ParticipantBandKind [0..1]

an optional attribute that should only be used for Participant Bands. If this attribute is present, it means that
the participant should be depicted as a Participant Band instead of as a Pool.

« +isMessageVisible : Boolean [0..1]

an optional attribute that should only be used for Participant Bands. It determines if an envelope decorator
should be depicted linked to the Participant Band.

+ + choreographyActivityShape : BPMNShape [0..1]

an optional attribute that should only be used for Participant Bands. It is REQUIRED for a BPMNShape
depicting a Participant Band. This is REQUIRED in order to relate the Participant Band to the BPMNShape
depicting the Choreography Activity that this Participant Band is related to.

Associations
« + bpmnElement : BaseElement [0..1] {redefines modelElement}

a reference to a BPMN node element that this shape depicts. Note that although optional a bpmnElement
must be provided for a BPMNShape.

« +label : BPMNLabel [0..1] {subsets ownedLabel}

an optional label that is nested when the shape has a visible text label with its own bounding box.

Business Process Model and Notation (BPMN), v2.0.2 373

Table 12.3 — BPMNShape XML schema

<xsd:complexType name="BPMNShape">
<xsd:complexContent>
<xsd:extension base="di:LabeledShape">
<xsd:sequence>
<xsd:element ref="bpmndi:BPMNLabel" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="bpmnElement" type="xsd:QName"/>
<xsd:attribute name="isHorizontal" type="xsd:boolean"/>
<xsd:attribute name="isExpanded" type="xsd:boolean"/>
<xsd:attribute name="isMarkerVisible" type="xsd:boolean"/>
<xsd:attribute name="isMessageVisible" type="xsd:boolean"/>
<xsd:attribute name="participantBandKind" type="bpmndi:ParticipantBandKind"/>
<xsd:attribute name="choreographyActivityShape" type="xsd:QName"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

12.2.3.4 ParticipantBandKind [Enumeration]
ParticipantBandKind defines the type of Participant Band to depict.
Description
Participant bands can be depicted in 3 ways:

1. atop band is rectangular with rounded corners at the top

2. amiddle band is rectangular

3. abottom band is rectangular with rounded corners at the bottom
Participant bands can be depicted in 2 shadings:

1. initiating (the band should not be shaded)

2. non_initiating (the band should be shaded)
Abstract Syntax

+ Figure 12.3 - BPMN Shape
Literals

 top_initiating - the band should be depicted as a non shaded top band

+ middle initiating - the band should be depicted as a non shaded middle band

+ bottom_initiating - the band should be depicted as a non shaded bottom band
+ top non_initiating - the band should be depicted as a shaded top band

+ middle non_initiating - the band should be depicted as a shaded middle band
« bottom_non_initiating - the band should be depicted as a shaded bottom band

374 Business Process Model and Notation (BPMN), v2.0.2

12.2.3.5 BPMNEdge [Class]
BPMNEdge is a kind of edge that can depict a relationship between two BPMN model elements.
Description

BPMNEdge represents a depiction of a relationship between two (source and target) BPMN model elements. It specializes
DI::LabeledEdge and redefines its model element reference to be of type (BPMN) BaseElement, allowing it to reference
a relationship element from a BPMN model.

BPMNEdge also redefines its source and target references to be of type DiagramElement (either BPMNShape or
BPMNEdge).

The source or target definition should only be present if the edge is depicted between a different source or target than the
one referenced by the BPMN model element of the BPMNEdge. Only the different source or target is REQUIRED. Both
attributes should be present only if both are different. This is the case, for instance, if a Message Flow target is not
depicted in the current diagram because it is inside a black box Pool. The Message Flow could then define its target as
being the BPMNShape depicting the Pool to connect it to the boundary of that black box Pool.

BPMNEdge also contains an optional label of type BPMNLabel that can be nested in the edge when it has a visible
textual label with its own bounding box.

All BPMNEdge elements are owned directly by a BPMNPlane (that is the root element in a BPMNDiagram). The
waypoints of BPMNEdge are always relative to that plane’s origin point and are REQUIRED to be positive coordinates.

Abstract Syntax

 Figure 12.4 - BPMN Edge
Generalizations

« DI::LabeledEdge
Associations

« +label : BPMNLabel [0..1] {subsets ownedLabel}
an optional label that is nested when the edge has a visible text label with its own bounding box.

« + bpmnElement : BaseElement [0..1] {redefines modelElement}
a reference to a connecting BPMN element that this edge depicts. Note that this reference is only optional for
the specific case of a Data Association connected to a Sequence Flow; in all other cases a referenced element
must be provided.

+ + sourceElement : DiagramElement [0..1] {redefines source}
an optional reference to the edge’s source element if it is different from the source inferred from the
bpmnElement association.

 +targetElement : DiagramElement [0..1] {redefines target}
an optional reference to the edge’s target element if it is different from the target inferred from the bpmnElement
association.

+ messageVisibleKind : MessageVisibleKind [0..1]
an optional attribute that should be used only for Message Flow. It determines if an envelope decorator should be
depicted and the kind of envelope to be depicted.

Business Process Model and Notation (BPMN), v2.0.2 375

Table 12.4 — BPMNEdge XML schema

<xsd:complexType name="BPMNEdge">
<xsd:complexContent>
<xsd:extension base="di:LabeledEdge">
<xsd:sequence>
<xsd:element ref="bpmndi:BPMNLabel" minOccurs="0" />
</xsd:sequence>
<xsd:attribute name="bpmnElement" type="xsd:QName" />
<xsd:attribute name="sourceElement" type="xsd:QName" />
<xsd:attribute name="targetElement" type="xsd:QName" />
<xsd:attribute name="messageVisibleKind" type="bpmndi:MessageVisibleKind" />
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

12.2.3.6 MessageVisibleKind [Enumeration]

MessageVisibleKind defines the type of envelope that is visible.

Description

MessageVisibleKind is applicable only to Participant Band and Message Flow.

For Message Flow, the envelope should be positioned in the middle of the edge.

For Participant Band, the envelope should be positioned over (for top band) or under (for bottom band) and connected to
the band using an association. Note that only Choreography Task Participant Bands are allowed to show the envelope.
Middle bands being only used for a SubChoreography can thus not have envelope showing.

Abstract Syntax
» Figure 12.3 - BPMN Shape
Literals
« initiating - The envelope should not be shaded.

« non_inititating - The envelope should be shaded.

12.2.3.7 BPMNLabel [Class]
BPMNLabel is a kind of label that depicts textual info about a BPMN element.
Description

BPMNLabel represents a depiction of some textual information about a BPMN element. It specializes DI::Label and
redefines its style reference to be of type BPMNLabelStyle, which contains information about the appearance of the label
(e.g., the chosen font). The referenced style is owned by the diagram that nests the label.

A BPMN label is not a top-level element but is always nested inside either a BPMNShape or a BPMNEdge. It does not
have its own reference to a BPMN element but rather inherits that reference (if any) from its parent shape or edge. The
textual info depicted by the label is derived from that referenced BPMN element.

376 Business Process Model and Notation (BPMN), v2.0.2

The bounds of BPMNLabel are always relative to the containing plane’s origin point. Note that the bounds’ x and y
coordinates are the position of the upper left corner of the label (relative to the upper left corner of the plane).

Abstract Syntax
 Figure 12.3 - BPMN Shape
+ Figure 12.4 - BPMN Edge
+ Figure 12.5 - BPMN Label
Generalizations
- DI::Label
Associations

« +labelStyle : BPMNLabelStyle [0..1] {redefines style}
an optional reference to a label style (owned by the diagram) that gives the appearance options for the label. If
not specified, the style of the label can be assumed by a tool.

Table 12.5 — BPMNLabel XML schema

<xsd:complexType name="BPMNLabel">
<xsd:complexContent>
<xsd:extension base="di:Label">
<xsd:attribute name="labelStyle" type="xsd:QName" />
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

12.2.3.8 BPMNLabelStyle [Class]
BPMNLabelStyle is a kind of style that gives the appearance options for a BPMNLabel.

Description

BPMNLabelStyle represents the appearance options for elements of type BPMNLabel. It specializes DI::Style and
contains a description of a font that is used in depicting a BPMNLabel. One or more labels may reference the same
BPMNLabelStyle element, which must be owned by a BPMNDiagram.

Abstract Syntax

 Figure 12.1 - BPMN Diagram
+ Figure 12.5 - BPMN Label

Generalizations
- DI::Style
Attributes

- + font : Font[1] - a font object that describes the properties of the font used for depicting the labels that reference this
style.

Business Process Model and Notation (BPMN), v2.0.2 377

Table 12.6 — BPMNLabelStyle XML schema

<xsd:complexType name="BPMNLabelStyle">
<xsd:complexContent>
<xsd:extension base="di:Style">
<xsd:sequence>
<xsd:element ref="dc:Font"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

12.2.4 Complete BPMN DI XML Schema

Table 12.7 — Complete BPMN DI XML schema

<xsd:schema xmlIns:xsd="http://www.w3.0rg/2001/XMLSchema" xmins:bpmndi="http://www.omg.org/spec/BPMN/

20100524/DI" xmIns:dc="http://www.omg.org/spec/DD/20100524/DC" xmins:di="http://www.omg.org/spec/
DD/20100524/DI" targetNamespace="http://www.omg.org/spec/BPMN/20100524/DI"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xsd:import namespace="http://www.omg.org/spec/DD/20100524/DC" schemalocation="DC.xsd" />

<xsd:import namespace="http://www.omg.org/spec/DD/20100524/DI" schemaLocation="Dl.xsd" />

<xsd:element name="BPMNDiagram" type="bpmndi:BPMNDiagram" />

<xsd:element name="BPMNPIlane" type="bpmndi:BPMNPlane" />

<xsd:element name="BPMNLabelStyle" type="bpmndi:BPMNLabelStyle" />

<xsd:element name="BPMNShape" type="bpmndi:BPMNShape" substitutionGroup="di:DiagramElement" />

<xsd:element name="BPMNLabel" type="bpmndi:BPMNLabel" />

<xsd:element name="BPMNEdge" type="bpmndi:BPMNEdge" substitutionGroup="di:DiagramElement" />

<xsd:complexType name="BPMNDiagram">
<xsd:complexContent>
<xsd:extension base="di:Diagram">
<xsd:sequence>
<xsd:element ref="bpmndi:BPMNPIlane" />
<xsd:element ref="bpmndi:BPMNLabelStyle" maxOccurs="unbounded" minOccurs="0" />
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

378 Business Process Model and Notation (BPMN), v2.0.2

Table 12.7 — Complete BPMN DI XML schema

<xsd:complexType name="BPMNPIlane">
<xsd:complexContent>
<xsd:extension base="di:Plane">
<xsd:attribute name="bpmnElement" type="xsd:QName" />
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="BPMNEdge">
<xsd:complexContent>
<xsd:extension base="di:LabeledEdge">
<xsd:sequence>
<xsd:element ref="bpmndi:BPMNLabel" minOccurs="0" />
</xsd:sequence>
<xsd:attribute name="bpmnElement" type="xsd:QName" />
<xsd:attribute name="sourceElement" type="xsd:QName" />
<xsd:attribute name="targetElement" type="xsd:QName" />
<xsd:attribute name="messageVisibleKind" type="bpmndi:MessageVisibleKind" />
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="BPMNShape">
<xsd:complexContent>
<xsd:extension base="di:LabeledShape">
<xsd:sequence>
<xsd:element ref="bpmndi:BPMNLabel" minOccurs="0" />
</xsd:sequence>
<xsd:attribute name="bpmnElement" type="xsd:QName" />
<xsd:attribute name="isHorizontal" type="xsd:boolean" />
<xsd:attribute name="isExpanded" type="xsd:boolean" />
<xsd:attribute name="isMarkerVisible" type="xsd:boolean" />
<xsd:attribute name="isMessageVisible" type="xsd:boolean" />
<xsd:attribute name="participantBandKind" type="bpmndi:ParticipantBandKind" />
<xsd:attribute name="choreographyActivityShape" type="xsd:QName"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Business Process Model and Notation (BPMN), v2.0.2

379

Table 12.7 — Complete BPMN DI XML schema

<xsd:complexType name="BPMNLabel">
<xsd:complexContent>
<xsd:extension base="di:Label">
<xsd:attribute name="labelStyle" type="xsd:QName" />
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="BPMNLabelStyle">
<xsd:complexContent>
<xsd:extension base="di:Style">
<xsd:sequence>
<xsd:element ref="dc:Font" />
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="ParticipantBandKind">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="top_initiating" />
<xsd:enumeration value="middle_initiating" />
<xsd:enumeration value="bottom_initiating" />
<xsd:enumeration value="top_non_initiating" />
<xsd:enumeration value="middle_non_initiating" />
<xsd:enumeration value="bottom_non_initiating" />
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="MessageVisibleKind">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="initiating" />
<xsd:enumeration value="non_initiating" />
</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

12.3 Notational Depiction Library and Abstract Element Resolutions

As a notation, BPMN specifies the depiction for each of the BPMN elements.

Serializing a BPMN diagram for interchange requires the specification of a collection of BPMNShape(s) (see page 372)
and BPMNEdge(s) (see page 375) on the BPMNPlane (see page 371) of the BPMNDiagram (see page 370). The
BPMNShape(s) and BPMNEdge(s) attributes must be populated in such a way as to allow the unambiguous rendering of
the BPMN diagram by the receiving party. More specifically, the BPMNShape(s) and BPMNEdge(s) must reference
BPMN model element [bpmnElement]. If no bpmnElement is referenced or if the reference is invalid, it is expected that

380 Business Process Model and Notation (BPMN), v2.0.2

this shape or edge should not be depicted. The only exception is for a Data Association connected to a Sequence Flow
(See Figure 10.68). This is a visual short cut that actually normalizes two Data Associations within the BPMN model. In
this case, the resolution is made from the BPMN DI attributes rather than the abstract syntax reference [bpmnElement]
(See Table 12.35 - Depiction Resolution for Connecting Objects).

When rendering a BPMN diagram, the correct depiction of a BPMNShape or BPMNEdge depends mainly on the
referenced BPMN model element [bpmnElement] and its particular attributes and/or references.

The purpose of this sub clause is to: provide a library of the BPMN element depictions, and to provide an unambiguous
resolution between the referenced BPMN model element [bpmnElement], BPMNShape or BPMNEdge and their
depiction. Depiction resolution tables are provided below for both BPMNShape (sub clause 12.3.2) and BPMNEdge
(sub clause 12.3.3).

12.3.1 Labels

Both BPMNShape and BPMN Edge may have labels (e.g., its name) placed inside the shape/edge, or above or below the
shape/edge, in any direction or location, depending on the preference of the modeler or modeling tool vendor.

Labels are optional for BPMNShape and BPMNEdge. When there is a label, the position of the label is specified by the
bounds of the BPMNLabel of the BPMNShape or BPMNEdge. Simply put, label visibility is defined by the presence of
the BPMNLabel element. The bounds of the BPMNLabel are optional and always relative to the containing BPMNPIane’s
origin point (see page 376). The depiction resolution tables provided below exemplify default label positions for

BPMNShape kinds (sub clause 12.3.2) and BPMNEdge kinds (sub clause 12.3.3) if no BPMNLabel bounds are provided.

The text of the label to be rendered is obtained by resolving the name attribute of the referenced BPMN model element
[bpmnElement] from the BPMNShape or BPMNEdge. In the particular case when the referenced BPMN model element
[bpmnElement] is a DataObjectReference, the text of the label to be rendered is obtained by concatenating the name
attribute of the referenced BPMN model element [bpmnElement] and the name attribute of the dataState attribute of this
DataObjectReference (see Figure 12.6 - Depicting a Label for a DataObjectReference with its state).

Label
[State]

Figure 12.6 — Depicting a Label for a DataObjectReference with its state

The properties of the font to be used for rendering the label are optional and provided by the labelStyle of the
BPMNLabel. If not provided, the tool should use its default style to depict the label.

12.3.2 BPMNShape

Markers for Activities

Various BPMN Activities can be decorated with markers at the bottom center of the shape.

Loop Characteristic markers may need to be rendered when the referenced BPMN model element [bpmnElement] of a
BPMNShape is a Task, ServiceTask, SendTask, ReceiveTask, UserTask, ManualTask, BusinessRuleTask, ScriptTask,
SubProcess, AdHocSubProcess, Transaction or CallActivity. Note that Loop Characteristic Markers (Loop, Multi-Instance

Business Process Model and Notation (BPMN), v2.0.2 381

- Parallel, and Multi-Instance - Sequential) are mutually exclusive markers. That is, only one of them can be present on a
single shape (see Table 10.8). Note that the patterns of Markers depicted in Table 10.8 also apply to Transaction and Call
Activity which have different border depictions (i.e., double border or thick border).

A Compensation marker may need to be rendered when the referenced BPMN model element [bpmnElement] of a
BPMNShape is a Task, ServiceTask, SendTask, ReceiveTask, UserTask, ManualTask, BusinessRuleTask, ScriptTask,
SubProcess, AdHocSubProcess, Transaction or CallActivity (see Table 12.8).

In the case of expandable kind of shapes, the markers (Compensation or Loop Characteristic) are placed to the left of the
+ on the shape.

The Compensation marker may be combined with a Loop Characteristic Marker. All the markers that are present must be
grouped and the whole group centered to the bottom of the shape (see Figure 12.7).

Note that in the case where the referenced BPMN model element [bpmnElement] of a BPMNShape is an
AdHocSubProcess, the shape has its tilde marker to the right of the + (See page 386).

Table 12.8- Depiction Resolution for Loop Compensation Marker

Loop Specific Depiction Resolution:
Characteristic Depiction: b _ s
Marker: pmnElement: BPM_N hape
Attributes:
Standard Loop [Task, ServiceTask, SendTask, None

ReceiveTask, UserTask,

Label ManualTask, BusinessRuleTask,
ScriptTask, SubProcess,

Label AdHocSubProcess, Transaction
or CallActivity] where
loopCharacteristics is of type
StandardLoopCharacteristics
(9
Label
O+

382 Business Process Model and Notation (BPMN), v2.0.2

Table 12.8 - Depiction Resolution for Loop Compensation Marker

Loop
Characteristic
Marker:

Depiction:

Specific Depiction Resolution:

bpmnElement:

BPMNShape
Attributes:

Multi-Instance -
Parallel

Label
1]

Label

Label
1]

[Task, ServiceTask, SendTask,
ReceiveTask, UserTask,
ManualTask, BusinessRuleTask,
ScriptTask, SubProcess,
AdHocSubProcess, Transaction
or CallActivity] where
loopCharacteristics is of type
MultipleLoopCharacteristics with
attribute isSequential to false.

None

Multi-Instance -
Sequential

Label

Label

[Task, ServiceTask, SendTask,
ReceiveTask, UserTask,
ManualTask, BusinessRuleTask,
ScriptTask, SubProcess,
AdHocSubProcess, Transaction
or CallActivity] where
loopCharacteristics is of type
MultipleLoopCharacteristics with
attribute isSequential to true.

None

Business Process Model and Notation (BPMN), v2.0.2

383

Table 12.8 — Depiction Resolution for Compensation Marker

Compensation

Specific Depiction Resolution:

Marker: Depiction:
bpmnElement: BPMNShape
Attributes:
Compensation [Task, ServiceTask, SendTask, None
Label ReceiveTask, UserTask,
ManualTask, BusinessRuleTask,
X ScriptTask, SubProcess,
Label AdHocSubProcess, Transaction
or CallActivity] where
isForCompensation is true.
K
Label
K
' ~\
Label
Label
DK L <K)

Figure 12.7 — Combined Compensation and Loop Characteristic Marker Example

Tasks [BPMNShape]

There are different types of Tasks identified within BPMN. The specific Task type depiction is obtained by placing a Task
type maker in the upper left corner of the Task shape. A Task that is no further specified is called an Abstract Task.

Tasks (Abstract, Service, Send, Receive, User, Manual, Business Rule or Script) can also have Compensation and/or Loop
Characteristic markers at the bottom center of the shape as defined above (see page 381).

384

Business Process Model and Notation (BPMN), v2.0.2

Table 12.9 — Depiction Resolution for Tasks

Specific Depiction Resolution:

Kind: Depiction:
bpmnElement: BPMNShape
Attributes:
Abstract Task —_— Task None
Label
Service Task ServiceTask None
Label
Send Task SendTask None
]
Label
Receive Task ReceiveTask None
[
Label
User Task = UserTask None
Label
Manual Task ManualTask None
=
Label
Business Rule Task = BusinessRuleTask None
Label
Script Task ScriptTask None
=
Label
Business Process Model and Notation (BPMN), v2.0.2 385

Collapsed Sub-Processes [BPMNShape]

Collapsed Sub-Processes can also have Compensation and/or Loop Characteristic markers at the bottom center of the
shape as defined above (see page 381).

Table 12.10 — Depiction Resolution for Collapsed Sub-Processes

Specific Depiction Resolution:
Kind: Depiction:
bpmnElement: BPMNShape
Attributes:
Sub-Process - SubProcess where None or
Collapsed triggeredByEvent is false. isExpanded is
Label false

Expanded Sub-Processes [BPMNShape]

Expanded Sub-Processes can also have Compensation and/or Loop Characteristic markers at the bottom center of the
shape as defined above (see page 381).

Table 12.11 — Depiction Resolution for Expanded Sub-Processes

Specific Depiction Resolution:
Kind: Depiction:
bpmnElement: BPMNShape
Attributes:
Sub-Process - - ~N SubProcess where isExpanded is
Expanded Label triggeredByEvent is false. true
| J

Collapsed Ad Hoc Sub-Processes [BPMNShape]

Collapsed Ad Hoc Sub-Processes can also have a Compensation marker at the bottom center of the shape as defined
above (see page 381).

386 Business Process Model and Notation (BPMN), v2.0.2

Table 12.12 — Depiction Resolution for Collapsed Ad Hoc Sub-Processes

Kind:

Depiction:

Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:
Ad Hoc Sub-Process - AdHocSubProcess None or
Collapsed isExpanded is
Label false
~

Expanded Ad Hoc Sub-Processes [BPMNShape]

Expanded Ad Hoc Sub-Processes can also have a Compensation marker at the bottom center of the shape as defined

above (see page 381).

Table 12.13 — Depiction Resolution for Expanded Ad Hoc Sub-Processes

Kind:

Depiction:

Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:
Ad Hoc Sub-Process - — AdHocSubProcess None or
Expanded abe isExpanded is
true

Collapsed Transactions [BPMNShape]

Collapsed Transactions can also have Compensation and/or Loop Characteristic markers at the bottom center of the shape

as defined above (see page 381).

Table 12.14 — Depiction Resolution for Collapsed Transactions

Specific Depiction Resolution:

Kind: Depiction:
bpmnElement: BPMNShape
Attributes:
Transaction - Transaction None or
Collapsed isExpanded is
Label false

Business Process Model and Notation (BPMN), v2.0.2

387

Expanded Transactions [BPMNShape]

Expanded Transactions can also have Compensation and/or Loop Characteristic markers at the bottom center of the shape

as defined above (see page 381).

Table 12.15 — Depiction Resolution for Tasks

Specific Depiction Resolution:

Kind: Depiction:
bpmnElement: BPMNShape
Attributes:
Transaction - Transaction None or
Expanded Label isExpanded is

true

Collapsed Event Sub-Processes [BPMNShape]

Table 12.16 — Depiction Resolution for Collapsed Event Sub-Processes

Kind:

Depiction:

Specific Depiction Resolution:

TimerEventDefinition and
isInterrupting is false.

bpmnElement: BPMNShape
Attributes:
Non-interrupting Message - Event pageseerireriines SubProcess where None or
Hie))
Sub-Process - Collapsed b triggeredByEvent is true and the isExpanded is
i Label one-and-only start event has one | false
...... EventDefinition of type
MessageEventDefinition and
isInterrupting is false.
Interrupting - Message - Event | ...l SubProcess where None or
Sub-Process - Collapsed : triggeredByEvent is true and the isExpanded is
: Label one-and-only start event has one | false
"""""" EventDefinition of type
MessageEventDefinition and
isInterrupting is true.
Non-interrupting - Timer - Event prageerreneesenne, SubProcess where None or
Sub-Process - Collapsed ;@’) triggeredByEvent is true and the isExpanded is
: Label one-and-only start event has one | false
........ EventDefinition of type

388

Business Process Model and Notation (BPMN), v2.0.2

Table 12.16 — Depiction Resolution for Collapsed Event Sub-Processes

Interrupting - Timer - Event
Sub-Process - Collapsed

SubProcess where
triggeredByEvent is true and the

None or
isExpanded is

isInterrupting is true.

Label one-and-only start event has one | false
EventDefinition of type
"""""""" TimerEventDefinition and
isInterrupting is true.
Non-interrupting - Conditional - P L SubProcess where None or
i 1
Event Sub-Process - Collapsed “E-[triggeredByEvent is true and the isExpanded is
i Label one-and-only start event has one | false
EventDefinition of type
""""""""" ConditionalEventDefinition and
isInterrupting is false.
Interrupting - Conditional - @ SubProcess where None or
Event Sub-Process - Collapsed : triggeredByEvent is true and the isExpanded is
: Label one-and-only start event has one | false
EventDefinition of type
"""""""" ConditionalEventDefinition and
isInterrupting is true.
Non-interrupting - Slgnal - ’_,A.;' SubProcess where None or
Event Sub-Process - Collapsed o~ triggeredByEvent is true and the isExpanded is
: Label one-and-only start event has one | false
EventDefinition of type
""""""" SignalEventDefinition and
isInterrupting is false.
|nterrupting - S|gna| - @ SubProceSS where None or
Event Sub-Process - Collapsed : triggeredByEvent is true and the isExpanded is
: Label one-and-only start event has one | false
EventDefinition of type
"""""""" SignalEventDefinition and
isInterrupting is true.
Non—interrupting- MUltIp'e - i,O.{l SubProcess where None or
Event Sub-Process - Collapsed =~ triggeredByEvent is true and the isExpanded is
Label one-and-only start event has false
multiple EventDefinitions and
"""""""" isInterrupting is false.
Interrupting - Multlple - @ SubProcess where None or
Event Sub-Process - Collapsed : triggeredByEvent is true and the isExpanded is
: Label one-and-only start event has false
multiple EventDefinitions and

Business Process Model and Notation (BPMN), v2.0.2

389

Table 12.16 — Depiction Resolution for Collapsed Event Sub-Processes

Non-interrupting - Parallel
Multiple - Event Sub-Process -
Collapsed

SubProcess where
triggeredByEvent is true and the
one-and-only start event has
multiple EventDefinitions and
isInterrupting is false and
isParallelMultiple is true.

None or
isExpanded is
false

Interrupting - Parallel
Multiple - Event Sub-Process -
Collapsed

SubProcess where
triggeredByEvent is true and the
one-and-only start event has
multiple EventDefinitions and
isInterrupting is true and
isParallelMultiple is true.

None or
isExpanded is
false

Non-interrupting - Escalation -
Event Sub-Process - Collapsed

SubProcess where
triggeredByEvent is true and the
one-and-only start event has one
EventDefinition of type
EscalationEventDefinition and
isInterrupting is false.

None or
isExpanded is
false

Interrupting - Escalation Event
Sub-Process - Collapsed

SubProcess where
triggeredByEvent is true and the
one-and-only start event has one
EventDefinition of type
EscalationEventDefinition and
isInterrupting is true.

None or
isExpanded is
false

Interrupting - Error -
Event Sub-Process -Collapsed

SubProcess where
triggeredByEvent is true and the
one-and-only start event has one
EventDefinition of type
ErrorEventDefinition and
isInterrupting is true.

None or
isExpanded is
false

Interrupting - Compensation -
Event Sub-Process - Collapsed

SubProcess where
triggeredByEvent is true and the
one-and-only start event has one
EventDefinition of type
CompensationEventDefinition
and isInterrupting is true.

None or
isExpanded is
false

390

Business Process Model and Notation (BPMN), v2.0.2

Expanded Event Sub-Processes [BPMNShape]

Table 12.17 — Depiction Resolution for Expanded Event Sub-Processes

Kind:

Depiction:

Specific Depiction Resolution:

bpmnElement:

BPMNShape
Attributes:

Expanded

Event Sub-Process -

---------- : SubProcess where

triggeredByEvent is true.

isExpanded is
true

Call Activities (Calling a Global Task) [BPMNShape]

A Call Activity (Calling a Global Task) must display the Task type marker of the Global Task it calls.

Call Activities (Calling a Global Task) can also have Compensation and/or Loop Characteristic markers at the bottom

center of the shape as defined above (see page 381).

Table 12.18 — Depiction Resolution for Call Activities (Calling a Global Task)

Specific Depiction Resolution:
Kind: Depiction:
bpmnElement: BPMNShape
Attributes:
Call Activity CallActivity where calledElement is None
unspecified or of type GlobalTask.
Label
User Call Activity i CallActivity where calledElement is of None
type GlobalUserTask.
Label
Manual Call Activity = CallActivity where calledElement is of None
type GlobalManualTask.
Label
Business Rule Call = CallActivity where calledElement is of None
Activity type GlobalBusinessRuleTask.
Label
Business Process Model and Notation (BPMN), v2.0.2 391

Table 12.18 — Depiction Resolution for Call Activities (Calling a Global Task)

Script Call Activity CallActivity where calledElement is of None

= type GlobalScriptTask.
Label

Collapsed Call Activities (Calling a Process) [BPMNShape]

Table 12.19 — Depiction Resolution for Collapsed Call Activities (Calling a Process)

Specific Depiction Resolution:
Kind: Depiction:
bpmnElement: BPMNShape
Attributes:
Call Activity - CallActivity where calledElement | None or
Collapsed is of type Process. isExpanded is
Label false

Expanded Call Activities (Calling a Process) [BPMNShape]

Table 12.20 — Depiction Resolution for Expanded Call Activities (Calling a Process)

Specific Depiction Resolution:
Kind: Depiction:
bpmnElement: BPMNShape
Attributes:
Call Activity - CallActivity where calledElement | None or
Expanded Label is of type Process. isExpanded is
true
Data [BPMNShape]

Data Inputs and Data Outputs rendering are optional and only allowed for Processes.

392 Business Process Model and Notation (BPMN), v2.0.2

Table 12.21 — Depiction Resolution for Data

Specific Depiction Resolution:
Kind: Depiction:
bpmnElement: BPMNShape
Attributes:

Data Object DataObjectReference where None

D dataObjectRef unspecified or is

pointing to a DataObject where

Label isCollection is false.
Data Object DataObjectReference where None
Collection m dataObjectRef is pointing to a

DataObject where isCollection is

Label true.
Data Input Datalnput where isCollection is false. | None

Label
Data Input Collection Datalnput where isCollection is true. | None

Label
Data Output DataOutput where isCollection is None

E false.

Label
Data Output Collection DataOutput where isCollection is None

Iji true.

Label
Data Store — DataStoreReference None

-
Label
Business Process Model and Notation (BPMN), v2.0.2 393

Events [BPMNShape]

Table 12.22 — Depiction Resolution for Events

Specific Depiction Resolution:

Kind: Depiction:
bpmnElement: BPMNShape
Attributes:

None Start Event StartEvent with no EventDefinition None

Label
Interrupting - Message Start StartEvent with one EventDefiniton | None
Event of type MessageEventDefinition and

Label isInterrupting is true.
Non-interrupting - Message = StartEvent with one EventDefinition | None
Start Event .’\'E) of type MessageEventDefinition and

I:;B;;I isInterrupting is false.
Interrupting - Timer Start StartEvent with one EventDefinition | None
Event of type TimerEventDefinition and

Label isInterrupting is true.
Non-interrupting - Timer Start N StartEvent with one EventDefinition | None
Event € of type TimerEventDefinition and

L;El:el isInterrupting is false.
Interry_pting - StartEvent with one EventDefinition None
Conditional Start Event of type ConditionalEventDefinition

Label and isInterrupting is true.
Non-interrupting -Conditional . StartEvent with one EventDefinition | None
Start Event B of type ConditionalEventDefinition

L;B:a:l and isInterrupting is false.
Interrupting Signal Start Event StartEvent One EventDefinition of None

@ type SignalEventDefinition and

Label isInterrupting is true.
Non-interrupting -Signal Start . StartEvent with one EventDefinition | None
Event AN of type SignalEventDefinition and

Label isInterrupting is false.

394

Business Process Model and Notation (BPMN), v2.0.2

Table 12.22 — Depiction Resolution for Events

Interrupting Multiple Start StartEvent with more than one None
Event @ EventDefinition, parallelMultiple is

Label false and isInterrupting is true.
Non-interrupting Multiple Start . StartEvent with more than one None
Event) EventDefinition, parallelMultiple is

L:;I;;I false and isInterrupting is false.
Interrupting - Parallel Multiple StartEvent with more than one None
Start Event @ EventDefinition, parallelMultiple is

Label true and isInterrupting is true.
Nontinterrupting - Parallel e StartEvent with more than one None
Multiple Start Event {dLy EventDefinition, parallelMultiple is

L\;E;G;I true and isInterrupting is false.
Interrupting - StartEvent with one EventDefinition None
Escalation Start Event of type EscalationEventDefinition

Label and isinterrupting is true.
Non-interrupting - Escalation . StartEvent with one EventDefinition | None
Start Event A of type EscalationEventDefinition

Label and isInterrupting is false.
Interrupting - Error Start Event StartEvent with one EventDefiniton | None

of type ErrorEventDefinition.

Label
Interrupting - StartEvent with one EventDefinition None
Compensation Start Event of type

Label CompensationEventDefinition.
Interrupting - None IntermediateThrowEvent with no None
Intermediate Event © EventDefinition.

Label
Catch - Message IntermediateCatchEvent with one None
Intermediate Event EventDefinition of type

Label MessageEventDefinition.

Business Process Model and Notation (BPMN), v2.0.2

395

Table 12.22 — Depiction Resolution for Events

Interrupting - Boundary - BoundaryEvent with one None
Catch - Message EventDefinition of type
Intermediate Event Label MessageEventDefinition and
cancelActivity is true.
Non-interrupting - Boundary - - BoundaryEvent with one None
Catch - Message (=T EventDefinition of type
Intermediate Event Label MessageEventDefinition and
cancelActivity is false.
Throw - Message IntermediateThrowEvent with one None
Intermediate Event EventDefinition of type
Label MessageEventDefinition.
Timer Intermediate Event IntermediateCatchEvent with one None
EventDefinition of type
Label TimerEventDefinition.
Interrupting - Bgundary - BoundaryEvent with one None
Timer Intermediate Event EventDefinition of type
Label TimerEventDefinition and
cancelActivity is true.
Non-interrupting Boundary -) IntermediateCatchEvent with one None
Timer Intermediate Event ,'\.1' :;I EventDefinition of type
L\E:E_él TimerEventDefinition and
cancelActivity is false.
Conditional IntermediateCatchEvent with one None
Intermediate Event EventDefinition of type
Label ConditionalEventDefinition.
Interrupting - Boundary - BoundaryEvent with one None
Conditional Intermediate EventDefinition of type
Event Label ConditionalEventDefinition and
cancelActivity is true.
Non—i_n.terrupting - Boundary - . BoundaryEvent with one None
Conditional =) EventDefinition of type
Intermediate Event L\E;E-;;‘:l ConditionalEventDefinition and
cancelActivity is false.
Catch - Signal IntermediateCatchEvent with one None
Intermediate Event EventDefinition of type
Label MessageEventDefinition.

396

Business Process Model and Notation (BPMN), v2.0.2

Table 12.22 — Depiction Resolution for Events

Interrupting - Boundary - BoundaryEvent with one None
Catch - Signal Intermediate EventDefinition of type
Event Label SignalEventDefinition and
cancelActivity is true.
Non-interrupting-Boundary - BoundaryEvent with one None
Catch - Signal Intermediate ,:f' N EventDefinition of type
Event Label SignalEventDefinition and
cancelActivity is false.

Interrupting - Boundary - Intermediate ThrowEvent with one None
Throw - Signal Intermediate EventDefinition of type
Event Label SignalEventDefinition.
Catch - Multiple Intermediate IntermediateCatchEvent with more None
Event than one EventDefinition and

Label parallelMultiple is false.
Interrupting - Boundary - BoundaryEvent with more than one None
Catch - Multiple EventDefinition, parallelMultiple is
Intermediate Event Label false and cancelActivity is true.
Non-interrupting Boundary - . BoundaryEvent with more than one | None
Catch - Multiple) EventDefinition, parallelMultiple is
Intermediate Event L\E;E:&l false and cancelActivity is false.
Throw - MU|tiple IntermediateThrowEvent with more None
Intermediate Event than one EventDefinition and

Label parallelMultiple is false.
Catch - Parallel Multiple IntermediateCatchEvent with more None
Intermediate Event than one EventDefinition and

Label parallelMultiple is true.
Interrupting - Bound_ary - BoundaryEvent with more than one None
Catch -Parallel Multiple EventDefinition, parallelMultiple is
Intermediate Event Label true and cancelActivity is true.
Non-interrupting Boundary - - BoundaryEvent with more than one | None
Catch -Parallel Multiple ey EventDefinition, paralleIMultiple is
Intermediate Event L;E:el true and cancelActivity is false.

Business Process Model and Notation (BPMN), v2.0.2

397

Table 12.22 — Depiction Resolution for Events

Catch -E§calation IntermediateCatchEvent with one None
Intermediate Event EventDefinition of type

Label EscalationEventDefinition.
Interrupting - B_oundary - BoundaryEvent with one None
Catch -Egcalatlon EventDefinition of type
Intermediate Event Label EscalationEventDefinition and

cancelActivity is true.
Non—interruptin-g -Boundary - - BoundaryEvent with one None
Catch -Egcalatlon A EventDefinition of type
Intermediate Event L‘E;E'el EscalationEventDefinition and
cancelActivity is false.

Throw - Escalation IntermediateThrowEvent with one None
Intermediate Event @ EventDefinition of type

Label EscalationEventDefinition.
Boundary - Catch - Error BoundaryEvent with one None
Intermediate Event EventDefinition of type

Label ErrorEventDefinition
Boundary - Catch - BoundaryEvent with one None
Compensation EventDefinition of type
Intermediate Event Label CompensateEventDefinition
Throw - Qompensation IntermediateThrowEvent with one None
Intermediate Event EventDefinition of type

Label CompensateEventDefinition
Catch - Link Intermediate IntermediateCatchEvent with one None
Event EventDefinition of type

Label LinkEventDefinition\
Throw - L.ink IntermediateThrowEvent with one None
Intermediate Event EventDefinition of type

Label LinkEventDefinition
Boundary - Catch - Cancel BoundaryEvent with one None

Intermediate Event

'_
w
o
8

EventDefinition of type
CancelEventDefinition

398

Business Process Model and Notation (BPMN), v2.0.2

Table 12.22 — Depiction Resolution for Events

,_
fw
o
T

of type TerminateEventDefiniton

None End Event EndEvent with no EventDefinition None
Label

Message End Event EndEvent with one EventDefinition None
@ of type MessageEventDefiniton
Label

Signal End Event EndEvent with one EventDefinition None
@ of type SignalEventDefiniton
Label

Multiple End Event EndEvent with more than one None
@ EventDefinition
Label

Escalation End Event EndEvent with one EventDefinition None
® of type EscalationEventDefiniton
Label

Error End Event EndEvent with one EventDefinition None
@ of type ErrorEventDefiniton
Label

Compensation End Event EndEvent with one EventDefinition None
@ of type CompensateEventDefiniton
Label

Cancel End Event EndEvent with one EventDefinition None
® of type CancelEventDefiniton
Label

Terminate End Event EndEvent with one EventDefinition None

Business Process Model and Notation (BPMN), v2.0.2

399

Gateways [BPMNShape]

Table 12.23 — Depiction Resolution for Gateways

Specific Depiction Resolution:

without Marker

<

Label

Kind: Depiction:
bpmnElement: BPMNShape
Attributes:
Exclusive Gateway - ExclusiveGateway None or

isMarkerVisible is
false

Exclusive Gateway -
with Marker

&

ExclusiveGateway

isMarkerVisible is
true

to Start a Process

Label

instantiate is true and
eventGatewayType is exclusive.

Label

Inclusive Gateway InclusiveGateway None
La;el

Parallel Gateway ParallelGateway None
Label

Complex Gateway ComplexGateway None

Event-Based Gateway EventBasedGateway where None

instantiate is false.
Event-Based Gateway EventBasedGateway where None

400

Business Process Model and Notation (BPMN), v2.0.2

Table 12.23 — Depiction Resolution for Gateways

Parallel Event-Based

EventBasedGateway where

Gateway to Start a instantiate is true and
Process @ eventGatewayType is parallel.
Label
Artifacts [BPMNShape]

Table 12.24 — Depiction Resolution for Artifacts

Specific Depiction Resolution:

Kind: Depiction:
bpmnElement: BPMNShape
Attributes:
Group Group None
———————— e 2
! I
! I
[I
! (
| I
e J
Text Annotation Text Annotation None

Lanes [BPMNShape]

Table 12.25 — Depiction Resolution for Lanes

Specific Depiction Resolution:

Kind: Depiction:
bpmnElement: BPMNShape
Attributes:
Horizontal Lane Lane None or
- isVertical is false
g
Vertical Lane Lane isVertical is true
Label

Business Process Model and Notation (BPMN), v2.0.2

401

Pools [BPMNShape]

Table 12.26 — Depiction Resolution for Pools

Specific Depiction Resolution:

Kind: Depiction:
bpmnElement: BPMNShape
Attributes:
Horizontal Pool Participant where None or
ParticipantMultiplicity is isVertical is false
% unspecified or set and its
maximum attribute is 1.
Horizontal Pool - with Participant where None or
Multll I.nstance ParticipantMultiplicity is set and its | isVertical is false
Participant 2 maximum attribute is > 1..
i
Vertical Pool Partcipant where isVertical is true
Label ParticipantMultiplicity is
unspecified or set and its
maximum attribute is 1.
Vertical Pool - with Participant where isVertical is true
Multll I.nstance Label ParticipantMultiplicity is set and its
Participant maximum attribute is > 1.
1]

Choreography Tasks [BPMNShape]

While the depictions provided in Table 12.27 - Depiction Resolution for Choreography Tasks contain Participant Bands,
Participant Bands are separate shapes that need to be separately defined. Individual Participant Bands are rendered by
separate BPMNShape(s), each Participant Band referencing the corresponding participant. See page 407.

402 Business Process Model and Notation (BPMN), v2.0.2

Table 12.27 — Depiction Resolution for Choreography Tasks

Specific Depiction Resolution:
Kind: Depiction:
bpmnElement: BPMNShape
Attributes:
Choreography Task e ChoreographyTask where None
loopType is None.
Label
Label
Choreography Task - ChoreographyTask where None
Loop Label loopType is Standard.
Label
[D)
Label
Choreography Task - ChoreographyTask where None
Sequential Multi Labsl loopType is
Instance MultilnstanceSequential.
Label
Tabel
Choreograpr_ly Task - Tba ChoreographyTask where None
Parallel Multi Instance loopType is MultiinstanceParallel.
Label
1]
Label

Collapsed Sub-Choreographies [BPMNShape]

While the depictions provided in Table 12.28 - Depiction Resolution for Collapsed Sub-Choreographies contain
Participant Bands, Participant Bands are separate shapes that need to be separately defined. Individual Participant Bands
are rendered by separate BPMNShape(s), each Participant Band referencing the corresponding participant (see page 407).

Business Process Model and Notation (BPMN), v2.0.2 403

Table 12.28 — Depiction Resolution for Sub-Choreographies (Collapsed)

Specific Depiction Resolution:
Kind: Depiction:
bpmnElement: BPMNShape
Attributes:
Sub-Choreography - — e SubChoreography where None or
Collapsed loopType is None. isExpanded is
Label false
M
Label
Sub-Choreography - SubChoreography where None or
Loop - Collapsed Label loopType is Standard. isExpanded is
false
Label
O[]
Label
Sub-Choreography - SubChoreography where None or
Sequential Multi Label loopType is isExpanded is
Instance - Collapsed MultilnstanceSequential. false
Label
=+
Label
Sub-Choreography - S SubChoreography where None or
Parallel Multi Instance i loopType is MultiinstanceParallel. | isExpanded is
- Collapsed false
Label
N
Label

Expanded Sub-Choreographies [BPMNShape]

While the depiction provided in Table 12.29 - Depiction Resolution for Expanded Sub-Choreographies contains
Participant Bands, Participant Bands are separate shapes that need to be separately defined. Individual Participant Bands
are rendered by separate BPMNShape(s), each Participant Band referencing the corresponding participant (see page 407).

An expanded Sub Choreography has a loop type that is depicted exactly like the collapsed version in Table 12.28.

404 Business Process Model and Notation (BPMN), v2.0.2

Table 12.29 — Depiction Resolution for Sub-Choreographies (Expanded)

Specific Depiction Resolution:

Kind: Depiction:
bpmnElement: BPMNShape
Attributes:
Sub-Choreography - y — SubChoreography isExpanded is
Expanded b true
Label

Call Choreographies (Calling a Global Choreography Task) [BPMNShape]

While the depictions provided in Table 12.30 - Depiction Resolution for Call Choreographies (Calling a Global
Choreography Task) contain Participant Bands, Participant Bands are separate shapes that need to be separately defined.
Individual Participant Bands are rendered by separate BPMNShape(s), each Participant Band referencing the
corresponding participant (see page 407).

Table 12.30 — Depiction Resolution for Call Choreographies (Calling a Global Choreography Task)

Specific Depiction Resolution:

Kind: Depiction:
bpmnElement: BPMNShape
Attributes:
Cal] (?horquraphy e CallChoreography where None
Activity calling a calledChoreographyRef is
gLobal Tack Label unspecified or of type
oreography las GlobalChoreographyTask and
Label loopType is None.
Cal] Qhorquraphy = CallChoreography where None
Activity calling a calledChoreographyRef is of type
S|h0ba| sk Labal GlobalChoreographyTask and
oreograpny lask - o loopType is Standard.
Loop
Label
Business Process Model and Notation (BPMN), v2.0.2 405

Table 12.30 — Depiction Resolution for Call Choreographies (Calling a Global Choreography Task)

Cal! Qhoreggraphy e CallChoreography where None
Activity calling a calledChoreographyRef is of type
gLoobrzlography Task - Label GlobalChoreographyTask and
Sequential Multi = IoopType 'S :
Instance Label MultilnstanceSequential.
Cal] Qhorquraphy o CallChoreography where None
Activity calling a calledChoreographyRef is of type
gLooerL canhy Task - Label GlobalChoreographyTask and
Pl IgM FTtBI/) " loopType is MultiinstanceParallel.

aralle IMulti Instance o

Collapsed Call Choreographies (Calling a Choreography) [BPMNShape]

While the depictions provided in Table 12.31 contain Participant Bands, Participant Bands are separate shapes that need
to be separately defined. Individual Participant Bands are rendered by separate BPMNShape(s), each Participant Band

referencing the corresponding participant (see page 407).

Table 12.31 — Depiction Resolution for Collapsed Call Choreographies (Calling a Choreography)

Specific Depiction Resolution:

Kind: Depiction:
bpmnElement: BPMNShape
Attributes:

Call Choreography e CallChoreography where None or
Activity calling a calledChoreographyRef is of type | isExpanded is
Choreography Label Choreography and loopType is false

None.

Label
Call Choreography — CallChoreography where None or
Activity calling a = calledChoreographyRef is of type | isExpanded is
Choreography - Loop Label Choreography and loopType is false

OF Standard.

Label
Call Choreography — CallChoreography where None or
Activity calling a a8 calledChoreographyRef is of type | isExpanded is
Choreog'raphy - Label Choreography and loopType is false
Sequential Multi abe . i

_ MultilnstanceSequential.
Instance =[]

Label

406 Business Process Model and Notation (BPMN), v2.0.2

Table 12.31 — Depiction Resolution for Collapsed Call Choreographies (Calling a Choreography)

Call Choreography CallChoreography where None or
Activity calling a Label calledChoreographyRef is of type | isExpanded is
Choreography - Choreography and loopType is false.
Parallel Multi Instance Label MultilnstanceParallel

I

Label

Expanded Call Choreographies (Calling a Choreography) [BPMNShape]

While the depiction provided in Table 12.32 contains Participant Bands, Participant Bands are separate shapes that need
to be separately defined. Individual Participant Bands are rendered by separate BPMNShape(s), each Participant Band
referencing the corresponding participant (see page 407).

An expanded Use Sub Choreography has a loop type that is depicted exactly like the collapsed version in Table 12.31.

Table 12.32 — Depiction Resolution for Expanded Call Choreographies (Calling a Choreography)

Specific Depiction Resolution:
Kind: Depiction:
bpmnElement: BPMNShape
Attributes:
Call Choreography — CallChoreography where isExpanded is
Activity calling a Label calledChoreographyRef is of type | true.
Choreography Choreography.
Labal

Choreography Participant Bands [BPMNShape]

Participant Bands (used in Choreography shapes) are separate shapes that need to be separately defined. Individual
Participant Bands are rendered by separate BPMNShape. Each Participant Band referencing the corresponding participant.

Note that for Participant Bands with the envelope decorator, the envelope decorator should be depicted close to the band,
vertically centered with the band, and linked to the band using a dotted line. The name of the message may be used as a
label for the envelop decorator. BPMN DI does not provide an interchange of the bounds of the label of the envelope
decorator.

The bounds of the BPMNShape representing the band do not include the envelope decorator. The envelope decorator is
therefore outside of the BPMNShape bounds. BPMN DI does not provide an interchange of the bounds of the envelope
decorator.

Business Process Model and Notation (BPMN), v2.0.2 407

Table 12.33 — Depiction Resolution for Choreography Participant Bands

Specific Depiction Resolution:

Kind: Depiction: .
bpmnElement: BPMNShape Attri-
butes:
Initiating Participant - Participant where participantBandKind is
Top Label | participantMultiplicity is top_initiating and
unspecified or is set and its isMessageVisible is
maximum attribute is 1. unspecified or false.
Initiating Participant - Participant where participantBandKind is
Top with Decorator El participantMultiplicity is top_initiating and
: unspecified or set and its isMessageVisible is
maximum attribute is 1. true.
Initiating - Additional Participant where participantBandKind is
Participant Label participantMultiplicity is middle_initiating.

unspecified or set and its
maximum attribute is 1.

[Label)
Initiating Participant - Participant where participantBandKind is
Bottom Label | participantMultiplicity is bottom_initiating and
unspecified or set and its isMessageVisible is
maximum attribute is 1. unspecified or false.
Initiating Participant - Participant where participantBandKind is
Bottom with — participantMultiplicity is bottom_initiating and
Decorator E unspecified or set and its isMessageVisible is
maximum attribute is 1. true.
Initiating - Top - Multi- Participant where participantBandKind is
:gste.m.ce participantMultiplicity is top_initiating and
articipant unspecified or set and its isMessageVisible is
maximum attribute is > 1. unspecified or false.
Initiating - Top - Multi- Participant where participantBandKind is
Insta}n_ce . E participantMultiplicity is top_initiating and
Participant with : unspecified or set and its isMessageVisible is
Decorator maximum attribute is > 1. true.
Initiating - Additional Participant where participantBandKind is
Mult.i-l.nstance Label participantMultiplicity is middle_initiating.
Participant M unspecified or set and its
maximum attribute is > 1.
408 Business Process Model and Notation (BPMN), v2.0.2

Table 12.33 — Depiction Resolution for Choreography Participant Bands

Initiating - Bottom -
Multi-Instance
Participant

Label l

Participant where
participantMultiplicity is
unspecified or set and its
maximum attribute is > 1.

participantBandKind is
bottom_initiating and
isMessageVisible is
unspecified or false.

Initiating - Bottom -
Multi-Instance
Participant with
Decorator

&

Participant where
participantMultiplicity is
unspecified or set and its
maximum attribute is > 1.

participantBandKind is
bottom_initiating and
isMessageVisible is
true.

Non Initiating
Participant - Top

(Label |

Participant where
participantMultiplicity is set and its
maximum attribute is 1.

participantBandKind is
top_non_initiating and
isMessageVisible is
unspecified or false.

Non Initiating
Participant - Top with
Decorator

Participant where
participantMultiplicity is set and its
maximum attribute is 1.

participantBandKind is
top_non_initiating and
isMessageVisible is
true.

Non Initiating -
Additional Participant

Label

Participant where
participantMultiplicity is set and its
maximum attribute is 1.

participantBandKind is
middle_non_initiating.

Non Initiating
Participant - Bottom

(Label |

Participant where
participantMultiplicity is set and its
maximum attribute is 1.

participantBandKind is
bottom_non_initiating
and isMessageVisible is
unspecified or false.

Non Initiating
Participant - Bottom
with Decorator

Label |

i

Participant where
participantMultiplicity is set and its
maximum attribute is 1.

participantBandKind is
bottom_non_initiating
and isMessageVisible is
true.

Non Initiating - Top -
Multi-Instance
Participant

’ Label l
1]

Participant where
participantMultiplicity is set and its
maximum attribute is > 1.

participantBandKind is
top_non_initiating and
isMessageVisible is
unspecified or false.

Non Initiating - Top -
Multi-Instance
Participant with
Decorator

~

Label
1] |

Participant where
ParticipantMultiplicity is set and its
maximum attribute is > 1.

participantBandKind is
top_non_initiating and
isMessageVisible is
true.

Non Initiating -
Additional Multi-
Instance Participant

Label

Participant where
participantMultiplicity is set and its
maximum attribute is > 1.

participantBandKind is
middle_non_initiating.

Business Process Model and Notation (BPMN), v2.0.2

409

Table 12.33 — Depiction Resolution for Choreography Participant Bands

Non Initiating - Participant where participantBandKind is
BOttQTTl - Multi-Instance Label l ParticipantMultiplicity is setand its | bottom_non_initiating
Participant maximum attribute is > 1. and isMessageVisible is
unspecified or false.
Non Initiating - Participant where participantBandKind is
Bottgr_n - Multj-lnstance participantMultiplicity is set and its | bottom_non_initiating
Participant with : maximum attribute is > 1. and isMessageVisible is

Decorator B true.

Conversations [BPMNShape]

Table 12.34 — Depiction Resolution for Conversations

Specific Depiction Resolution:

Kind: Depiction:
bpmnElement: BPMNShape
Attributes:

Conversation Conversation None

Labhel
Sub-Conversation SubConversation None

Label
Call Conversation CallConversation where None

O calledCollaborationRef is a

Label GlobalConversation.
Call Conversation CallConversation where None

@ calledCollaborationRef is a

Collaboration.
Label

12.3.3 BPMNEdge

Connecting Objects [BPMNEdge]

The target [targetElement] and source [sourceElement] of a BPMNEdge may be redefined when the depiction of the
source or target of the edge is different than the target [targetRef] and source [sourceRef] of the referenced model element
[bpmnElement] (e.g., Message flow finishing on the border of a black box Pool or a collapsed Sub-Process rather than the
actual Flow Node within the Pool or Sub-Process). In such case, the targetElement and/or sourceElement of the
BPMNEdge must point to the appropriate BPMNShape or BPMNEdge.

410 Business Process Model and Notation (BPMN), v2.0.2

The source [sourceElement] and target [targetElement] of a BPMNEdge can never be a BPMNShape with
participantBandKind set (i.e., only Choreography Activity can be source or target of the BPMNEdge not the Participant

Bands).

Note that for Message Flow with an envelope decorator, the envelope decorator should be at the midpoint of the message
flow. BPMN DI does not provide an interchange of the bounds of the envelope decorator.

The “diamond” at the source of the Conditional Sequence Flow should not be depicted when the source of a Conditional
Sequence Flow is a Gateway. In other words, when the source of a Conditional Sequence Flow is a Gateway, the

Conditional Sequence Flow looks like a Sequence Flow.

Even though DatalnputAssociation(s) and DataOutputAssociation(s) (Directed Data Associations) always point to
Datalnput(s) or DataOutput(s) as sources or targets within the BPMN model, they are mostly depicted as starting or
finishing on the border of a different depicted element and thus, the target [targetElement] or source [sourceElement] of
the BPMNEdge must be specified.

Table 12.35 — Depiction Resolution for Connecting Objects

Specific Depiction Resolution:

Flow

>— abel——»

true and conditionExpression is
unspecified.

Kind: Depiction: .
bpmnElement: BPMNShape Attri-
butes:
Sequence Flow SequenceFlow where default is None
Label > false and conditionExpression is

unspecified.
Conditional SequenceFlow where default is None
Sequence Flow < Label > false and conditionExpression is

specified (exception when source

is a Gateway).
Default Sequence SequenceFlow where default is None

Message Flow

MessageFlow

messageVisibleKind is

associationDirection is one.

o— — —Llabel— — & unspecified.
Initiating MessageFlow messageVisibleKind is
Message Flow with o— -Label] - > initiating.
Decorator
Non-Initiating MessageFlow messageVisibleKind is
Message Flow with o— -Label IZI - non-initiating.
Decorator
Association Association where None

............ Labelceesaneeens Lo . . i

associationDirection is none.

Directional Association where None
Association | seeeeeeeees Label---------- >

Business Process Model and Notation (BPMN), v2.0.2

41

Table 12.35 — Depiction Resolution for Connecting Objects

Bi -Dir.ec_tional Association where None

Association Cormeeeees Label---------- > associationDirection is both.

Data Association None The targetElement of
............ Label............

the BPMNEdge is itself
of type BPMNEdge

where bpmnElement is
of type SequenceFlow

Direct.ed.Data Label DatalnputAssociation or None

Association | s abeleee > DataOutputAssociation

Conversation Link ConversationLink None
Label

12.4 Example(s)

This sub clause provides examples to support interpretation of the BPMN DI specification. Some BPMN diagram
depictions along with their XML BPMN DI serializations are provided. The XML samples provided in this sub clause
present only BPMN DI instances and omit the BPMN 2.0 abstract syntax.

For readability purposes, the bpmnElement that is referenced by the BPMNPlane, BPMNShape, and BPMNEdge use a
representative string pattern. This string pattern is:

BPMNModelClassName BPMNModelNameAttributeValue
For example: “Task Activity” for a Task named “Activity.”
In the provided XML serializations, the di namespace refers to the Diagram Interchange namespace defined in Annex B,
and the dc namespace refers to the Diagram Common namespace also defined in Annex B.

12.4.1 Depicting Content in a Sub-Process

This sub clause shows various ways of depicting the content of a Sub-Process of the same BPMN model.

The BPMN model contains a process composed of a none start event (named “StartEvent”), a sub-process (named
“SubProcess”) and a none end event (named “EndEvent”). There is a sequence flow (named “a”) between the start event
(named “StartEvent”) and the sub-process (named “SubProcess”) and a sequence flow (named “d”) between the sub-
process (named “SubProcess”) and the end event (named “EndEvent”).

The sub-process (named “SubProcess”) is composed of a none start event (named “SubProcessStart™), an abstract task
(named “Activity”) and a none end event (named “SubProcessEnd”). There is a sequence flow (named “b”) between the
start event (named “SubProcessStart”) and the task (named “Activity”) and a sequence flow (named “c”) between the task
(named “Activity”) and the end event (named “SubProcessEnd”).

Expanded Sub-Process

First, a BPMN diagram depicts the BPMN model with the expanded sub-process showing its content (see Figure 12.8).
This leads to a BPMN DI serialization of a single diagram that depicts this process (see Table 12.37).

412 Business Process Model and Notation (BPMN), v2.0.2

4)
SubProcess
O—a-» O—b Activity c—»O —d-»O
StartEvent SubProcess SubProcess EndEvent
Start End
. J/

Figure 12.8 — Expanded Sub-Process Example

Table 12.36- Expanded Sub-Process BPMN DI instance

<BPMNDiagram name=" Events Inside the Sub Process " resolution="72">
<BPMNPIlane bpmnElement="Process_Process">

<BPMNShape bpmnElement="StartEvent_StartEvent" >
<dc:Bounds height="30.0" width="30.0" x="120.0" y="225.0"/>
<BPMNLabel/>

</BPMNShape>

<BPMNShape bpmnElement="SubProcess_SubProcess" isExpanded="true">
<dc:Bounds height="168.0" width="348.0" x="192.0" y="156.0"/>
<BPMNLabel/>

</BPMNShape>

<BPMNShape bpmnElement="StartEvent_SubProcessStart" id="BorderStart" >
<dc:Bounds height="30.0" width="30.0" x="228.0" y="225.0"/>
<BPMNLabel/>

</BPMNShape>

<BPMNShape bpmnElement="Task_Activity">
<dc:Bounds height="68.0" width="83.0" x="324.0" y="206.0"/>
<BPMNLabel/>

</BPMNShape>

<BPMNShape bpmnElement="EndEvent_SubProcessEnd">
<dc:Bounds height="32.0" width="32.0" x="468.0" y="224.0" id ="BorderEnd" />
<BPMNLabel/>

</BPMNShape>

<BPMNShape bpmnElement="EndEvent_EndEvent">
<dc:Bounds height="32.0" width="32.0" x="604.0" y="224.0"/>
<BPMNLabel/>

</BPMNShape>

<BPMNEdge bpmnElement="SequenceFlow_a" targetElement="BorderStart" >
<di:waypoint x="150.0" y="240.0"/>
<di:waypoint x="192.0" y="240.0"/>
<BPMNLabel/>

</BPMNEdge>

<BPMNEdge bpmnElement="SequenceFlow_b" sourceElement="BorderStart" >
<di:waypoint x="258.0" y="240.0"/>
<di:waypoint x="324.0" y="240.0"/>
<BPMNLabel/>

</BPMNEdge>

Business Process Model and Notation (BPMN), v2.0.2 413

<BPMNEdge bpmnElement="SequenceFlow_c" targetElement="BorderEnd" >
<di:waypoint x="407.0" y="240.0"/>
<di:waypoint x="468.0" y="240.0"/>
<BPMNLabel/>

</BPMNEdge>
<BPMNEdge bpmnElement="SequenceFlow_d" sourceElement="BorderEnd" >
<di:waypoint x="540.0" y="240.0"/>
<di:waypoint x="604.0" y="240.0"/>
<BPMNLabel/>

</BPMNEdge>

</BPMNPIane>
</BPMNDiagram>

Expanded Sub-Process with Start and End Events on Border

An alternative to depicting the same BPMN model of 12.4.1 would be to place the sub-process start and end events on the
border of the sub-process (see Figure 12.9). In the BPMN DI serialization of this diagram (see Table 12.40), the target of
the sequence flow named “a” and the source of the sequence flow named “d” are the start and end events on the boundary
of the sub-process.

Compare the target of the sequence flow named “a” and the source of the sequence flow named “d” of Table 12.37 with
that of Table 12.38.

Ve

SubProcess
O—a b Activity CcC—| d-»O
StartEvent SubProcess SubProcess EndEvent
Start End
\§

Figure 12.9 — Start and End Events on the Border Example

Table 12.37 - Start and End Events on the Border BPMN DI instance

<BPMNDiagram name=" StartAndEdnEventsOnTheBorder " resolution="72">
<BPMNPIlane bpmnElement="Process_Process">

<BPMNShape bpmnElement="StartEvent_StartEvent" >
<dc:Bounds height="30.0" width="30.0" x="120.0" y="225.0"/>
<BPMNLabel/>

</BPMNShape>

<BPMNShape bpmnElement="SubProcess_SubProcess" isExpanded="true">
<dc:Bounds height="168.0" width="348.0" x="192.0" y="156.0"/>
<BPMNLabel/>

</BPMNShape>

<BPMNShape bpmnElement="StartEvent_SubProcessStart">
<dc:Bounds height="30.0" width="30.0" x="177.0" y="225.0"/>
<BPMNLabel/>

414 Business Process Model and Notation (BPMN), v2.0.2

</BPMNShape>

<BPMNShape bpmnElement="Task_Activity">
<dc:Bounds height="68.0" width="83.0" x="324.0" y="206.0"/>
<BPMNLabel/>

</BPMNShape>

<BPMNShape bpmnElement="EndEvent_SubProcessEnd">
<dc:Bounds height="32.0" width="32.0" x="524.0" y="224.0"/>
<BPMNLabel/>

</BPMNShape>

<BPMNShape bpmnElement="EndEvent_EndEvent">
<dc:Bounds height="32.0" width="32.0" x="604.0" y="224.0"/>
<BPMNLabel/>

</BPMNShape>

<BPMNEdge bpmnElement="SequenceFlow_a">
<di:waypoint x="150.0" y="240.0"/>
<di:waypoint x="177.0" y="240.0"/>
<BPMNLabel/>

</BPMNEdge>

<BPMNEdge bpmnElement="SequenceFlow_b">
<di:waypoint x="207.0" y="240.0"/>
<di:waypoint x="324.0" y="240.0"/>
<BPMNLabel/>

</BPMNEdge>

<BPMNEdge bpmnElement="SequenceFlow_c">
<di:waypoint x="407.0" y="240.0"/>
<di:waypoint x="524.0" y="240.0"/>
<BPMNLabel/>

</BPMNEdge>

<BPMNEdge bpmnElement="SequenceFlow_d">
<di:waypoint x="556.0" y="240.0"/>
<di:waypoint x="604.0" y="240.0"/>
<BPMNLabel/>

</BPMNEdge>

</BPMNPIlane>
</BPMNDiagram>

Collapsed Sub-Process

Alternatively, one could depict the same BPMN model of 12.4.1 as two diagrams. A first diagram (Figure 12.10) depicts
the process with the sub-process collapsed, while a second diagram (Figure 12.11) depicts the content of the sub-process.

Q_a SubProcess d.;O

StartEvent EndEvent

Figure 12.10 — Collapsed Sub-Process

Business Process Model and Notation (BPMN), v2.0.2 415

Q—b Activity C—»O

SubProcess SubProcess
Start End

Figure 12.11 — Contents of Collapsed Sub-Process

Table 12.38- Collapsed Sub-Process BPMN DI instance

<BPMNDiagram name="Collapsed Sub-Process" resolution="72">
<BPMNPIlane bpmnElement="Process_Process">

<BPMNShape bpmnElement="StartEvent_StartEvent">
<dc:Bounds height="30.0" width="30.0" x="96.0" y="189.0"/>
<BPMNLabel/>

</BPMNShape>

<BPMNShape bpmnElement="EndEvent_EndEvent">
<dc:Bounds height="32.0" width="32.0" x="308.0" y="188.0"/>
<BPMNLabel/>

</BPMNShape>

<BPMNShape bpmnElement="SubProcess SubProcess" isExpanded="false">
<dc:Bounds height="68.0" width="83.0" x="168.0" y="170.0"/>
<BPMNLabel/>

</BPMNShape>

<BPMNEdge bpmnElement="SequenceFlow_a">
<di:waypoint x="126.0" y="204.0"/>
<di:waypoint x="168.0" y="204.0"/>
<BPMNLabel/>

</BPMNEdge>

<BPMNEdge bpmnElement="SequenceFlow_d">
<di:waypoint x="251.0" y="204.0"/>
<di:waypoint x="308.0" y="204.0"/>
<BPMNLabel/>

</BPMNEdge>

</BPMNPIlane>
</BPMNDiagram>

Table 12.39- Sub-Process Content BPMN DI instance

<BPMNDiagram name="SubProcess" resolution="72">
<BPMNPIlane bpmnElement="SubProcess_SubProcess">

<BPMNShape bpmnElement="StartEvent_SubProcessStart">
<dc:Bounds height="30.0" width="30.0" x="208.0" y="219.0"/>
<BPMNLabel/>

</BPMNShape>

<BPMNShape bpmnElement="Task_Activity">
<dc:Bounds height="68.0" width="83.0" x="304.0" y="200.0"/>
<BPMNLabel/>

</BPMNShape>

416 Business Process Model and Notation (BPMN), v2.0.2

<BPMNShape bpmnElement="EndEvent_SubProcessEnd">
<dc:Bounds height="32.0" width="32.0" x="448.0" y="218.0"/>
<BPMNLabel/>

</BPMNShape>

<BPMNEdge bpmnElement="SequenceFlow_b">
<di:waypoint x="238.0" y="234.0"/>
<di:waypoint x="304.0" y="234.0"/>
<BPMNLabel/>

</BPMNEdge>

<BPMNEdge bpmnElement="SequenceFlow_c">
<di:waypoint x="387.0" y="234.0"/>
<di:waypoint x="448.0" y="234.0"/>
<BPMNLabel/>

</BPMNEdge>

</BPMNPIlane>
</BPMNDiagram>

12.4.2 Multiple Lanes and Nested Lanes

In this next example, a diagram depicting a BPMN Process is composed of a LaneSet that contains 2 lanes is presented.

The second lane contains 2 sub lanes (See Figure 12.12).

Manual
Task a

Lane 1

‘L\
Sub-

Process

Lane 2-1

Lane 2

User Task

Lane 2-2

Figure 12.12 — Nested Lanes Example

Table 12.40 — Multiple Lanes and Nested Lanes BPMN DI instance

<BPMNDiagram name="Lanes and Nested Lanes" resolution="72">
<BPMNPIlane bpmnElement="Process_LanesAndNestedLanes">
<BPMNShape bpmnElement="Lane_Lane1" isHorizontal="true">

Business Process Model and Notation (BPMN), v2.0.2

417

<dc:Bounds height="144.0" width="498.0" x="87.0" y="144.0"/>
<BPMNLabel/>

</BPMNShape>

<BPMNShape bpmnElement="Lane_Lane2" isHorizontal="true">
<dc:Bounds height="162.0" width="498.0" x="87.0" y="288.0"/>
<BPMNLabel/>

</BPMNShape>

<BPMNShape bpmnElement="Lane_Lane2_ 2" isHorizontal="true">
<dc:Bounds height="78.0" width="474.0" x="111.0" y="372.0"/>
<BPMNLabel/>

</BPMNShape>
<BPMNShape bpmnElement="Lane_Lane2_ 1" isHorizontal="true">
<dc:Bounds height="84.0" width="474.0" x="111.0" y="288.0"/>
<BPMNLabel/>

</BPMNShape>

12.4.3 Vertical Collaboration
In this example, a Collaboration between two Participants (Pool A and Pool B) is depicted. The first Participant is

depicted with a white box Pool and the second Participant is depicted with a black box Pool. This diagram also depicts
message flows that are decorated with message envelopes (See Figure 12.13).

Pool A Pool B

Lane 1

[

Receiving

Figure 12.13 — Vertical Collaboration Example

Table 12.41 — Vertical Collaboration BPMN DI instance

<BPMNDiagram name="Vertical Collaboration" resolution="72">
<BPMNPIlane bpmnElement="Collaboration_Vertical_Collaboration">

<BPMNShape bpmnElement="Participant_Pool_A" isHorizontal="false">
<dc:Bounds height="258.0" width="336.0" x="96.0" y="276.0"/>

<BPMNLabel/>

</BPMNShape>
<BPMNShape bpmnElement="Lane_Lane1" isHorizontal="false">
<dc:Bounds height="228.0" width="168.0" x="96.0" y="306.0"/>

<BPMNLabel/>

418 Business Process Model and Notation (BPMN), v2.0.2

</BPMNShape>
<BPMNShape bpmnElement="Lane_Lane2" isHorizontal="false">
<dc:Bounds height="228.0" width="168.0" x="264.0" y="306.0"/>
<BPMNLabel/>
</BPMNShape>
<BPMNShape bpmnElement="Participant_Pool_B" isHorizontal="false">
<dc:Bounds height="258.0" width="336.0" x="624.0" y="279.0"/>
<BPMNLabel/>
</BPMNShape>
<BPMNShape bpmnElement="TaskReceiving_Receiving">
<dc:Bounds height="68.0" width="83.0" x="145.0" y="436.0"/>
<BPMNLabel/>
</BPMNShape>
<BPMNShape bpmnElement="TaskSending_Sending">
<dc:Bounds height="68.0" width="83.0" x="282.0" y="338.0"/>
<BPMNLabel/>
</BPMNShape>
<BPMNEdge bpmnElement="MessageFlow_a" messageVisibleKind="initiating">
<di:waypoint x="366.0" y="372.0"/>
<di:waypoint x="624.0" y="374.0"/>
<BPMNLabel/>
</BPMNEdge>
<BPMNEdge bpmnElement="MessageFlow_b" messageVisibleKind="non_initiating">
<di:waypoint x="624.0" y="470.0"/>
<di:waypoint x="228.0" y="470.0"/>
<BPMNLabel/>
</BPMNEdge>
</BPMNPIlane>
</BPMNDiagram>

12.4.4 Conversation

The following diagram depicts a Collaboration between 3 Participants (Participants 1, 2, and 3) including two
Conversations. The diagram also has an annotation connected to a message flow (see Figure 12.14).

Business Process Model and Notation (BPMN), v2.0.2 419

Participant 1 Participant 2

{)
/

Conversation 1

T T
| (o}
|
e
[

. JRIS Message Annotation
f Convergation 2
l..... : d

' |
Av4

Participant 3

Figure 12.14 — Conversation Example

Table 12.42 — Conversation BPMN DI instance

<bpmndi:BPMNDiagram name="Conversation " resolution="72">
<bpmndi:BPMNPIlane bpmnElement="Collaboration_Conversation">

<bpmndi:BPMNShape bpmnElement="Participant_Participant_1" isHorizontal="false">
<dc:Bounds height="144.0" width="132.0" x="97.0" y="108.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNShape>

<bpmndi:BPMNShape bpmnElement="Participant_Participant_2" isHorizontal="false">
<dc:Bounds height="144.0" width="120.0" x="360.0" y="108.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNShape>

<bpmndi:BPMNShape bpmnElement="Conversation_Conversation_1">
<dc:Bounds height="38.0" width="38.0" x="274.0" y="168.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNShape>

<bpmndi:BPMNEdge bpmnElement="ConversationLink_A">
<di:waypoint x="229.0" y="187.0"/>
<di:waypoint x="274.0" y="187.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNEdge>

<bpmndi:BPMNEdge bpmnElement="ConversationLink_B">
<di:waypoint x="312.0" y="187.0"/>
<di:waypoint x="360.0" y="187.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNEdge>

420 Business Process Model and Notation (BPMN), v2.0.2

<bpmndi:BPMNShape bpmnElement="Participant_Participant_3" isHorizontal="true">
<dc:Bounds height="108.0" width="384.0" x="96.0" y="396.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNShape>

<bpmndi:BPMNShape bpmnElement="Conversation_Conversation_2">
<dc:Bounds height="38.0" width="38.0" x="406.0" y="305.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNShape>

<bpmndi:BPMNEdge bpmnElement="ConversationLink_C">
<di:waypoint x="425.0" y="252.0"/>
<di:waypoint x="425.0" y="305.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNEdge>

<bpmndi:BPMNEdge bpmnElement="ConversationLink_D">
<di:waypoint x="425.0" y="343.0"/>
<di:waypoint x="425.0" y="396.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNEdge>

<bpmndi:BPMNShape bpmnElement="TextAnnotation_MessageAnnotation">
<dc:Bounds height="23.0" width="108.0" x="210.0" y="313.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNShape>

<bpmndi:BPMNEdge bpmnElement="MessageFlow_E">
<di:waypoint x="164.0" y="252.0"/>
<di:waypoint x="163.0" y="396.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNEdge>

<bpmndi:BPMNEdge bpmnElement="Association_F">
<di:waypoint x="163.0" y="360.0"/>
<di:waypoint x="181.0" y="360.0"/>
<di:waypoint x="181.0" y="324.0"/>
<di:waypoint x="210.0" y="324.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNEdge>

</bpmndi:BPMNPIlane>
</bpmndi:BPMNDiagram>

12.4.5 Choreography

The following diagram depicts a Choreography consisting of 3 Choreography Activities (2 Choreography Tasks and 1
SubChoreography). This diagram also depicts Participant Bands with and without envelope decorator.

Business Process Model and Notation (BPMN), v2.0.2 421

~

Participant 1

sC
i N -0
O—a-» CT 1 b CT 2 -

StartEvent Participant 2 EndEvent
 Participant 2 Participant2 | _ Participant 3

~

Participant 1

() R

Participant 1

|

~ ~

Figure 12.15 — Choreography Example

>

Table 12.43 — Choreography BPMN DI instance

<bpmndi:BPMNDiagram name="Choreography" resolution="72">
<bpmndi:BPMNPIlane bpmnElement="Choreography_Choreography">
<bpmndi:BPMNShape bpmnElement="StartEvent_StartEvent">
<dc:Bounds height="30.0" width="30.0" x="72.0" y="138.0"/>
<bpmndi:BPMNLabel/>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape bpmnElement="ChoreographyTask CT1" id="DI_ChoreographyTask_CT1">
<dc:Bounds height="114.0" width="96.0" x="156.0" y="96.0"/>
<bpmndi:BPMNLabel/>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape bpmnElement="Participant_Participant1"
choreographyActivityShape="DI_ChoreographyTask CT1" isMessageVisible="true"
participantBandKind="top_non_linitiating">
<dc:Bounds height="20.0" width="96.0" x="156.0" y="96.0"/>
<bpmndi:BPMNLabel/>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape bpmnElement="Participant_Participant2"
choreographyActivityShape="DI_ChoreographyTask CT1" isMessageVisible="true"
participantBandKind="bottom_initiating">
<dc:Bounds height="20.0" width="96.0" x="156.0" y="190.0"/>
<bpmndi:BPMNLabel/>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape bpmnElement="ChoreographyTask CT2" id="DI_ChoreographyTask_CT2">
<dc:Bounds height="114.0" width="96.0" x="312.0" y="96.0"/>
<bpmndi:BPMNLabel/>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape bpmnElement="Participant_Participant1"
choreographyActivityShape="DI_ChoreographyTask CT2" isMessageVisible="false"
participantBandKind="top_non_initiating">
<dc:Bounds height="20.0" width="96.0" x="312.0" y="96.0"/>
<bpmndi:BPMNLabel/>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape bpmnElement="Participant_Participant2"

422 Business Process Model and Notation (BPMN), v2.0.2

choreographyActivityShape="DI_ChoreographyTask_CT2" isMessageVisible="true"
participantBandKind="bottom_initiating">
<dc:Bounds height="20.0" width="96.0" x="312.0" y="190.0"/>
<bpmndi:BPMNLabel/>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape bpmnElement="SubChoreography_SC" isExpanded="false">
<dc:Bounds height="117.0" width="96.0" x="468.0" y="94.0"/>
<bpmndi:BPMNLabel/>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape bpmnElement="Participant_Participant1"
choreographyActivityShape="DI_SubChoreography_ SC" isMessageVisible="false"
participantBandKind="top_non_initiating">
<dc:Bounds height="20.0" width="96.0" x="468.0" y="94.0"/>
<bpmndi:BPMNLabel/>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape bpmnElement="Participant_Participant3"
choreographyActivityShape="DI_SubChoreography_ SC" isMessageVisible="false"
participantBandKind="bottom_non_initiating">
<dc:Bounds height="20.0" width="96.0" x="468.0" y="191.0"/>
<bpmndi:BPMNLabel/>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape bpmnElement="Participant_Participant2"
choreographyActivityShape="DI_SubChoreography_ SC" isMessageVisible="false"
participantBandKind="middle_initiating">
<dc:Bounds height="20.0" width="96.0" x="468.0" y="171.0"/>
<bpmndi:BPMNLabel/>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape bpmnElement="EndEvent_EndEvent">
<dc:Bounds height="32.0" width="32.0" x="624.0" y="137.0"/>
<bpmndi:BPMNLabel/>
</bpmndi:BPMNShape>
<bpmndi:BPMNEdge bpmnElement="SequenceFlow_a">
<di:waypoint x="102.0" y="153.0"/>
<di:waypoint x="156.0" y="153.0"/>
<bpmndi:BPMNLabel/>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge bpmnElement="SequenceFlow_b">
<di:waypoint x="252.0" y="153.0"/>
<di:waypoint x="312.0" y="153.0"/>
<bpmndi:BPMNLabel/>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge bpmnElement="SequenceFlow_c">
<di:waypoint x="408.0" y="153.0"/>
<di:waypoint x="468.0" y="153.0"/>
<bpmndi:BPMNLabel/>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge bpmnElement="SequenceFlow_d">
<di:waypoint x="564.0" y="153.0"/>
<di:waypoint x="624.0" y="153.0"/>
<bpmndi:BPMNLabel/>
</bpmndi:BPMNEdge>

Business Process Model and Notation (BPMN), v2.0.2 423

</bpmndi:BPMNPlane>
</bpmndi:BPMNDiagram>

424 Business Process Model and Notation (BPMN), v2.0.2

13

BPMN Execution Semantics

13.1 General

NOTE: The content of this clause is REQUIRED for BPMN Process Execution Conformance or for BPMN Complete

Conformance. However, this clause is NOT REQUIRED for BPMN Process Modeling Conformance, BPMN Choreography
Conformance, or BPMN BPEL Process Execution Conformance. For more information about BPMN conformance types, see

page 1.

This sub clause defines the execution semantics for orchestrations in BPMN 2.0.2. The purpose of this execution

semantics is to describe a clear and precise understanding of the operation of the elements. However, for some elements
only conceptual model is provided which does not specify details needed to execute them on an engine. These elements

are called non-operational. Implementations MAY extend the semantics of non-operational elements to make them

executable, but this is considered to be an optional extension to BPMN. Non-operational elements MAY be ignored by

implementations conforming to BPMN Process Execution Conformance type. The following elements are non-

operational:

Manual Task

Abstract Task

DataState

IORules

Ad-Hoc Process
ItemDefinitions withan itemKind of Physical

the inputSetWithWhileExecuting attribute of Datalnput
the outputSetWithWhileExecuting attribute of DataOutput
the isClosed attribute of Process

the isImmediate attribute of Sequence Flow

The execution semantics are described informally (textually), and this is based on prior research involving the
formalization of execution semantics using mathematical formalisms.

This sub clause provides the execution semantics of elements through the following structure:

A description of the operational semantics of the element.

Exception issues for the element where relevant.

List of workflow patternslsupported by the element where relevant.

1. http://www.workflowpatterns.com/patterns/control/index.php

Business Process Model and Notation (BPMN), v2.0.2

425

13.2 Process Instantiation and Termination

A Process is instantiated when one of its Start Events occurs. Each occurrence of a Start Event creates a new
Process Instance unless the Start Event participates in a Conversation that includes other Start Events. In that
case, a new Process instance is only created if none already exists for the specific Conversation (identified through
its associated correlation information) of the Event occurrence. Subsequent Start Events that share the same correlation
information as a Start Event that created a Process instance are routed to that Process instance. Note that a global
Process MUST neither have any empty Start Event nor any Gateway or Activity without incoming Sequence
Flows. An exception is the Event Gateway.

A Process can also be started via an Event-Based Gateway or a Receive Task that has no incoming Sequence
Flows and its instantiate flag set to true. If the Event-Based Gateway is exclusive, the first matching Event
will create a new instance of the Process. The Process then does not wait for the other Events originating from the
same Event-Based Gateway (see also semantics of the Event-Based Exclusive Gateway on page 437). If the
Event-Based Gateway is parallel, also the first matching Event creates a new Process instance. However, the
Process then waits for the other Events to arrive. As stated above, those Events MUST have the same correlation
information as the Event that arrived first. A Process instance completes only if all Events that succeed a Parallel
Event-Based Gateway have occurred.

To specify that the instantiation of a Process waits for multiple Start Events to happen, a Multiple Parallel Start
Event can be used.

Note that two Start Events are alternative, A Process instance triggered by one of the Start Events does not wait for
an alternative Start Event to occur. Note that there MAY be multiple instantiating Parallel Event-Based Gateways.
This allows the modeler to express that either all the Events after the first Gateway occur or all the Events after the
second Gateway and so forth.

Each Start Event that occurs creates a token on its outgoing Sequence Flows, which is followed as described by the
semantics of the other Process elements.

€ A Process instance is completed, if and only if the following three conditions hold:

@ If the instance was created through an instantiating Parallel Gateway, then all subsequent Events (of that
Gateway) MUST have occurred.

@ There is no foken remaining within the Process instance.

€@ No Activity of the Process is still active.
For a Process instance to become completed, all tokens in that instance MUST reach an end node, i.e., a node without
outgoing Sequence Flows. A foken reaching an End Event triggers the behavior associated with the Event type, e.g.,

the associated Message is sent for a Message End Event, the associated Signal is sent for a Signal End Event, and
so on. If a token reaches a Terminate End Event, the entire Process is abnormally terminated.

13.3 Activities

This sub clause specifies the semantics of Activities. First the semantics that is common to all Activities is described.
Subsequently the semantics of special types of Activities is described.

426 Business Process Model and Notation (BPMN), v2.0.2

13.3.1 Sequence Flow Considerations

The nature and behavior of Sequence Flows is described in “Sequence Flow” on page 95. But there are special
considerations relative to Sequence Flows when applied to Activities. An Activity that is the target of multiple
Sequence Flows participates in “uncontrolled flow.”

To facilitate the definition of Sequence Flow (and other Process elements) behavior, we employ the concept of a
token that will traverse the Sequence Flows and pass through the elements in the Process. A token is a theoretical
concept that is used as an aid to define the behavior of a Process that is being performed. The behavior of Process
elements can be defined by describing how they interact with a token as it “traverses” the structure of the Process.
However, modeling and execution tools that implement BPMN are NOT REQUIRED to implement any form of foken.

Uncontrolled flow means that, for each token arriving on any incoming Sequence Flows into the Activity, the Task
will be enabled independently of the arrival of tokens on other incoming Sequence Flows. The presence of multiple
incoming Sequence Flows behaves as an exclusive gateway. If the flow of tokens into the Task needs to be
‘controlled,” then Gateways (other than Exclusive) should be explicitly included in the Process flow prior to the
Task to fully eliminate semantic ambiguities.

If an Activity has no incoming Sequence Flows, the Activity will be instantiated when the containing Process or
Sub-Process is instantiated. Exceptions to this are Compensation Activities, as they have specialized instantiation
behavior.

Activities can also be source of Sequence Flows. If an Activity has multiple outgoing Sequence Flows, all of
them will receive a token when the Activity transitions to the Completed state. Semantics for token propagation for other
termination states is defined below. Thus, multiple outgoing Sequence Flows behaves as a parallel split. Multiple
outgoing Sequence Flows with conditions behaves as an inclusive split. A mix of multiple outgoing Sequence
Flows with and without conditions is considered as a combination of a parallel and an inclusive split as shown in the
Figure 13.1.

I
Task 1 - Behaves like: Task 1
-

©

Figure 13.1 — Behavior of multiple outgoing Sequence Flows of an Activity

If the Activity has no outgoing Sequence Flows, the Activity will terminate without producing any tokens and
termination semantics for the container is then applied.

Token movement across a Sequence Flow does not have any timing constraints. A foken might take a long or short time
to move across the Sequence Flow. If the i sTmmediate attribute of a Sequence Flow has a value of false, or has
no value and is taken to mean false, then Activities not in the model MAY be executed while the foken is moving along
the Sequence Flow. If the i sImmediate attribute of a Sequence Flow has a value of frue, or has no value and is
taken to mean frue, then Activities not in the model MAY NOT be executed while the foken is moving along the
Sequence Flow.

Business Process Model and Notation (BPMN), v2.0.2 427

13.3.2 Activity

An Activity is a Process step that can be atomic (Tasks) or decomposable (Sub-Processes) and is executed by
either a system (automated) or humans (manual). All Activities share common attributes and behavior such as states and
state transitions. An Activity, regardless of type, has lifecycle generally characterizing its operational semantics. The
lifecycle, described as a UML state diagram in Figure 13.2, entails states and transitions between the states.

Inactive

s J

A Token Arrives

Ready

b

Activity An Alternative Path for
Interrupted \(Event Gateway Selected
Data InputSet Available .
Interrupting
Event
Activity An Alternative Path for 0
Interrupted Event Gateway Selected Withdrawn
Adctivity's work
The Process
completed Interrupting Ends
Ewvent
Completing
Activity Non-Error
Interrupted v

Completing Error

Requirements Done
Failing

Assignmem's Completed

Completed

Compensation Compensating

The Process
Ends Compensation Compensation

Requirements Done

Terminating

Terminated

Completes \/ Interrupted

Compensation
Compensated

Failed

Failed

The Process The Process
Ends Ends
_/ i

The Process
Ends

Closed

Figure 13.2 — The Lifecycle of a BPMN Activity

428

Business Process Model and Notation (BPMN), v2.0.2

The lifecycle of an Activity is described as follows:

€ An Activity is Ready for execution if the REQUIRED number of fokens is available to activate the Activity. The
REQUIRED number of tokens (one or more) is indicated by the attribute StartQuantity. If the Activity has more
than one Incoming Sequence Flows, there is an implied Exclusive Gateway that defines the behavior.

@ When some data InputSet becomes available, the Activity changes from Ready to the Active state. The
availability of a data InputSet is evaluated as follows. The data InputSets are evaluated in order. For each
InputsSet, the data inputs are filled with data coming from the elements of the context such as Data Objects or
Properties by triggering the input Data Associations. An InputSet is available if each of its REQUIRED
Data Inputs is available. A data input is REQUIRED by a data InputSet if it is not optional in that InputSet.
If an InputSet is available, it is used to start the Activity. Further InputSets are not evaluated. If an
InputSet is not available, the next ITnputSet is evaluated. The Activity waits until one ITnputSet becomes
available. Please refer to 10.4.2 on page 224 for a description of the execution semantics for Data
Associations.

€ An Activity, if Ready or Active, can be Withdrawn from being able to complete in the context of a race condition.
This situation occurs for Tasks that are attached after an Event-Based Exclusive Gateway. The first element
(Task or Event) that completes causes all other Tasks to be withdrawn.

€ Ifan Activity fails during execution, it changes from the state Active to Failed.

& If a fault happens in the environment of the Activity, termination of the Activity is triggered, causing the
Activity to go into the state Terminated.

€ Ifan Activity’s execution ends without anomalies, the Activity’s state changes to Completing. This intermediate
state caters for processing steps prior to completion of the Activity. An example of where this is useful is when non-
interrupting Event Handlers (proposed for BPMN 2.0) are attached to an Activity. They need to complete before
the Activity to which it is attached can complete. The state Completing of the main Activity indicates that the
execution of the main Activity has been completed, however, the main Activity is not allowed to be in the state
Completed, as it still has to wait for all non-interrupting Event Handlers to complete. The state Completing does not
allow further processing steps, otherwise allowed during the execution of the Activity. For example, new attached
non-interrupting Event Handlers MAY be created as long as the main Activity is in state Active. However, once in
the state Completing, running handlers should be completed with no possibility to create new ones.

€ An Activity’s execution is interrupted if an interrupting Event is raised (such as an error) or if an interrupting
Event Sub-Process is initiated, In this case, the Activity’s state changes to Failing (in case of an error) or
Terminating (in case any other interrupting Event). All nested Activities that are not in Ready, Active or a final
state (Completed, Compensated, Failed, etc.) and non-interrupting Event Sub-Processes are terminated. The
data context of the Activity is preserved in case an interrupting Event Sub-Process is invoked. The data context
is released after the Event Sub-Process reaches a final state.

@ After all completion dependencies have been fulfilled, the state of the Activity changes to Completed. The outgoing
Sequence Flows becomes active and a number of fokens, indicated by the attribute CompletionQuantity, is
placed on it. If there is more than one outbound Sequence Flows for an Activity, it behaves like an implicit
Parallel Gateway. Upon completion, also a data OutputSet of the Activity is selected as follows. All
OutputsSets are checked for availability in order. An OutputSet is available if all its REQUIRED Data
Outputs are available. A data output is REQUIRED by an OutputsSet if it is not optional in that OutputSet. If
the data OutputSet is available, data is pushed into the context of the Activity by triggering the output Data
Associations of all its data outputs. Further OutputSets are not evaluated. If the data OutputsSet is not
available, the next data OutputSet is checked. If no OutputsSet is available, a runtime exception is thrown. If
the Activity has an associated TORule, the chosen OutputSet is checked against that TORule, i.e., it is checked
whether the InputSet that was used in starting the Activity instance is together with the chosen OutputSet
compliant with the TORule. If not, a runtime exception is thrown.

Business Process Model and Notation (BPMN), v2.0.2 429

*

Only completed Activities could, in principle, be compensated, however, the Activity can end in state Completed,
as compensation might not be triggered or there might be no compensation handler specified. If the compensation
handler is invoked, the Activity changes to state Compensating until either compensation finishes successfully
(state Compensated), an exception occurs (state Failed), or controlled or uncontrolled termination is triggered (state
Terminated).

13.3.3 Task

Task execution and completion for the different Task types are as follows:

*

Service Task: Upon activation, the data in the inMessage of the Operation is assigned from the data in the
Data Input of the Service Task the Operation is invoked. On completion of the service, the data in the Data
Output of the Service Task is assigned from the data in the outMessage of the Operation, and the Service
Task completes. If the invoked service returns a fault, that fault is treated as interrupting error, and the Activity
fails.

Send Task: Upon activation, the data in the associated Message is assigned from the data in the Data Input of
the Send Task. The Message is sent and the Send Task completes.

Receive Task: Upon activation, the Receive Task begins waiting for the associated Message. When the
Message arrives, the data in the Data Output of the Receive Task is assigned from the data in the Message,
and Receive Task completes. For key-based correlation, only a single receive for a given CorrelationKey
can be active, and thus the Message matches at most one Process instance. For predicate-based correlation, the
Message can be passed to multiple Receive Tasks. If the Receive Task’s instantiate attribute is set to
true, the Receive Task itself can start a new Process instance.

User Task: Upon activation, the User Task is distributed to the assigned person or group of people. When the
work has been done, the User Task completes.

Manual Task: Upon activation, the manual task is distributed to the assigned person or group of people. When the
work has been done, the Manual Task completes. This is a conceptual model only; a Manual Task is never
actually executed by an IT system.

Business Rule Task: Upon activation, the associated business rule is called. On completion of the business rule,
the Business Rule Task completes.

Script Task: Upon activation, the associated script is invoked. On completion of the script, the Script Task
completes.

Abstract Task: Upon activation, the Abstract Task completes. This is a conceptual model only; an Abstract
Task is never actually executed by an IT system.

13.3.4 Sub-Process/Call Activity

A Sub-Process is an Activity that encapsulates a Process that is in turn modeled by Activities, Gateways,
Events, and Sequence Flows. Once a Sub-Process is instantiated, its elements behave as in a normal Process.
The instantiation and completion of a Sub-Process is defined as follows:

.

430

A Sub-Process is instantiated when it is reached by a Sequence Flow foken. The Sub-Process has either a
unique empty Start Event, which gets a token upon instantiation, or it has no Start Event but Activities and
Gateways without incoming Sequence Flows. In the latter case all such Activities and Gateways get a token.
A Sub-Process MUST not have any non-empty Start Events.

Business Process Model and Notation (BPMN), v2.0.2

€ Ifthe Sub-Process does not have incoming Sequence Flows but Start Events that are target of Sequence
Flows from outside the Sub-Process, the Sub-Process is instantiated when one of these Start Events is
reached by a token. Multiple such Start Events are alternative, i.c., each such Start Event that is reached by a
token generates a new instance.

€ A Sub-Process instance completes when there are no more tokens in the Sub-Process and none of its
Activities is still active.

€ Ifa“terminate” End Event is reached, the Sub-Process is abnormally terminated. For a “cancel” End Event,
the Sub-Process is abnormally terminated and the associated Transaction is aborted. Control leaves the Sub-
Process through a cancel intermediate boundary Event. For all other End Events, the behavior associated with
the Event type is performed, e.g., the associated Message is sent for a Message End Event, the associated
signal is sent for a signal End Event, and so on.

€ Ifaglobal Process is called through a Call Activity, then the Call Activity has the same instantiation and
termination semantics as a Sub-Process. However, in contrast to a Sub-Process, the global Process that is
called MAY also have non-empty Start Events. These non-empty Start Events are alternative to the empty
Start Event and hence they are ignored when the Process is called from another Process.

13.3.5 Ad-Hoc Sub-Process

An Ad-Hoc Sub-Process or Process contains a number of embedded inner Activities and is intended to be executed
with a more flexible ordering compared to the typical routing of Processes. Unlike regular Processes, it does not
contain a complete, structured BPMN diagram description—i.e., from Start Event to End Event. Instead the Ad-Hoc
Sub-Process contains only Activities, Sequence Flows, Gateways, and Intermediate Events. An Ad-Hoc
Sub-Process MAY also contain Data Objects and Data Associations. The Activities within the Ad-Hoc Sub-
Process are not REQUIRED to have incoming and outgoing Sequence Flows. However, it is possible to specify
Sequence Flows between some of the contained Activities. When used, Sequence Flows will provide the same
ordering constraints as in a regular Process. To have any meaning, Intermediate Events will have outgoing
Sequence Flows and they can be triggered multiple times while the Ad-Hoc Sub-Process is active.

The contained Activities are executed sequentially or in parallel, they can be executed multiple times in an order that is
only constrained through the specified Sequence Flows, Gateways, and data connections.

Operational semantics
€ Atany point in time, a subset of the embedded Activities is enabled. Initially, all Activities without incoming
Sequence Flows are enabled. One of the enabled Activities is selected for execution. This is not done by the
implementation but usually by a Human Performer. If the ordering attribute is set to sequential, another enabled
Activity can be selected for execution only if the previous one has terminated. If the ordering attribute is set to
parallel, another enabled Activity can be selected for execution at any time. This implies the possibility of the
multiple parallel instances of the same inner Activity.

@ After each completion of an inner Activity, a condition specified through the completionCondition attribute
is evaluated:

@ [Iffalse, the set of enabled inner Activities is updated and new Activities can be selected for execution.

€ Iftrue, the Ad-Hoc Sub-Process completes without executing further inner Activities. In case the ordering
attribute is set to parallel and the attribute cancelRemainingInstances is frue, running instances of inner
Activities are canceled. If cancelRemainingInstances is set to false, the Ad-Hoc Sub-Process
completes after all remaining inner instances have completed or terminated.

Business Process Model and Notation (BPMN), v2.0.2 431

€@ When an inner Activity with ouzgoing Sequence Flows completes, a number of fokens are produced on its
outgoing Sequence Flows. This number is specified through its attribute completionQuantity. The
resulting state MAY contain also other tokens on incoming Sequence Flows of either Activities, converging
Parallel or Complex Gateways, or an Intermediate Event. Then all tokens are propagated as far as possible,
i.e., all activated Gateways are executed until no Gateway and Intermediate Event is activated anymore.
Consequently, a state is obtained where each foken is on an incoming Sequence Flow of either an inner Activity,
a converging Parallel or Complex Gateway or an Intermediate Event. An inner Activity is now enabled if it
has either no incoming Sequence Flows or there are sufficiently many fokens on its incoming Sequence Flows
(as specified through startQuantity).

Workflow patterns: WCP-17 Interleaved parallel routing.
13.3.6 Loop Activity

The Loop Activity is a type of Activity that acts as a wrapper for an inner Activity that can be executed multiple times
in sequence.

Operational semantics: Attributes can be set to determine the behavior. The Loop Activity executes the inner Activity
as long as the loopCondition evaluates to true. A testBefore attribute is set to decide when the loopCondition should be
evaluated: either before the Activity is executed or after, corresponding to a pre- and post-tested loop respectively. A
loopMaximum attribute can be set to specify a maximal number of iterations. If it is not set, the number is unbounded.

Workflow Patterns Support: WCP-21 Structured Loop.
13.3.7 Multiple Instances Activity

The multi-instance (MI) Activity is a type of Activity that acts as a wrapper for an Activity which has multiple
instances spawned in parallel or sequentially.

Operational semantics: The MI specific attributes are used to configure specific behavior. The attribute isSequential
determines whether instances are generated sequentially (frue) or in parallel (false). The number of instances to be
generated is either specified by the integer-valued Expression loopCardinality or as the cardinality of a specific
collection-valued data item of the data input of the MI Activity. The latter is described in detail below.

The number of instances to be generated is evaluated once. Subsequently the number of instances are generated. If the
instances are generated sequentially, a new instance is generated only after the previous has been completed. Otherwise,
multiple instances to be executed in parallel are generated.

Attributes are available to support the different possibilities of behavior. The completionCondition Expression
is a boolean predicate that is evaluated every time an instance completes. When evaluated to true, the remaining instances
are canceled, a token is produced for the outgoing Sequence Flows, and the MI Activity completes.

The attribute behavior defines if and when an Event is thrown from an Activity instance that is about to complete. It
has values of none, one, all, and complex, assuming the following behavior:

€ none: an EventDefinition is thrown for all instances completing.
one: an EventDefinition is thrown upon the first instance completing.

all: no Event is ever thrown.

L K R 2

complex: the complexBehaviorDefinitions are consulted to determine if and which Events to throw.

432 Business Process Model and Notation (BPMN), v2.0.2

For the behaviors of none and one, an EventDefinition (which is referenced from
MultipleInstanceLoopCharacteristics through the noneEvent and oneEvent associations, respectively)
is thrown which automatically carries the current runtime attributes of the MI Activity. That is, the ITtemDefinition
of these SignalEventDefinitions is implicitly given by the specific runtime attributes of the MI Activity.

The complexBehaviorDefinition association references multiple ComplexBehaviorDefinition entities
which each point to a boolean condition being a FormalExpression and an Event which is an
ImplicitThrowEvent. Whenever an Activity instance completes, the conditions of all
ComplexBehaviorDefinitions are evaluated. For each ComplexBehaviorDefinition whose condition is
evaluated to true, the associated Event is automatically thrown. That is, a single Activity completion can lead to
multiple different Events that are thrown. The Events can then be caught on the boundary of the MI Activity. Multiple
ComplexBehaviorDefinitions offer an easy way of implicitly spawning different flow at the Ml Activity
boundary for different situations indicating different states of progress in the course of executing the MI Activity.

The completionCondition, the condition in the ComplexBehaviorDefinition, and the
DataInputAssociation of the Event in the ComplexBehaviorDefinition can refer to the Ml Activity
instance attributes and the 1oopDataInput, loopDataOutput, inputDataltem, and outputDataltem that
are referenced from the MultiInstanceLoopCharacteristics.

In practice, an MI Activity is executed over a data collection, processing as input the data values in the collection and
producing as output data values in a collection. The input data collection is passed to the MI outer Activity’s
loopDataInput from a Data Object in the Process scope of the MI Activity. Under BPMN data flow constraints,
the Data Object is linked to Ml activity’s 1oopDataInput through a DataInputAssociation. To indicate that
the Data Object is a collection, its respective symbol is marked with the MI indicator (three-bar). The items of the
loopDatalInput collection are used to determine the number of instances REQUIRED to be executed (whether
sequentially or in parallel). Accordingly, the inner instances are created and data values from the loopDataInput are
extracted and assigned to the respective instances. Specifically, the values from the loopDataInput items are passed
to an inputDataltem, created in the scope of the outer Activity. The value in the inputDataItem can be passed
to the loopDatalInput of each inner instance, where a DataInputAssociation links both. The process of
extraction is left under-specified. In practice, it would entail a special-purpose mediator that not only provides the
extraction and data assignment, but also any necessary data transformation.

Each instance processes the data value of its DataInput. It produces a value in its DataOutput if it completes
successfully. The DataOutPut value of the instance is passed to a corresponding outputDataItem in the outer
Activity, where a DataOutputAssociation links both. Each outputDataltem value is updated in the
loopDataOutput collection, in the corresponding item. The mechanism of this update is left underspecified, and again
would be implemented through a special purpose mediator. The 1oopDataOutput is passed to the Ml Activity’s
Process scope through a Data Object that has a DataOutputAssociation linking both.

It should be noted that the collection in the Process scope should not be accessible until all its items have been written
to. This is because, it could be accessed by an Activity running concurrently, and therefore control flow through token
passing cannot guarantee that the collection is fully written before it is accessed.

The MI Activity is compensated only if all its instances have completed successfully.

Workflow Patterns Support: WCP-21 Structured Loop, Multiple Instance Patterns WCP 13, 14, 34, 36

Business Process Model and Notation (BPMN), v2.0.2 433

13.4 Gateways

This sub clause describes the behavior of Gateways.

13.4.1 Parallel Gateway (Fork and Join)

X1 Y1

Xm P Yn

Figure 13.3 — Merging and Branching Sequence Flows for a Parallel Gateway

On the one hand, the Parallel Gateway is used to synchronize multiple concurrent branches (merging behavior). On the
other hand, it is used to spawn new concurrent threads on parallel branches (branching behavior).

Table 13.1 — Parallel Gateway Execution Semantic

Operational Semantics The Parallel Gateway is activated if there is at least one token on each
incoming Sequence Flow.

The Parallel Gateway consumes exactly one token from each incoming
Sequence Flow and produces exactly one token at each outgoing Sequence
Flow.

If there are excess tokens at an incoming Sequence Flow, these tokens remain at
this Sequence Flow after execution of the Gateway.

Exception Issues The Parallel Gateway cannot throw any exception.

Workflow Patterns Support Parallel Split (WCP-2)
Synchronization (WCP-3)

13.4.2 Exclusive Gateway (Exclusive Decision (data-based) and Exclusive Merge)

Cond1

X1 - Y1
Cond v 2
Xm Defaul’(>Y3

Figure 13.4 — Merging and Branching Sequence Flows for an Exclusive Gateway

434 Business Process Model and Notation (BPMN), v2.0.2

The Exclusive Gateway has pass-through semantics for a set of incoming branches (merging behavior). Further on,
each activation leads to the activation of exactly one out of the set of outgoing branches (branching behavior).

Table 13.2 — Exclusive Gateway Execution Semantics

Operational Semantics Each foken arriving at any incoming Sequence Flows activates the
gateway and is routed to exactly one of the outgoing Sequence Flows.
In order to determine the outgoing Sequence Flows that receives the
foken, the conditions are evaluated in order. The first condition that
evaluates to true determines the Sequence Flow the token is sent to.
No more conditions are henceforth evaluated.

If and only if none of the conditions evaluates to true, the token is passed
on the default Sequence Flow.

In case all conditions evaluate to false and a default flow has not been
specified, an exception is thrown.

Exception Issues The exclusive gateway throws an exception in case all conditions
evaluate to false and a default flow has not been specified.

Workflow Patterns Support Exclusive Choice (WCP-4)
Simple Merge (WCP-5)
Multi-Merge (WCP-8)

13.4.3 Inclusive Gateway (Inclusive Decision and Inclusive Merge)

X1 Condt o vy

Cond v 2

Xm Default Y3

Figure 13.5 — Merging and Branching Sequence Flows for an Inclusive Gateway

The Inclusive Gateway synchronizes a certain subset of branches out of the set of concurrent incoming branches
(merging behavior). Further on, each firing leads to the creation of threads on a certain subset out of the set of outgoing
branches (branching behavior).

Business Process Model and Notation (BPMN), v2.0.2 435

Table 13.3 — Inclusive Gateway Execution Semantics

Operational Semantics The Inclusive Gateway is activated if
« At least one incoming Sequence Flow has at least one token and

* For every directed path formed by sequence flow that
- starts with a Sequence Flow f of the diagram that has a token,

- ends with an incoming Sequence Flow of the inclusive gateway
that has no token, and

- does not visit the Inclusive Gateway.

* There is also a directed path formed by Sequence Flow that
- starts with f,

- ends with an incoming Sequence Flow of the inclusive gateway
that has a token, and

- does not visit the Inclusive Gateway.

Upon execution, a token is consumed from each incoming Sequence Flow that
has a token. A token will be produced on some of the outgoing Sequence
Flows.

In order to determine the outgoing Sequence Flows that receive a token, all
conditions on the outgoing Sequence Flows are evaluated. The evaluation
does not have to respect a certain order.

For every condition which evaluates to true, a token MUST be passed on the
respective Sequence Flow.

If and only if none of the conditions evaluates to true, the token is passed on the
default Sequence Flow.

In case all conditions evaluate to false and a default flow has not been specified,
the Inclusive Gateway throws an exception.

Exception Issues The inclusive gateway throws an exception in case all conditions evaluate
to false and a default flow has not been specified.

Workflow Patterns Support Multi-Choice (WCP-6)

Structured Synchronizing Merge (WCP-7)
Acyclic Synchronizing Merge (WCP-37)
General Synchronizing Merge (WCP-38)

436 Business Process Model and Notation (BPMN), v2.0.2

13.4.4 Event-based Gateway (Exclusive Decision (event-based))

X1 > Y1

©

Xm P Yn

Figure 13.6 — Merging and branching Sequence Flows for an Event-Based Gateway

The Event-Based Gateway has pass-through semantics for a set of incoming branches (merging behavior). Exactly one
of the outgoing branches is activated afterwards (branching behavior), depending on which of Events of the Gateway
configuration is first triggered. The choice of the branch to be taken is deferred until one of the subsequent Tasks or
Events completes. The first to complete causes all other branches to be withdrawn.

When used at the Process start as a Parallel Event Gateway, only message-based triggers are allowed. The
Message triggers that are part of the Gateway configuration MUST be part of a Conversation with the same
correlation information. After the first trigger instantiates the Process, the remaining Message triggers will be a part
of the Process instance that is already active (rather than creating new Process instances).

Table 13.4 — Event-Based Gateway Execution Semantics

Exception Issues The event-based gateway cannot throw any exception.

Workflow Patterns Support Deferred Choice (WCP-16)

13.4.5 Complex Gateway (related to Complex Condition and Complex Merge)

1 Cond1 v
Condn
yn
xm Default

Figure 13.7 — Merging and branching Sequence Flows for a Complex Gateway

The Complex Gateway facilitates the specification of complex synchronization behavior, in particular race situations.
The diverging behavior is similar to the Inclusive Gateway. Each incoming gate of the Complex Gateway has an
attribute activationCount, which can be used in an Expression as an integer-valued variable. This variable
represents the number of fokens that are currently on the respective incoming Sequence Flows. The Complex
Gateway has an attribute activationExpression. An activationExpression is a boolean Expression
that refers to data and to the activationCount of incoming gates. For example, an activationExpression
could be x1+x2+...+xm >= 3 stating that it needs 3 out of the m incoming gates to have a token in order to proceed. To

Business Process Model and Notation (BPMN), v2.0.2 437

prevent undesirable oscillation of activation of the Complex Gateway, ActivationCount variables should only be
used in subexpressions of the form expr >= const where expr is an arithmetic Expression that uses only addition and
const is an Expression whose evaluation remains constant during execution of the Process.

Each outgoing Sequence Flow of the Complex Gateway has a boolean condition that is evaluated to determine
whether that Sequence Flow receives a token during the execution of the Gateway. Such a condition MAY refer to
internal state of the Complex Gateway. There are two states: waiting for start (represented by the runtime attribute
waitingForStart = true) and waiting for reset (waitingForStart=false).

Table 13.5 — Semantics of the Complex Gateway

Operational Semantics The Complex Gateway is in one of the two states: waiting for start or waiting
for reset, initially it is in waiting for start. If it is waiting for start, then it waits for
the activationExpression to become frue. The activationExpres-
sion is not evaluated before there is at least one token on some incoming
Sequence Flow. When it becomes true, a token is consumed from each
incoming Sequence Flow that has a token. To determine which outgoing
Sequence Flow receive a foken, all conditions on the outgoing Sequence
Flows are evaluated (in any order). Those and only those that evaluate to frue
receive a token. If no condition evaluates to true, and only then, the default
Sequence Flow receives a token. If no default flow is specified an exception
is thrown. The Gateway changes its state to waiting for reset. The Gateway
remembers from which of the incoming Sequence Flows it consumed tokens in the
first phase.

When waiting for reset, the Gateway waits for a token on each of those incoming
Sequence Flows from which it has not yet received a token in the first phase unless
such a token is not expected according to the join behavior of an inclusive
Gateway.

More precisely, the Gateway being waiting for reset, resets when for every directed
path formed by sequence flow that

- starts with a Sequence Flow f of the diagram that has a foken,

- ends with an incoming Sequence Flow of the Complex Gateway
that has no token and has not consumed a token in the first phase,
and that

- does not visit the Complex Gateway.

438 Business Process Model and Notation (BPMN), v2.0.2

Table13.5 — Semantics of the Complex Gateway

Operational Semantics

« There is also a directed path formed by Sequence Flow that
- starts with f,
- ends with an incoming Sequence Flow of the Complex Gateway that has a
token or from which a token was consumed in the first phase, and that,
- does not visit the Complex Gateway.

If the Complex Gateway is contained in a Sub-Process, then no paths are
considered that cross the boundary of that Sub-Process.

When the Gateway resets, it consumes a token from each incoming Sequence Flow
that has a foken and from which it had not yet consumed a foken in the first phase. It
then evaluates all conditions on the outgoing Sequence Flows (in any order) to
determine which Sequence Flows receives a token. Those and only those that
evaluate to frue receive a token. If no condition evaluates to true, and only then, the
default Sequence Flow receives a token. The Gateway changes its state back to the
state waiting for start. Note that the Gateway might not produce any tokens in this
phase and no exception is thrown. Note that the conditions on the outgoing Sequence
Flows MAY evaluate differently in the two phases, e.g., by referring to the state of the
Gateway (runtime attribute waitingForStart).

Note that if the activationCondition never becomes true in the first phase, tokens
are blocked indefinitely at the Complex Gateway, which MAY cause a deadlock of the
entire Process.

Exception issues

The Complex Gateway throws an exception when it is activated in the state waiting
for start, no condition on any outgoing Sequence Flow evaluates to frue and no
default Sequence Flow is specified.

Workflow Patterns Support

Structured Discriminator (WCP-9)
Blocking Discriminator (WCP-28)
Structured Partial Join (WCP-30)
Blocking Partial Join (WCP-31)

13.5 Events

This sub clause describes the handling of Events.

13.5.1 Start Events

For single Start Events, handling consists of starting a new Process instance each time the Event occurs. Sequence
Flows leaving the Event are then followed as usual.

If the Start Event participates in a Conversation that includes other Start Events, a new Process instance is only
created if none already exists for the specific Conversation (identified through its associated correlation information) of

the Event occurrence.

Business Process Model and Notation (BPMN), v2.0.2

439

A Process can also be started via an Event-Based Gateway. In that case, the first matching Event will create a new
instance of the Process, and waiting for the other Events originating from the same decision stops, following the usual
semantics of the Event-Based Exclusive Gateway. Note that this is the only scenario where a Gateway can exist
without incoming Sequence Flows.

It is possible to have multiple groups of Event-Based Gateways starting a Process, provided they participate in the
same Conversation and hence share the same correlation information. In that case, one Event out of each group needs
to arrive; the first one creates a new Process instance, while the subsequent ones are routed to the existing instance,
which is identified through its correlation information.

13.5.2 Intermediate Events

For Intermediate Events, the handling consists of waiting for the Event to occur. Waiting starts when the
Intermediate Event is reached. Once the Event occurs, it is consumed. Sequence Flows leaving the Event are
followed as usual. For catch Message Intermediate Events, the Message correlation behavior is the same as for
Receive Tasks (see sub clause 13.3.3).

13.5.3 Intermediate Boundary Events

For boundary Events, handling first consists of consuming the Event occurrence. If the cancelActivity attribute is
set, the Activity the Event is attached to is then cancelled (in case of a multi-instance, all its instances are cancelled); if
the attribute is not set, the Activity continues execution (only possible for Message, Signal, Timer, and Conditional
Events, not for Error Events). Execution then follows the Sequence Flow connected to the boundary Event. For
boundary Message Intermediate Events, the Message correlation behavior is the same as for Receive Tasks (see
sub clause 13.3.3).

13.5.4 Event Sub-Processes

Event Sub-Processes allow to handle an Event within the context of a given Sub-Processes or Process. An
Event Sub-Process always begins with a Start Event, followed by Sequence Flows. Event Sub-Processes are
a special kind of Sub-Process: they create a scope and are instantiated like a Sub-Process, but they are not
instantiated by normal control flow but only when the associated Start Event is triggered. Event Sub-Processes are
self-contained and MUST not be connected to the rest of the Sequence Flows in the Sub-Processes; also they
cannot have attached boundary Events. They run in the context of the Sub-Process, and thus have access to its
context.

An Event Sub-Process cancels execution of the enclosing Sub-Process, if the i sInterrupting attribute of its
Start Event is set; for a multi-instance Activity this cancels only the affected instance. If the isInterrupting
attribute is not set (not possible for Error Event Sub-Processes), execution of the enclosing Sub-Process continues
in parallel to the Event Sub-Process.

An Event Sub-Process can optionally re-trigger the Event through which it was triggered, to cause its continuation
outside the boundary of the associated Sub-Process. In that case the Event Sub-Process is performed when the
Event occurs; then control passes to the boundary Event, possibly canceling the Sub-Process (including running
handlers).

Operational semantics
€ An Event Sub-Process becomes initiated, and thus Enabled and Running, through the Activity to which it is
attached. The Event Handler MAY only be initiated after the parent Activity is Running.

440 Business Process Model and Notation (BPMN), v2.0.2

@ More than one non-interrupting Event Handler MAY be initiated and they MAY be initiated at different times. There
might be multiple instances of the non-interrupting Event Handler at a time. For Event Sub-Processes triggered
by a Message, the Message correlation behavior is the same as for Receive Tasks -- see sub clause 13.3.3.

€ Only one interrupting Event Handler MAY be initiated for a given EventDefinition within the context of the
parent Activity. Once the interrupting Event Handler is started, the parent Activity is interrupted and no new Event
Handlers can be initiated or started. An Event Sub-Process completes when all fokens have reached an End
Event, like any other Sub-Process. If the parent Activity enters the state Completing, it remains in that state until
all contained active Event Sub-Processes have completed. While the parent Activity is in the Completing state,
no new Event Sub-Processes can be initiated.

€ [Ifan interrupting Event Sub-Process is started by an error, then the parent Activity enters the state Failing and
remains in this state until the interrupting Event Handler reaches a final state. During this time, the running Event
Handler can access to the context of the parent Activity. However, new Event Handlers MUST NOT be started.

€ Similarly, if an interrupting Event Sub-Process is started by a non error (e.g., Escalation), then the parent
Activity enters the state Terminating and remains in this state until the interrupting Event Handler reaches a final
state. During this time, the running Event Handler can access to the context of the parent Activity. However, new
Event Handlers MUST NOT be started.

13.5.5 Compensation

Compensation is concerned with undoing steps that were already successfully completed, because their results and
possibly side effects are no longer desired and need to be reversed. If an Activity is still active, it cannot be compensated,
but rather needs to be canceled. Cancellation in turn can result in compensation of already successfully completed
portions of an active Activity, in case of a Sub-Process.

Compensation is performed by a compensation handler. A compensation handler can either be a Compensation Event
Sub-Process (for a Sub-Process or Process), or an associated Compensation Activity (for any Activity). A

compensation handler performs the steps necessary to reverse the effects of an Activity. In case of a Sub-Process, its
Compensation Event Sub-Process has access to Sub-Process data at the time of its completion (“snapshot data”).

Compensation is triggered by a throw Compensation Event, which typically will be raised by an error handler, as part
of cancellation, or recursively by another compensation handler. That Event specifies the Activity for which
compensation is to be performed, either explicitly or implicitly.

Compensation Handler

A compensation handler is a set of Activities that are not connected to other portions of the BPMN model. The
compensation handler starts with a catch Compensation Event. That catch Compensation Event cither is a
boundary Event, or, in case of a Compensation Event Sub-Process, the handler’s Start Event.

A compensation handler connected via a boundary Event can only perform “black-box” compensation of the original
Activity. This compensation is modeled with a specialized Compensation Activity.

A Compensation Event Sub-Process is contained within a Process or Sub-Processes. It can access data that is
part of its parent, snapshot at the point in time when its parent has completed. A compensation Event Sub-Process can
in particular recursively trigger compensation for Activities contained in that its parent.

It is possible to specify that a Sub-Process can be compensated without having to define the compensation handler.
The Sub-Process attribute compensable, when set, specifies that default compensation is implicitly defined, which
recursively compensates all successfully completed Activities within that Sub-Process, invoking them in reverse order
of their forward execution.

Business Process Model and Notation (BPMN), v2.0.2 441

Compensation Triggering

Compensation is triggered using a throw Compensation Event, which can cither be an Intermediate or an End
Event. The Activity that needs to be compensated is referenced. If the Activity is clear from the context, it doesn’t have
to be specified and defaults to the current Activity. A typical scenario for that is an inline error handler of a Sub-
Process that cannot recover the error, and as a result would trigger compensation for that Sub-Process. If no
Activity is specified in a “global” context, all completed Activities in the Process are compensated.

By default, compensation is triggered synchronously, that is, the throw Compensation Event waits for the completion
of the triggered compensation handler. Alternatively, compensation can just be triggered without waiting for its
completion, by setting the throw Compensation Event’s waitForCompletion attribute to false.

Multiple instances typically exist for Loop or Multi-Instance Sub-Processes. Each of these has its own instance of
its Compensation Event Sub-Process, which has access to the specific snapshot data that was current at the time of
completion of that particular instance. Triggering compensation for the Multi-lnstance Sub-Process individually
triggers compensation for all instances within the current scope. If compensation is specified via a boundary
compensation handler, this boundary compensation handler also is invoked once for each instance of the Multi-Instance
Sub-Process in the current scope.

Relationship between Error Handling and Compensation

Compensation employs a “presumed abort principle,” which has a number of consequences. First, only completed
Activities arc compensated; compensation of a failed Activity results in an empty operation. Thus, when an Activity
fails, i.e., is left because an error has been thrown, it’s the error handler’s responsibility to ensure that no further
compensation will be necessary once the error handler has completed. Second, if no error Event Sub-Process is
specified for a particular Sub-Process and a particular error, the default behavior is to automatically call compensation
for all contained Activities of that Sub-Process if that error occurs, thus ensuring the “presumed abort” invariant.

Operational Semantics

€ A Compensation Event Sub-Process becomes enabled when its parent Activity transitions into state
Completed. At that time, a snapshot of the data associated with the parent Activity is taken and kept for later usage
by the Compensation Event Sub-Process. In case the parent Activity is a multi-instance or loop, for each
instance a separate data snapshot is taken, which is used when its associated Compensation Event Sub-
Process is triggered.

€ When compensation is triggered for the parent Activity, its Compensation Event Sub-Process is activated
and runs. The original context data of the parent Activity is restored from the data snapshot. In case the parent
Activity is a multi-instance or loop, for each instance the dedicated snapshot is restored and a dedicated
Compensation Event Sub-Process is activated.

€ Anassociated Compensation Activity becomes enabled when the Activity it is associated with transitions into
state Completed. When compensation is triggered for that Activity, the associated Compensation Activity is
activated. In case the Activity is a multi-instance or loop, the Compensation Activity is triggered only once, too,
and thus has to compensate the effects of all instances.

€ Default compensation ensures that Compensation Activities are performed in reverse order of the execution
of the original Activities, allowing for concurrency when there was no dependency between the original
Activities. Dependencies between original Activities that default compensation MUST consider are the
following:

€ A Sequence Flow between Activities A and B results in compensation of B to be performed before
compensation of A.

442 Business Process Model and Notation (BPMN), v2.0.2

€ A data dependency between Activities A and B, e.g., through an TORules specification in B referring to
data produced by A, results in compensation of B to be performed before compensation of A.

€ If A and B are two Activities that were active as part of an Ad-Hoc Sub-Process, then compensation
of B MUST be performed before compensation of A if A completed before B started.

@ [nstances of a loop or sequential multi-instance are compensated in reverse order of their forward
completion. Instances of a parallel multi-instance can be compensated in parallel.

@ IfaSub-Process A has a boundary Event connected to Activity B, then compensation of B MUST be
performed before compensation of A if that particular Event occurred. This also applies to multi-instances
and loops.

13.5.6 End Events

Process level end events
For a “terminate” End Event, the Process is abnormally terminated—no other ongoing Process instances are
affected.

For all other End Events, the behavior associated with the Event type is performed, e.g., the associated Message is
sent for a Message End Event, the associated signal is sent for a Signal End Event, and so on. The Process
instance is then completed, if and only if the following two conditions hold:

€ All start nodes of the Process have been visited. More precisely, all Start Events have been triggered, and for all
starting Event-Based Gateways, one of the associated Events has been triggered.

@ There is no token remaining within the Process instance.

Sub-process level end events

For a “terminate” End Event, the Sub-Process is abnormally terminated. In case of a multi-instance Sub-Process,
only the affected instance is terminated—no other ongoing Sub-Process instances or higher-level Sub-Process or
Process instances are affected.

For a “cancel” End Event, the Sub-Process is abnormally terminated and the associated transaction is aborted.
Control leaves the Sub-Process through a cancel intermediate boundary Event.

For all other End Events, the behavior associated with the Event type is performed, e.g., the associated Message is
sent for a Message End Event, the associated signal is sent for a signal End Event, and so on. The Sub-Process
instance is then completed, if and only if the following two conditions hold:

€ All start nodes of the Sub-Process have been visited. More precisely, all Start Events have been triggered, and
for all starting Event-Based Gateways, one of the associated Events has been triggered.

@ There is no foken remaining within the Sub-Process instance.

Business Process Model and Notation (BPMN), v2.0.2 443

444 Business Process Model and Notation (BPMN), v2.0.2

14 Mapping BPMN Models to WS-BPEL

14.1 General

NOTE: The contents of this clause is REQUIRED for BPMN BPEL Process Execution Conformance or for BPMN Complete
Conformance. However, this clause is NOT REQUIRED for BPMN Process Modeling Conformance, BPMN Process
Choreography Conformance, or BPMN Process Execution Conformance. For more information about BPMN conformance
types, see page 1.

This clause covers a mapping of a BPMN model to WS-BPEL that is derived by analyzing the BPMN objects and the
relationships between these objects.

A Business Process Diagram can be made up of a set of (semi-) independent components, which are shown as
separate Pools, each of which represents an orchestration Process. There is not a specific mapping of the diagram
itself, but rather, each of these orchestration Processes maps to an individual WS-BPEL process.

Not all BPMN orchestration Processes can be mapped to WS-BPEL in a straight-forward way. That is because BPMN
allows the modeler to draw almost arbitrary graphs to model control flow, whereas in WS-BPEL, there are certain
restrictions such as control-flow being either block-structured or not containing cycles. For example, an unstructured loop
cannot directly be represented in WS-BPEL.

To map a BPMN orchestration Process to WS-BPEL it MUST be sound, that is it MUST contain neither a deadlock nor
a lack of synchronization. A deadlock is a reachable state of the Process that contains a foken on some Sequence
Flow that cannot be removed in any possible future. A lack of synchronization is a reachable state of the Process where
there is more than one token on some Sequence Flow. For further explanation of these terms, we refer to the literature.
To define the structure of BPMN Processes, we introduce the following concepts and terminology. The Gateways and
the Sequence Flows of the BPMN orchestration Process form a directed graph. A block of the diagram is a
connected sub-graph that is connected to the rest of the graph only through exactly two Sequence Flows: exactly one
Sequence Flow entering the block and exactly one Sequence Flow leaving the block. A block hierarchy for a
Process model is a set of blocks of the Process model in which each pair of blocks is either nested or disjoint and
which contains the maximal block (i.e., the whole Process model) A block that is nested in another block B is also
called a subblock of B (cf. Figure 14.1). Each block of the block hierarchy of a given BPMN orchestration Process has
a certain structure (or pattern) that provides the basis for defining the BPEL mapping.

Business Process Model and Notation (BPMN), v2.0.2 445

)

P Task —»

Task

Figure 14.1 — A BPMN orchestration process and its block hierarchy

The following sub clauses define a syntactical BPEL mapping prescribing the resulting BPEL model at the syntactical
level, and a semantic BPEL mapping prescribing the resulting BPEL model in terms of its observable behavior. The
syntactical BPEL mapping is defined for a subset of BPMN models based on certain patterns of BPMN blocks, whereas
the semantical BPEL mapping (which extends the syntactical mapping) does not enforce block patterns, allowing for the
mapping of a larger class of BPMN models without prescribing the exact syntactical representation in BPEL.

14.2 Basic BPMN-BPEL Mapping

This sub clause introduces a partial mapping function from BPMN orchestration Process models to WS-BPEL
executable Process models by recursively defining the mapping for elementary BPMN constructs such as Tasks and
Events, and for blocks following the patterns described here. Mapping a BPMN block to WS-BPEL includes mapping
all of its associated attributes. The observable behavior of a WS-BPEL process resulting from a BPEL mapping is the
same as that of the original BPMN orchestration Process.

We use the notation [BPMN construct] to denote the WS-BPEL construct resulting from mapping the BPMN construct.
Examples are
[ServiceTask] = Invoke Activity

which says that a BPMN Service Task is mapped to a WS-BPEL Invoke Activity, or

446 Business Process Model and Notation (BPMN), v2.0.2

p1—» Gt <if><condition>[p1]</conditior>

. [G1]
<elseif><condition>[p2]</condition>
~_ [G2]
<X>p2> G2 ' = </elseif>
. <else>
1 [G3]

N) </else>

— G3 <[if>
\/\

which says that the data-based exclusive choice controlled by the two predicates pl and p2, containing the three BPMN
blocks G1, G2, and G3 is mapped to the WS-BPEL on the right hand side, which recursively uses the mappings of those
predicates and those sub-graphs. Note that we use the “waved rectangle” symbol throughout this sub clause to denote
BPMN blocks.

14.2.1 Process

The following figure describes the mapping of a Process, represented by its defining Collaboration, to WS-BPEL.
The process itself is described by a contained graph G of flow elements to WS-BPEL. The Process interacts with
Participants Q1...Qn via Conversations C1...Cm:

<process name="[P-name]"
targetNamespace="[targetNamespace]"
expressionLanguage="[expressionLanguage]"
suppressdoinFailure="yes"
xmlIns="http://docs.oasis-open.org/wsbpel/2.0/process/executable">
<partnerLinks>
[{P-Interfaces} UNION {Qi-Interfaces}]

_ </partnerLinks>
o ~ <variables>
[{dataObjects} UNION {properties}]

Q2

</variables>
<correlationSets>
[{CiCorrelationKeys}]
</[correlationSets>
[C]
</process>

Q1

The partner links of the corresponding WS-BPEL process are derived from the set of interfaces associated with each
participant. Each interface of the Participant containing the Process P itself is mapped to a WS-BPEL partner link
with a “myRole” specification, each interface of each other Participant Qi is mapped to a WS-BPEL partner link with a
“partnerRole” specification.

Business Process Model and Notation (BPMN), v2.0.2 447

The variables of the corresponding WS-BPEL process are derived from the set “{dataObjects}” of all Data Objects
occurring within G, united with the set “{properties}” of all properties occurring within G, without Data Objects or
properties contained in nested Sub-Processes. See “Handling Data” on page 465 for more details of this mapping.

The correlation sets of the corresponding WS-BPEL process are derived from the CorrelationKeys of the
set of Conversations C1...Cn (see page 452 for more details of this mapping).

14.2.2 Activities

Common Activity Mappings
The following table displays a set of mappings of general BPMN Activity attributes to WS-BPEL activity attributes.

Table 14.1 — Common Activity Mappings to WS-BPEL

Activity Mapping to WS-BPEL

name The name attribute of a BPMN activity is mapped to the name attribute of a WS-BPEL
activity by removing all characters not allowed in an XML NCName, and ensuring
uniqueness by adding an appropriate suffix. In the subsequent diagrams, this mapping
is represented as [name].

Task Mappings

The following sub clauses contain the mappings of the variations of a Task to WS-BPEL.

Service Task

The following figure shows the mapping of a Service Task to WS-BPEL.

Service _ ., .,
Task <invoke name="[Task-name]
partnerLink="[Q, Task-operation-interface]"
= portType="[Task-operation-interface]"
& ! operation="[Task-op eration]">
</invoke>
g

The partner link associated with the WS-BPEL invoke is derived from both the participant Q that the Service Task is
connected to by Message Flows, and from the interface referenced by the operation of the Service Task.

Receive Task

The following figure shows the mapping of a Receive Task to WS-BPEL.

448 Business Process Model and Notation (BPMN), v2.0.2

<receive name="[Task-name]"
createlnstance="[instantiate ? 'yes"'no"

Receive _ partnerLink="[Task-operation-interface]"

Task ~ portType="[Task-operation-interface]"
operation="[Task-operation]">
</receive>

The partner link associated with the WS-BPEL receive is derived from the interface referenced by the operation of the
Receive Task.

Send Task
The following figure shows the mapping of a Send Task to WS-BPEL.

Send)
Task <invoke name="[Task-name]"
partnerLink="[Q, Task-operation-interface]"
= portType="[Task-operation-interface]"
&1 operation="[Task-op eration]">
~ </invoke>
(e}

The partner link associated with the WS-BPEL invoke is derived from both the participant Q that the Send Task is
connected to by a Message Flow, and from the interface referenced by the operation of the Send Task.

Abstract Task
The following figure shows the mapping of an Abstract Task to WS-BPEL.

Abstract _ <empty name="[Task-name]">
Task ~ </empty>

Service Package

Message

For Messages with a scalar data item definition typed by an XML schema definition, the following figure shows the
mapping to WS-BPEL, using WSDL 1.1.

Business Process Model and Notation (BPMN), v2.0.2 449

<Message name="msg-name">
<Structure Definition typelL anguage=
"http // www.w3.0rg/2001/XMLSche ma">
xmlSchema
</StructureDefinition>
</Message>

<wsdl:message name="[msg-name]">
= [xmISchema]
</wsdl:message>

The top-level child elements of the XML schema defining the structure of the BPMN Message are mapped to the
WSDL’s message’s parts.

Interface and Operation

The following figure shows the mapping of a BPMN interface with its operations to WS-BPEL, using WSDL 1.1.

<Interface name="if-name">
<Operations>
<Operation name="op1-name">
<inMessageRef ref="msg1i-name"/>
<outMessageRef ref="msg1o-name"/>
<errorRef ref="eroria-name"/> =

<wsdl:portType name="[if-name]">
<operation name="[op1-name]">
<wsdlinput message="[msg1iname]" />
<wsdl:output message="[msg1o0-name]" />
<wsdl:fault name="[emror1a-faultname]"
message="[erroria-name]" />

</Operation> </operation>

</Operations>

</Interface> </wsdlportType>

Conversations and Correlation

For those BPMN nodes sending or receiving Messages (i.e., Message Events, Service, send or Receive Tasks)
that have an associated key-based Correlation Key, the mapping of that key-based Correlation Key is as
follows.

450 Business Process Model and Notation (BPMN), v2.0.2

<vprop:property name="[k-name1]"type ="[k-type1]'/>

<vprop:property name="[k-nameN]" />

<KeyBasedCorrelationSetname="c-set">
<Key name="k-name1" type="k-type1"
messageRef="msg-name1">
<MessageKeyExpression
expressionLanguage="lang1">

<vprop:propertyAlias propertyName="[kName1]"
messageType="[msg-name1]"
part="[expr1-part]">
<vprop:query queryLanguage="[lang1]">
[expr1]

</§/Ixepsrs1ageKeyExpressio n> = </wropquery>
</Key> <Nprop:propertyAlias>

;-Key name="k-nameN" /> <vprop:propertyAlias propertyName="[kNameN]" />
<correlationSets>
<correlationSet name="[c-set]"
properties="[k-name1]... [k-nameN]"/>

</KeyBasedCorrelationS et

</correlationS ets>

The messageType of the BPEL property alias is appropriately derived from the itemDefinition of the Message
referenced by the BPMN Message key Expression. The name of the Message part is derived from the Message
key Expression. The Message key Expression itself is transformed into an Expression relative to that part.

The mapping of Activities with an associated key-based Correlation Key is extended to reference the above BPEL
correlation set in the corresponding BPEL correlations element. The following figure shows that mapping in the
case of a Service Task with an associated key-based Correlation Key.

<invoke name="[Task-name]"
partnerLink="[Q, Task-operation-interface]"

portType="[Task-operation-interface]"
Service operation="[Task-operation]">
= <correlations>
Task <correlation set="[Task-me ssage Flow-conversation-correlationKey]"
initiate="[initialiInConversation? 'join.'no'l"/>

</correlations>
<finvoke>

The initiate attribute of the BPEL correlation element is set depending on whether or not the associated Message
Flow initiates the associated Conversations, or participates in an already existing Conversation. If there are multiple
CorrelationKeys associated with the Conversation, multiple correlation elements are used.

Sub-Process Mappings

The following table displays the mapping of an embedded Sub-Process with Adhoc="Fulse” to a WS-BPEL scope.
(This extends the mappings that are defined for all Activities--see page 448).

The following figure shows the mapping of a BPMN Sub-Process without an Event Sub-Process.

Business Process Model and Notation (BPMN), v2.0.2 451

The following figure shows the mapping of a BPMN Sub-Process with an Event Sub-Process. (Event Sub-
Processes could also be added to a top-level Process, in which case their mapping extends correspondingly.)

Subprocess
<scope>
= [G]
</scope>

Note that in case of multiple Event Sub-Processes, there would be multiple WS-BPEL handlers.

Mapping of Event Sub-Processes

Note that if a Sub-Process contains multiple Event Sub-Processes, all become handlers of the associated WS-
BPEL scope, ordered and grouped as specified by WS-BPEL.

Non-interrupting Message Event Sub-Processes are mapped to WS-BPEL event handlers as follows.

- Message Handler ————- . <eventHandlers> . o

1 <onEvent partnerLink="[e-operation-interface]"
= Prad) = operation="[e-operation]">

= \?) ’ 1 <scope>[G]</scope>

H e I <fonEvent>

leccccccccncamaamooad </eventHandlers>

Timer Event Sub-Processes are mapped to WS-BPEL event handlers as follows.
i~ Timeout Handler ————- . <eventHandlers>

<onAlarm>[timer-spec]
IS = <scope >[G]</scope >
‘@)_»[ﬁ <fonAlarm>
e

</eventHandlers>

Error Event Sub-Processes are mapped to WS-BPEL fault handlers as follows.
- Error Handler ——————= <faultHandlers>

= <catch faultName="[e-fault]">
—] ; (6]
] </catch>
e i

</faultHandle rs>

452 Business Process Model and Notation (BPMN), v2.0.2

A Compensation Event Sub-Process is mapped to a WS-BPEL compensation handler as follows.

- Compensation ——————- :
) <compensationHandler>

1

1

{ @ = [G]

= . </compensationHandler>
1

1

- en en en or on or oo o oo oo on o e en en e o

Activity Loop Mapping

Standard loops with a testTime attribute “Before” or “After” execution of the Activity map to WS-BPEL while and
repeatUntil activities in a straight-forward manner. When the LoopMaximum attribute is used, additional activities
are used to maintain a /oop counter.

Multi-instance Activities map to WS-BPEL forEach activities in a straight-forward manner.

Standard Loops
The mappings for standard /oops to WS-BPEL are described in the following.

A standard loop with testTime= “Before” maps to WS-BPEL as follows, where p denotes the loop condition.

<while>

_ <condition>[p]</conditio n>
Task - [Task]
o </while>

A standard loop with testTime= “After” maps as follows, where p denotes the loop condition.

<repeatUntil>
_ [Task]
Task - <condition>[not p]</condition>
0 </repeatUnti>

Dealing with LoopMaximum

When the LoopMaximum attribute is specified for an Activity, the loop requires additional set up for maintaining a
counter.

Business Process Model and Notation (BPMN), v2.0.2 453

A standard loop with testTime="Before” and a LoopMaximum attribute maps to WS-BPEL as follows (again, p denotes
the loopCondition).

<variable name="[counter]" type="xsd:integer"/>

<sequence>
<assign>
<co py>
<from><litera>0</litera></from >
<to variable="[counter]"/>
</copy>
</assign>
<while>
<condition>[p] and $[counter] < [LoopMa ximum]</condition>
Task <sequence>
() [G]
<assign>
<copy>
<from expre ssio n="$[cou nter]+1"/>
<to variable="[counter]" />
</copy>
</assign>
</sequence>
</while>
</sequence>

(The notation [counter] denotes the unique name of a variable used to hold the counter value; the actual name is
immaterial.)

A standard loop with testTime="After” and a LoopMaximum attribute maps as follows:
<variable name="[counter]" type="xsd:integer"/>

<sequence>
<assign>
<copy>
<from><literal>0</literal></from>
<to variable="[counter]"/>
</copy>
</assign>
<repeatUntil>
<sequence>
Task = [G]
() <assign>
<copy>
<from expression="$[counter]+1"/>
<to variable="[counter]" />
</copy>
</assign>
</sequence>
<condition>[notp] or $[counter] > [LoopMaximum]</condition>
</repeatUntil>
</sequence>

454 Business Process Model and Notation (BPMN), v2.0.2

(The notation [counter] denotes the unique name of a variable used to hold the counter value; the actual name is
immaterial.)

Multi-Instance Activities

A BPMN Multi-Instance Task with amultiInstanceFlowCondition of “All” is mapped to WS-BPEL as
follows.

<variable name="[counter]" type ="xsd:integer" />

<forEach counterName="[counter]" paralle"[isSequential? 'no"'yes']">
<startCounterValue>1</startCounterValue>
Task = <finalCounterValue>[condition]</final CounterValue>
<scope>
[Task]

</scope>
<fforEach>

(The notation [counter] denotes the unique name of a variable used to hold the counter value; the actual name is
immaterial.)

14.2.3 Events

Start Event Mappings

The following sub clauses detail the mapping of Start Events to WS-BPEL.

Message Start Events

A Message Start Event is mapped to WS-BPEL as shown in the following figure.

<receive name="[e-name]"
createlnstance="yes"
_ PpartnerLink="[e-operation-interface]"
portType="[e-o peration-interface]"
e

operation="[e-operation]">
</receive>

The partner link associated with the WS-BPEL receive is derived from the interface referenced by the operation of the
Message Start Event.

Error Start Events

An Error Start Event can only occur in Event Sub-Processes. This mapping is described on page 455.

Compensation Start Events

A Compensation Start Event can only occur in Event Sub-Processes. This mapping is described on page 455.

Business Process Model and Notation (BPMN), v2.0.2 455

Intermediate Event Mappings (Non-boundary)

The following sub clauses detail the mapping of intermediate non-boundary Events to WS-BPEL.

Message Intermediate Events (Non-boundary)

A Message Intermediate Event can cither be used in normal control flow, similar to a Send or Receive Task (for
throw or catch Message Intermediate Events, respectively), or it can be used in an Event Gateway. The latter is
described in more detail in “Gateways and Sequence Flows” on page 461.

The following figure describes the mapping of Message Intermediate Events to WS-BPEL.

<receive name="[e-name]"
createlnstance="no"
_ partnerLink="[e-operation-interface]"
@ - portType="[e-o peration-interface]"
e

operation="[e-operation]">
</receive>

The partner link associated with the WS-BPEL receive is derived from the interface referenced by the operation of the
Message Intermediate Event.

Timer Intermediate Events (Non-boundary)

A Timer Intermediate Event can either be used in normal control flow, or it can be used in an Event Gateway. The
latter is described in more detail in “Gateways and Sequence Flows” on page 461.

The following figure describes the mapping of a Timer Intermediate Event to WS-BPEL — note that one o the
mappings shown is chosen depending on whether the Timer Event’s TimeCycle or TimeDate attribute is used.

<wait name="[e-name]" for="[e-Time Cycle]"/>
@E@) = or
e <wait name="[e-name]" until="[e-TimeDate]"/>

Compensation Intermediate Events (Non-boundary)

A Compensation Intermediate Event with its waitForCompletion property set to true, that is used within an
Event Sub-Process triggered through an error or through compensation, is mapped to WS-BPEL as follows.

456 Business Process Model and Notation (BPMN), v2.0.2

<compensate/>
@ |- o

e <compensateScope target="[referencedActivity]'/>

The first mapping is used if the Compensation Event does not reference an Activity, the second mapping is used
otherwise.

End Event Mappings

The following sub clauses detail the mapping of End Events to WS-BPEL.

None End Events

A “none” End Event marking the end of a Process is mapped to WS-BPEL as shown in the following figure.

O _ <empty name="[e-name]">
T </empty>
e

Message End Events

A Message Start Event is mapped to WS-BPEL as shown in the following figure.

(@] <invoke name="[e-name]"
yA) partnerLink="[Q, e-operation-interface]"
= portType="[e-operation-interface]"
@ operation="[e-operation]">
</invoke>
e

The partner link associated with the WS-BPEL invoke is derived from both the participant Q that the Message
Intermediate Event is connected to by a Message Flow, and from the interface referenced by the operation
of the Message Intermediate Event.

Error End Events

An Error End Event is mapped to WS-BPEL as shown in the following figure.

Business Process Model and Notation (BPMN), v2.0.2 457

@ _ <throw faultName="[ename]">
~ </throw>
e

Compensation End Events

A Compensation End Event with its waitForCompletion property set to true, that is used within an Event Sub-
Process triggered through an error or through compensation, is mapped to WS-BPEL as follows.

<compensate/>
@ |- .
e <compensateScope target="[reference dActivity]'/>

The first mapping is used if the Compensation Event does not reference an Activity, the second mapping is used
otherwise.

Terminate End Events

A Terminate End Event is mapped to WS-BPEL as shown in the following figure.

@ _ <exit>
</exit>
e

Boundary Intermediate Events

Message Boundary Events

A BPMN Activity with a non-interrupting Message boundary Event is mapped to a WS-BPEL scope with an event
handler as follows.

458 Business Process Model and Notation (BPMN), v2.0.2

<scope>

</onEvent>

[Activity]
</scope>

<eventHandlers>
<onEvent partnerLink="[Q, e-operation-interface]"
operation="[e-operation]'>
= <scope>[G]</scope>

</eventHandlers>

The partner link associated with the WS-BPEL onEvent is derived from the interface referenced by the operation of the

boundary Message Event.

The same mapping applies to a non-interrupting boundary Timer Event, using a WS-BPEL onAlarm handler instead.

Error Boundary Events

A BPMN Activity with a boundary Error Event according to the following pattern is mapped as shown.

Activity
)

Business Process Model and Notation (BPMN), v2.0.2

<flow>

<links>
<linkname="[11]"/>

<linkname="[14]"/>
<flinks>
<scope>
<sources><source linkName="[I1]"/></source s>
<faultHandlers>
<catch faultName="[e-error]"'>
<empty>
<sources><source linkName="[13]"/></sources>
</empty >
</catch>
<ffaultHandlers>
[Activity]
</scope>
<flow>
<targets><target linkName="[I1]"/></targe ts>
<sources><source linkName="[I12]"/></source s>
[G1]
<[flow>
<flow>
<targets><target linkName="[3]"/></targe ts>
<sources><source linkName="[l4]"/></source s>
[G2]
<[flow>
<empty>
<sources><source linkName="[I12]"/>
<source linkName="[l4]"/></source s>
</empty>
<fflow>

459

Note that the case where the error handling path doesn’t join the main control flow again, is still mapped using this
pattern, by applying the following model equivalence.

Y

Compensation Boundary Events

A BPMN Activity with a boundary Compensation Event is similarly mapped as shown.

<scope name="[Activity-name]">
<compensationHandler>
[C]
</compensationHandler>
[Activity]
</scope>

Multiple Boundary Events, and Boundary Events with Loops

If there are multiple boundary Events for an Activity, their WS-BPEL mappings are super-imposed on the single WS-
BPEL scope wrapping the mapping of the Activity.

When the Activity is a standard loop or a multi-instance and has one or more boundary Events, the WS-BPEL /loop
resulting from mapping the BPMN /oop is nested inside the WS-BPEL scope resulting from mapping the BPMN
boundary Events.

The following example shows that mapping for a Sub-Process with a nested Event Sub-Process that has a standard
loop with TestTime="Before,” a boundary Error Intermediate Event, and a boundary Compensation
Intermediate Event.

460 Business Process Model and Notation (BPMN), v2.0.2

<flow>
<links>
<linkname="[I1]"/>

<linkname="[14]"/>
</links>
<scope>
<sources><source linkName="[I1]"/></sources>
<faultHandlers>
<catch faultName="[e-error]">
<empty>
<sources><source linkName="[I3]"/></source s>
</empty >
, </catch>
Subprocess <ffaultHandlers>
<compensationHandler>
[G3]
r Handler ——————— "™ ' </compensationHandler>
I
|

[<while>
: <condition>[p]</condition>
TTTTTTA A A = <scope>
[Handler]
13 [G]
</scope>
<hvhile>
</scope>
<flow>
<targets ><target linkName="[I1]"/></targets>
<sources><source linkName="[I2]"/></sources>
[G1]
</flow>
<flow>
<targets ><target linkName="[13]"/></targ ets>
<sources><source linkName="[l14]"/></sources>
[G2]
</flow>
<empty>
<sources><source linkName="[I12]"/>
<source linkName="[l4]"/></source s>
</empty>
</flow>

14.2.4 Gateways and Sequence Flows

The mapping of BPMN Gateways and Sequence Flows is described using BPMN blocks following particular
patterns.

Exclusive (Data-based) Decision Pattern

An exclusive data-based decision is mapped as follows.

Business Process Model and Notation (BPMN), v2.0.2 461

1— G1 <if><condition>[p1]</condition>
. [G1]
<elseif><condition>[p2]</condition>
~ [G2]
p2w- G2] = </elseif>
_— <else>
[G3]
N~ </else>
G3 </if>

While this figure shows three branches, the pattern is generalized to n branches in an obvious manner.

Exclusive (Event-based) Decision Pattern

An Event Gateway is mapped as follows.

<pick createlnstance="[instantiate? 'yes':'no']">

~ Y <onMessage partnerLink="[e1-operation-interface]"
G1 operation="[e1-operation]">
@ L [G1]
et </onMessage>
<onMessage partnerLink="[e2-operation-interface]"
\v/\ ; .
G2 _ [Gozp]Jeratlon ="[e2-operation]">
~— </onMessage>
<onAlarm>
~— [timer-spec]
\ »@ L G3 [G3]
timer N </onAlarm>
</pick>

While this figure shows three branches with one Message Intermediate Event, one Receive Task and one Timer
Intermediate Event, the pattern is generalized to n branches with any combination of the former in an obvious manner.
The handling of Participants (BPEL partnerLinks), Event (operation) and timer details is as specified for Message
Intermediate Events, Receive Tasks, and Timer Intermediate Events, respectively. The data flow and associated
variables (not shown) are handled as for Receive Tasks/Message Intermediate Events.

Inclusive Decision Pattern

An inclusive decision pattern without an otherwise gate is mapped as follows:

462 Business Process Model and Notation (BPMN), v2.0.2

<flow>
<links>
<link name="[link1]"/>

<link name="[link6]"/>
</links>

<empty>
<sources>

<source linkName="[link1]">
<transitionCondition>[p1])</transitionCondition>

</source>

<source linkName="[link2]">
<transitionCondition>[p2])</transitionCondition>

</source>

<source linkName="[link3]">
<transitionCondition>[p3])</ransitionCondition>

</source>
~_ </sources>
P G link# </empty>
\/\
<flow>
~_ 7 <targets><target linkName="[link1]"/></targets>
p2m- G2 = <sources><source linkName="[link4]"/></sources>
link2 . link5 [G1]
<fflow>
\/\
p3—> G3 . <flow>
fnk N link6 <targets><target linkName="[link2]"/></targets>
<sources><source linkName="[link5]"/></sources>
[G2]
<fflow>
<flow>

<targets><target linkName="[link3]"/></targets>
<sources><source linkName="[link6]"/></sources>
[G3]

<fflow>

<empty>
<targets>
<target linkName="[link4]"/>
<target linkName="[link5]"/>
<target linkName="[link6]"/>
</targets>
</empty>
<flow>

While this figure shows three branches, the pattern is generalized to # branches in an obvious manner.

Note that link names in WS-BPEL MUST follow the rules of an XML NCName. Thus, the mapping of the BPMN
Sequence Flow name attribute MUST appropriately canonicalize that name, possibly ensuring uniqueness, e.g., by
appending a unique suffix. This is capture by the [linkName] notation.

Business Process Model and Notation (BPMN), v2.0.2 463

Parallel Pattern

A parallel fork-join pattern is mapped as follows.

\/\
G1
\/\
<flow>
\/\ [G1]
G2 ; = [G2]
_ [G3]
<flow>
N
G3
\/\

Sequence Pattern

A BPMN block consisting of a series of Activities connected via (unconditional) Sequence Flows is mapped to a
WS-BPEL sequence:

<sequence>
[G1]
= [62]
[G3]

</sequence>

Structured Loop Patterns

A BPMN block consisting of a structured loop of the following pattern is mapped to a WS-BPEL while.

>
<while>
o _ <condition>[p]</condition>
[C]
</while>

A BPMN block consisting of a structured loop of the following pattern is mapped to a WS-BPEL repeatUntil.

464 Business Process Model and Notation (BPMN), v2.0.2

p
<repeatUnti>
I (¢
<condition>[not p]</condition>
</repeatUntil>

Handling Loops in Sequence Flows

Loops are created when the flow of the Process moves from a downstream object to an upstream object. There are two
types of loops that are WS-BPEL mappable: while loops and repeat loops.

A while loop has the following structure in BPMN and is mapped as shown.

>
<while>
o _ <condition>[p]</condition>
[C]
</while>

A repeat loop has the following structure in BPMN and is mapped as shown.

; <repeatUntipP>
- [G]
<condition>[notp]</condition>
</repeatU ntil>

14.2.5 Handling Data

Data Objects

BPMN Data Objects are mapped to WS-BPEL variables. The itemDefinition of the Data Object determines the
XSD type of that variable.

Data Objects occur in the context of a Process or Sub-Process. For the associated WS-BPEL process or WS-
BPEL scope, a variable is added for each Data Object in the corresponding WS-BPEL variables sub clause, as

follows:

Business Process Model and Notation (BPMN), v2.0.2 465

= <variable name="[D1-name]" type="[D1 -structureDefinition]"/>

D1

Properties

BPMN properties can be contained in a Process, Activity, or an Event, here named the “container” of the property. A
BPMN property is mapped to a WS-BPEL variable. Its name is derived from the name of its container and the name of
the property. Note that in the case of different containers with the same name and a contained property of the same name,
the mapping to WS-BPEL ensures the names of the associated WS-BPEL variables are unique. The itemDefinition
of the property determines the XSD type of that variable.

A BPMN Process property is mapped to a WS-BPEL global variable. A BPMN Event property is mapped to a WS-
BPEL variable contained in the WS-BPEL scope representing the immediately enclosing Sub-Process of the Event (or
a global variable in case the Event is an immediate child of the Process). For a BPMN Activity property, two cases
are distinguished: In case of a Sub-Process, the WS-BPEL variable is contained in the WS-BPEL scope representing
the Sub-Process. For all other BPMN Activity properties, the WS-BPEL variable is contained in the WS-BPEL scope
representing the immediately enclosing Sub-Process of the Activity (or a global variable in case the Activity is an
immediate child of the Process).

<property id="P1-name" _ <variable name="[{container-name}.P1-name]"

structureRe f="P 1-structure Definition"/> type="[P1-structureDefinition]"/>

Input and Output Sets

For a Send Task and a Service Task, the single input set is mapped to a WSDL message defining the input of the
associated WS-BPEL activity. The inputs map to the message parts of the WSDL message. For a Receive Task and a
Service Task, the single output set is mapped to a WSDL message defining the output of the associated WS-BPEL
activity. The outputs map to the message parts of the WSDL message.

The structure of the WSDL message is defined by the itemDefinitions of the data inputs of the input set.

466 Business Process Model and Notation (BPMN), v2.0.2

<inputSet name="iset">
<datalnput name="input1">
<structureDefinition structure="type1"/>
</datalnput>

<wsdlmessage name="[iset-name]">
<part name="[input1-name]" type="[type1]"/>
</Msdl:message>

<finputSet>

For the data outputs of the output set, the WSDL message looks as follows.

<outputSet name="oset">
<dataOutput name="output1">
<structureDefinition structure="type3"/>
</data Outp ut>

<wsdlmessage name="[oset-name]">
<part name="[output1-name]" type="[type 3]"/>
</wsdl:message>

</outputSet>

Data Associations

In this sub clause, we assume that the input set of the Service Task has the same structure as its referenced input
Message, and the output set of the Service Task has the same structure as its reference output Message. If this is not
the case, assignments are needed, and the mapping is as described in the next sub clause.

Data associations to and from a Service Task are mapped as follows.

<invoke ...>
<toParts>
<toPart part="[datalnput1-name]"

fromVariable="[D1-name]"/>
:ooooo.... A smesewwswssssvww <toPart part:"[datalnputz-name]"
s I B fromVariable="[D2-name]"/>

¢ :
: N </toParts>
D : : ~ <fromParts>
. <fromPart part="[dataOutput1-name]"
D1 D D3 fromVariable="[D3-name]"/>
<formP art part="[data Output2-name]"
D2 D4 fromVariable="[D4-name]"/>
<fromParts>
</invoke>

Data associations from a Receive Task are mapped as follows.

Business Process Model and Notation (BPMN), v2.0.2 467

<receive>

............. <fromP arts >
oot <fromPart part="[dataOutput1-name]"

LA LN X4

[k

D4

fromVariable="[D3-name]"/>
<formPart part="[dataOutput2-name]"
fromV ariable="[D4-name]"/>
<ffromParts>
</receive>

Data associations to a Send Task are mapped as follows.

ssssswe

:

<invoke>
BEAEELIED A <toParts>
the <toPart part="[datalnput1-name]"

fromVariable="[D1-name]"/>
<toPart part="[datalnput2-name]"

fromVariable="[D2-name]"/>
D <ftoParts>
</invoke>
D2

Expressions

BPMN Expressions specified using XPath (e.g., a condition Expression of a Sequence Flow, or a timer cycle
Expression of a Timer Intermediate Event) are used as specified in BPMN, rewriting access to BPMN context to

refer to the mapped BPEL context.

The BPMN XPath functions for accessing context from the perspective of the current Process are mapped to BPEL
XPath functions for context access as shown in the following table. This is possible because the arguments MUST be

literal strings.

Table 14.2 — Expressions mapping to WS-BPEL

BPMN context access

BPEL context access

getDataobject(dataObjectName)

$[dataObjectName]

getProcessProperty(propertyName)

$[{processName}.propertyName] where the right pro-
cessName is statistically derived.

getActivityProperty(activityName, propertyName)

$[activityName.propertyName]

getEventProperty(eventName, propertyName)

$[eventName.propertyName]

468

Business Process Model and Notation (BPMN), v2.0.2

Assignments

For a Service Task with assignments, the WS-BPEL mapping results in a sequence of an assign activity, an invoke
activity and another assign activity. The first assign deals with creating the service request Message from the data inputs
of the Task, the second assign deals with creating the data outputs of the Task from the service response Message.

14.3 Extended BPMN-BPEL Mapping

Additional sound BPMN Process models whose block hierarchy contains blocks that have not been addressed in the
previous sub clause can be mapped to WS-BPEL. For such BPMN Process models, in many cases there is no preferred
single mapping of a particular block, but rather, multiple WS-BPEL patterns are possible to map that block to. Also,
additional BPMN constructs can be mapped by using capabilities not available at the time of producing this specification,
such as the upcoming OASIS BPEL4People standard to map BPMN User Tasks, or other WS-BPEL extensions.

Rather than describing or even mandating the mapping of such BPMN blocks, this specification allows for a semantic
mapping of a BPMN Process model to an executable WS-BPEL process: The observable behavior of the target WS-
BPEL process MUST match the operational semantics of the mapped BPMN Process. Also, the mappings described in
sub clause 15.1 SHOULD be used where applicable.

14.3.1 End Events

End Events can be combined with other BPMN objects to complete the merging or joining of the paths of a WSBPEL
structured element (see Figure 7.3).

The: Token
Recombinabion is
:T; distribulsd SCross :T .,
the End Events —_—

Aol d (N

. . Cormac] Problism
Canndl vall.:tll.n.:.- - Srabarmant | -
Froblem

L. -

\ v

A 1al 1 } A 2ol3

Dugplication of

— Werify Solution - T]I
Results? A 2ofld IS .12‘r||..l.r
1 Communicate A Bal 'i
W Resuks
; —— [.
Ardoeld
| — — —
1D Prokdem and
Can Reproduce -
bn:hh-m - Reschusion W

A Jof 3

L} 4
Figure 14.2 — An example of distributed token recombination
14.3.2 Loop/Switch Combinations From a Gateway
This type of loop is created by a Gateway that has three or more outgoing Sequence Flows. One Sequence Flow

loops back upstream while the others continue downstream (see Figure 14.3). Note that there might be intervening
Activities prior to when the Sequence Flow loops back upstream.

Business Process Model and Notation (BPMN), v2.0.2 469

This maps to both a WSBPEL while and a switch. Both activities will be placed within a sequence, with the
while preceding the switch.

For the while:

* The Condition for the Sequence Flow that loops back upstream will map to the condition of the while.

* All the Activities that span the distance between where the loop starts and where it ends, will be mapped and
placed within the Activity for the while, usually within a sequence.

For the switch:

* For each additional outgoing Sequence Flows there will be a case for the switch.

This path, since it results in a
loop, will be part of the
WEBPEL whila element.

Tokens from two different levels ;

converging indicate & loop A 15'31 3
P No—:
! Al of
| - u -jﬂ.: Zof 3 T
LT T e, |
| —_—) ayi:fn Exceadad —p» Cancel Order .
. .) . Refry Limit | |
(.
| W) - :
. A1of1 | . | |
| . ' A 3ol 3 [
Lecation of WSBPEL ;: ¥ 8§~ Sand Confirmation |
while : | |
for Path 1 as determined by the loop and a *)
switch :
for paths 2 and 3 These two paths will be part of a
WSBPEL switch element.

Figure 14.3 — An example of a loop from a decision with more than two alternative paths

14.3.3 Interleaved Loops

This is a situation where there are at least two loops involved and they are not nested (see Figure 14.4). Multiple looping
situations can map, as described above, if they are in a sequence or are fully nested (e.g., one while inside another
while). However, if the loops overlap in a non-nested fashion, as shown in the figure, then the structured element
while cannot be used to handle the situation. Also, since a £1ow is acyclic, it cannot handle the behavior either.

470

Business Process Model and Notation (BPMN), v2.0.2

This is the section of the
.| Process that will be separated
into a sel of derved processas

| B: 1:0f2
I : | Reconfigure I
| | | |
| | | |
| Test Level 2
I | I
| ' | |
o | .
» f*
I . |
A bl Conf
Co;ss;rn\a:ls Prr;d'g:;e Test Level 1 . Passed Test 1 . Package Product
I |
| | | |
A Bgof 3 A 2ofd
| l : | Reconfigure |
_
LS J

Tokens from two different keops
converging at the same location
indicate interleaved loops

Figure 14.4 — An example of interleaved loops

To handle this type of behavior, parts of the WSBPEL process will have to be separated into one or more derived
processes that are spawned from the main process and will also spawn or call each other (note that the examples
below are using a spawning technique). Through this mechanism, the linear and structured elements of WSBPEL can
provide the same behavior that is shown through a set of cycles in a single BPMN diagram. To do this:

« The looping section of the Process, where the loops first merge back (upstream) into the flow until all the paths have
merged back to Normal Flow, SHALL be separated from the main WSBPEL process into a set of derived
processes that will spawn each other until all the looping conditions are satisfied.

 The section of the process that is removed will be replaced by a (one-way) invoke to spawn the derived
process, followed by a receive to accept the message that the looping sections have completed and the main
process can continue (see Figure 14.5).

» The name of the i nvoke will be in the form of:
* “Spawn_][(loop target)activity.Name] Derived Process”
» The name of the receive will be in the form of:

* [(loop target)activity.Name] Derived Process Completed”

Business Process Model and Notation (BPMN), v2.0.2 471

e il
-:-:uh.-gha-:-:- “Gp&wav:h:h C.ﬁrrlguna 5 il e
Product Package
Tm.- Lﬂwll |
I:‘.omponants Dorived Procnss Derived_Process_ Product
Completed
4

Figure 14.5 — An example of the WSBPEL pattern for substituting for the derived Process

For each location in the Process where a Sequence Flow connects upstream, there will be a separate derived
WSBPEL process.

« The name of the derived process will be in the form of:

* “[(loop target)activity.Name] Derived Process”
+ All Gateways in this sub clause will be mapped to switch elements, instead of whi 1e elements (see Figure below).

+ Each time there is a Sequence Flow that loops back upstream, the Activity for the switch case will be a (one-
way) invoke that will spawn the appropriate derived process, even if the 1 nvoke spawns the same process
again.

» The name of the i nvoke will be the same as the one described above.

+ Atthe end of the derived process a (one-way) invoke will be used to signal the main process that all the derived
activities have completed and the main process can continue.

» The name of the i nvoke will be in the form of:

* “[(loop target)activity.Name] Derived Process Completed”

<<Process>> Configure_Product_Derved_Process

S<onE-Way e
Spaan_
Corfigure_
Product

O Wiy >
LTt]

LT AT
Configura ,
Product Test_Leval 1 -
~Sorewayer
Sparam_
Reconfiqu Conliguie
Product_

Derived_Process

<<irrepikes>

~—orewar
Configure_
PasdpdTasy Produc]_ |
(Otharwisa] |Derfoad Process

Completed
[—

Figure 14.6 — An example of a WSBPEL pattern for the derived Process

472

Business Process Model and Notation (BPMN), v2.0.2

14.3.4 Infinite Loops

This type of loop is created by a Sequence Flow that loops back without an intervening Gateway to create alternative
paths (see Figure 14.7). While this can be a modeling error most of the time, there can be situations where this type of
loop is desired, especially if it is placed within a larger Activity that will eventually be interrupted.

« This will map to a whiIe activity.

» The condition of the whi 1e will be set to an Expression that will never evaluate to true, such as condition”l =
O.”

« All the activities that span the distance between where the loop starts and where it ends, will be mapped and placed
within the activity for the while, usually within a sequence.

The Token arrives The | it
b k + e loop creates a
. withozrl:l g:'ij:gnta;;nugh WSB?EL
.- while

a Decision

.J . Post Status on
weceive Vote H Increment Tally Web Site -
| : |

| ; | : - . The activities are
. T ! W .| contained within a

Sequence
within the while

Figure 14.7 — An example: An infinite loop
14.3.5 BPMN Elements that Span Multiple WSBPEL Sub-Elements

Figure 14.8 illustrates how BPMN objects can exist in two separate sub-elements of a WSBPEL structured element at the
same time. Since BPMN allows free form connections of Activities and Sequence Flows, it is possible that two (or
more) Sequence Flows will merge before all the Sequence Flows that map to a WSBPEL structure element have
merged. The sub-elements of a WSBPEL structured elements are also self-contained and there is no cross sub-element
flow. For example, the cases of a switch cannot interact; that is, they cannot share activities. Thus, one BPMN
Activity will need to appear in two (or more) WSBPEL structured elements. There are two possible mechanisms to deal

with the situation:
« First, the activities are simply duplicated in all appropriate WSBPEL elements.

« Second, the activities that need to be duplicated can be removed from the main Process and placed in a derived
process that is called (invoked) from all locations in the WSBPEL elements as needed.

* The name of the derived process will be in the form of:

* “[(target)object.Name] Derived Process”

Business Process Model and Notation (BPMN), v2.0.2 473

Figure 14.8 displays this issue with an example. In that example, two Sequence Flows merge into the “Include History
of Transactions” Task. However, the Decision that precedes the Task has three alternatives. Thus, the Decision maps to
a WSBPEL switch with three cases. The three cases are not closed until the “Include Standard Text” Task,

downstream. This means that the “Include History of Transactions” Task will actually appear in two of the three cases of

the switch.

Note — the use of a WSBPEL f1ow will be able to handle the behavior without duplicating activities, but a £1ow will not
always be available for use in these situations, particularly if a WSBPEL pick is requested.

Include Apology

Tt

Established with
good Cradit

1atd Location of
Partial Two
Recombination TokardDs in
] : ona Token
1af3
Location of
Final

Inglude Histony of
Recombinathon

ransaciions

Established with
poor Credit

N

2of3

Imfud& Standard

Dedault Tend

(Mew])

|: Token W L

dof 3

Figure 14.8 — An example: Activity that spans two paths of a WSBPEL structured element

474 Business Process Model and Notation (BPMN), v2.0.2

15 Exchange Formats

15.1 Interchanging Incomplete Models

In practice, it is common for models to be interchanged before they are complete. This occurs frequently when doing
iterative modeling, where one user (such as a subject matter expert or business person) first defines a high-level model,
and then passes it on to another user to be completed and refined.

Such “incomplete” models are ones in which all of the mandatory attributes have not yet been filled in, or the cardinality
lowerbound of attributes and associations has not been satisfied.

XMI allows for the interchange of such incomplete models. In BPMN, we extend this capability to interchange of XML
files based on the BPMN XSD. In such XML files, implementers are expected to support this interchange by:

+ Disregarding missing attributes that are marked as ‘required’ in the XSD.

+ Reducing the lower bound of elements with ‘minOccurs’ greater than 0.

15.2 Machine Readable Files

BPMN 2.0.2 machine readable files, including XSD, XMI, and XSLT files can be found in OMG Document
dtc/2010-05-04, which is a zip file containing all the files:

+ XSD files are found under the XSD folder of the zip file, and the main file is XSD/BPMN20.xsd.
« XMI files are found under the XMI folder of the zip file, and the main file is XSD/BPMN20.cmof.
« XSLT files are found under the XSLT folder of the zip file.

15.3 XSD

15.3.1 Document Structure

A domain-specific set of model elements is interchanged in one or more BPMN files. The root element of each file
MUST be <bpmn:definitions>. The set of files MUST be self-contained, i.e., all definitions that are used in a file MUST
be imported directly or indirectly using the <bpmn:import> element.

Each file MUST declare a “targetNamespace” that MAY differ between multiple files of one model.
BPMN files MAY import non-BPMN files (such as XSDs and WSDLs) if the contained elements use external definitions.
Example:

main.bpmn
<?xml version="1.0" encoding="UTF-8"7>
<bpmn:definitions xmins:bpmn="http://www.omg.org/spec/BPMN/20100524/MODEL"
targetNamespace="sample1.main" xmIns:main="sample1.main" xmins:s1="sample1.semantic1">
<bpmn:import location="semantic1.bpmn" namespace="sample1.semantic1"
importType="http://www.omg.org/spec/BPMN/20100524/MODEL”" />
<bpmn:import location="diagram1.bpmn" namespace="sample1.diagram1"

Business Process Model and Notation (BPMN), v2.0.2 475

importType="http://www.omg.org/spec/BPMN/20100524/MODEL” />
<bpmn:collaboration>
<bpmn:participant processRef="s1:process1" id="collaboration1"></bpmn:participant>
<l--more content here -->
</bpmn:collaboration>
</bpmn:definitions>

semanticl.bpmn
<?xml version="1.0" encoding="UTF-8"?>
<bpmn:definitions xmins:bpmn="http://www.omg.org/spec/BPMN/20100524/MODEL"
targetNamespace="sample1.semantic1"
xmins:s1="sample1.semantic1">
<bpmn:process id="process1">
<l-- content here -->
</bpmn:process>
</bpmn:definitions>

diagram1.bpmn

<?xml version="1.0" encoding="UTF-8"?>
<bpmn:definitions xmins:bpmn="http://www.omg.org/spec/BPMN/20100524/DI”
targetNamespace="sample1.diagram1"
xmIns:bpmndi="http://www.omg.org/spec/BPMNDI/1.0.0"
xmins:d1="sample1.diagram1" xmIns:s1="sample1.semantic1"
xmlns:main="sample1.main">
<bpmndi:BPMNDiagram scale="1.0" unit="Pixel">
<bpmndi:BPMNPIlane element="main:collaboration1">
<l-- content here -->
</bpmndi:BPMNPlane>
</bpmndi:BPMNDiagram>
</bpmn:definitions>

15.3.2 References within the BPMN XSD

All BPMN eclements contain IDs and within the BPMN XSD, references to elements are expressed via these IDs. The
XSD IDREF type is the traditional mechanism for referencing by IDs, however it can only reference an element within
the same file. The BPMN XSD supports referencing by ID, across files, by utilizing QNames. A QName consists of two
parts: an optional namespace prefix and a local part. When used to reference a BPMN element, the local part is expected
to be the ID of the element.

For example, consider the following Process
<process name="Patient Handling" id="Patient Handling Process ID1"> ... </process>
When this Process is referenced from another file, the reference would take the following form:
processRef="process_ns:Patient Handling Process ID1"

where “process_ns” is the namespace prefix associated with the process namespace upon import, and
“Patient_ Handling Process ID1” is the value of the id attribute for the Process.

476 Business Process Model and Notation (BPMN), v2.0.2

The BPMN XSD utilizes IDREFs wherever possible and resorts to QName only when references can span files. In both
situations however, the reference is still based on IDs.

15.4 XMI

XMI allows the use of tags to tailor the documents that are produced using XMI. The following tags have been explicitly
set for serializing BPMN 2.0 models; the others are left at their default values:

+ tag nsURI set to "http://www.omg.org/spec/BPMN/20100524/XMI"
+ tag nsPrefix set to “bpmn”

The BPMN 2.0 XMI for the interchange of diagram information will be published once the OMG Diagram Definition
RFP process has produced a specification that is sufficiently complete such that a future BPMN RFP/FTF/RTF can align
the BPMN specification with the Diagram Definition specification.

15.5 XSLT Transformation between XSD and XMl

« The XSLT transformation from XSD to XMI is in the file XSLT/BPMN20-ToXMI.xslt
» The XSLT transformation from XMI to XSD is in the file XSLT/BPMN20-FromXMI.xslt

Business Process Model and Notation (BPMN), v2.0.2 477

478 Business Process Model and Notation (BPMN), v2.0.2

Annex A
Changes from v1.2

(informative)

A.1 Changes from BPMN, v1.2

There have been notational and technical changes to the BPMN International Standard.

The major notational changes include:
* The addition of a Choreography diagram
* The addition of a Conversation diagram
* Non-interrupting Events for a Process
* Event Sub-Processes for a Process
The major technical changes include:
* A formal metamodel as shown through the class diagram figures
* Interchange formats for abstract syntax model interchange in both XMI and XSD
* Interchange formats for diagram interchange in both XMI and XSD
* XSLT transformations between the XMI and XSD formats
Other technical changes include:

* Reference Tasks are removed. These provided reusability within a single diagram, as compared to GlobalTasks,
which are resuable across multiple diagrams. GlobalTasks can be used instead of Reference Tasks, to simplify the
language and implementations.

Business Process Model and Notation (BPMN), v2.0.2 479

480 Business Process Model and Notation (BPMN), v2.0.2

Annex B
Diagram Interchange

(non-normative)

B.1 Scope

This annex provides documentation for a relevant subset of an alpha version of a Diagram Definition (DD) specification
that is being referenced by this International Standard (in Clause 13 - BPMN DI). The (complete version of the) DD
specification is still going through a separate submission/approval process and once finalized and adopted, a future
revision of this specification may replace this annex by a reference to that adopted DD specification.

The Diagram Definition specification provides a basis for modeling and interchanging graphical notations, specifically
node and edge style diagrams as found in BPMN, UML and SysML, for example, where the notations are tied to abstract
language syntaxes defined with MOF. The specification addresses the requirements in the Diagram Definition RFP (ad/
2007-09-02).

B.2 Architecture

The DD architecture distinguishes two kinds of graphical information, depending on whether language users have control
over it. Graphics that users have control over, such as position of nodes and line routing points, are captured for
interchange between tools. Graphics that users do not have control over, such as shape and line styles defined by language
standards are not interchanged because they are the same in all diagrams conforming to the language. The DD
architecture has two models to enable specification of these two kinds of graphical information, Diagram Interchange (DI)
and Diagram Graphics (DG).(both models share common elements from a Diagram Common (DC) model). The DI and
DG models are shown in Figure B.1 by bold outlined boxes on the left and right, respectively.

The DD architecture expects language specification to define mappings between interchanged and non-interchanged
graphical information, but does not restrict how it is done. This is shown in Figure B.1 by a shaded box labeled “CS
Mapping Specification” in the middle section. The DD specification gives examples of mappings in QVT, but does not
define or recommend any particular mapping language. The overall architecture resembles typical model-view-
controllers, which separate visual rendering from underlying models, and provide a way to keep visuals and models
consistent.

The first few steps of using the DD architecture are:

1. An abstract language syntax is defined separately from DD by instantiating MOF (abstract syntaxes are sometimes
called “metamodels™). This is shown in Figure B.1 by a shaded box labeled “AS” at the far middle left (the “M” lev-
els in the figure are described in the UML 2 Infrastructure (formal/2009-02-04)).

2. Language users model their applications by instantiating elements of abstract syntax, usually through tooling for the
language. This is shown in Figure B.1 by the dashed arrow on the far lower left linked to a box labeled “Model.”

3. Users typically see graphical depictions of their models in tools. This is shown in Figure B.1 by a box on the lower
right labeled “Graphics.”

Business Process Model and Notation (BPMN), v2.0.2 481

Users expect their graphics to appear again in other tools after models are interchanged. The DD architecture enables this
in two parts, one for graphical information that is interchanged, and another for graphical information that is not. The
interchanged information is captured in the next few steps:

4.

The portion of graphics that users have control over is captured for interchange, such as node position and line rout-
ing points. This is shown in Figure B.1 by a box labeled “Diagram” on the lower left. This information is linked to
user models (instances of abstract syntax), as shown by the arrow to the Model box.

User diagram interchange information is instantiated from a model defined along with the abstract syntax. This is
shown in Figure B.1 by a shaded box labeled “AS DI” on the left. Elements of this model are linked to elements of
abstract syntax, specifying which kinds of diagram interchange information depict which kinds of user model ele-
ments. Diagram interchange models would typically be defined by the same community that defines the abstract syn-
tax, as part of the overall language specification.

Elements of language-specific diagram interchange models (AS DI) specialize elements of the Diagram Interchange
(DI), which is a model provided by this specification for typically needed diagram interchange information, as node
position and line routing points. This is shown in Figure B.1 by the bold box labeled “DI” on the left, with specializa-
tion shown with a hollow headed arrow (specialization here is MOF generalization and property subsetting and redef-
inition, or XSD subclassing, where DI has the general elements, and AS DI has the specific elements). DI elements
cannot be instantiated to capture diagram interchange information by themselves, they are almost entirely abstract.
This specification provides normative CMOF and XSD artifacts for DI.

The final part of using the DD architecture captures graphical information that is not interchanged:

7.

Language specifications specify mappings from their diagram interchange models (instances of AS DI) to instances
of Diagram Graphics (DG), which is a model provided by this specification for typically needed graphical informa-
tion that is not interchanged, such as shape and line styles. This shown in Figure B.1 by the box labeled “DG” on the
right, and by the box labeled “CS Mapping Specification” in the middle section. The arrow at the bottom of the mid-
dle section illustrates mappings being carried out according to the specification above it, producing a model of dia-
gram visuals, or directly rendering the visuals on a display. Languages specifying this mapping reduce ambiguity and
non uniformity in how their abstract syntax appears visually. The DG model is not expected to be specialized,
enabling implementations to render instances of DG elements for all applications of the DD architecture. This speci-
fication provides normative CMOF and XSD artifacts for DG.

In the BPMN specification, the only realized part of the DD architecture so far is diagram interchange. Hence the only
documentation provided by this annex is for the Diagram Interchange (DI) package, in addition to the relevant subset of
Diagram Common (DC) package, which captures common data structure definitions. The documentation for the Diagram
Graphics (DQG) package is not provided here.

482

Business Process Model and Notation (BPMN), v2.0.2

M3 spec MOF /XSD Mapping MOF / XSD
Language
Abstract Diagram Concrete |
Syntax Syntax Syntax |
DI
M2 spec T !
| | | -CSMapping
[AS J«—» AS DI J Shacification DG
N B — T
M1 user [Maodel]** Diagram | r| Graphics
CS Mapping
Moclel Controller View
{interchanged) {executed) {renderad)

-==% Imstantiates

O obspec

—i= Specializes D Language

Spec

G: Diagram Graphics

D : Diagram Interchange AS: Abstract Syntax

CS : Concreta Syniax

—> References

Figure B.1 — Diagram Definition Architecture

B.3 Diagram Common

The Diagram Common (DC) package contains abstractions shared by the Diagram Interchange and the Diagram Graphics
packages.

B.3.1 Overview

The Diagram Common (DC) package contains a number of common primitive types as well as structured data types that
are used in the definition of the Diagram Interchange (DG) package (see “Diagram Interchange” on page 487). The DC
package itself does not depend on other packages. Some of the types defined in this package are defined based on similar
ones in other related specifications including Cascading Style Sheets (CSS), Scalable Vector Graphics (SVG), and Office
Document Format (ODF).

B.3.2 Abstract Syntax

zeDataTypes
Real

gfrimitives
String

sprimitives
Boolean

gfrimitives
Integer

Figure B.2 — The Primitive Types

Business Process Model and Notation (BPMN), v2.0.2 483

zdataTypes zdataTypes
Point Bounds
+¥: Real=10 +¥:Real=10
+y Real=0 +y: Real=0
+width : Real
+ height : Real

Figure B.3 - Diagram Definition Architecture

sdataTvpe:
Font

+ name : String [0..1]
+ size : Real [0..1]
+ isBold : Boolean [0..1]
+ isltalic - Boolean [0..1]
+islUnderline :Boolean [0..1]
+ isStrikeThrough : Boolean [0..1]

Figure B.4 - Diagram Definition Architecture
B.3.3 Classifier Descriptions

B.3.3.1 Boolean [PrimitiveType]

Boolean is a primitive data type having one of two values: true or false, intended to represent the truth value of logical
expressions.

Description

Boolean is used as a type for typed elements that represent logical expressions. There are only two possible values for
Boolean:

* true - The Boolean expression is satisfied.

» false - The Boolean expression is not satisfied.

Abstract Syntax
* Figure B.2 The primitive types

B.3.3.2 Bounds [PrimitiveType]

Bounds specifies an area in some (X, y) coordinate system that is enclosed by a bounded element’s top-left point, its
width, and its height.

Description

Bounds is used to specify the area of an element in some (X, y) coordinate system. The area is specified with a top-left
point, representing the element's location (distance from the origin in logical units of length), in addition to the element’s
width and height (in logical units of length).

Abstract Syntax
* Figure B.3 (Layout Types)

484 Business Process Model and Notation (BPMN), v2.0.2

Attributes
*+x:Real[1]=0
a real number that represents the x-coordinate of the rectangle.
*+y:Real[l]=0
a real number that represents the y-coordinate of the rectangle.
* + width : Real [1]
a real number that represents the width of the rectangle.
* + height : Real [1]

a real number that represents the height of the rectangle.

B.3.3.3 Font [PrimitiveType]
Font specifies the characteristics of a given font through a set of font properties.
Description

Font specifies a set of properties for a given font that is used when rendering text on a diagram

Abstract Syntax
* Figure B.4 The font type

Attributes
* + name : String[0..1]
the name of the font (e.g., “Times New Roman,” “Arial,” and “Helvetica”).

* +size : Real [0..1]

a non-negative real number representing the size of the font (expressed in the used unit of length).

* +isBold : Boolean [0..1]

whether the font has a bold style.

* + isltalic : Boolean [0..1]

whether the font has an italic style.

* + isUnderline : Boolean [0..1]

whether the font has an underline style.

* + isStrikeThrough : Boolean [0..1]
whether the font has a strike-threugh style.

B.3.3.4 Integer [PrimitiveType]

Integer is a primitive data type used to represent the mathematical concept of integer.

Description

Business Process Model and Notation (BPMN), v2.0.2

485

Integer is used as a type for typed elements whose values are in the infinite set of integer numbers.

Abstract Syntax
* Figure B.2 The primitive types

B.3.3.5 Point [DataType]
A Point specifies an location in some (X, y) coordinate system.
Description

Point is used to specify a location in logical unit of length from the origin of some (X, y) coordinate system. The point (0,
0) is considered to be at the origin of that coordinate system.

Abstract Syntax
* Figure B.3 The layout types

Attributes
*+x:Real[1]=0
a real number that represents the x-coordinate of the point.
*+y:Real[1]=0

a real number that represents the y-coordinate of the point.

B.3.3.6 Real [PrimitiveType]
Real is a primitive data type used to represent the mathematical concept of real.
Description

Real is used as a type for typed elements whose values are in the infinite set of real numbers. Note that integer values are
also considered real values and as such can be assigned to real-typed elements.

Abstract Syntax
* Figure B.2 The primitive types

B.3.3.7 String [PrimitiveType]

String is a primitive data type used to represent a sequence of characters in some suitable character set. Character sets
may include both ASCII and Unicode characters.

Description

String is used as a type for typed elements in the metamodel that have text values. The allowed values for String depend
on the semantics of the text in each context. A string value is a sequence of characters surrounded by double quotes (").

Abstract Syntax
* Figure B.2 The primitive types

486 Business Process Model and Notation (BPMN), v2.0.2

B.4 Diagram Interchange

The Diagram Interchange (DI) package contains a model enabling interchange of graphical information that language
users have control over, such as position of nodes and line routing points. Language specifications specialize elements of
DI to define diagram interchange for a language.

B.4.1 Overview

The Diagram Interchange (DI) package contains a number of types used in the definition of diagram interchange models.
The package imports the Diagram Common package (see “Diagram Common” on page 483), as shown in Figure B.5, that
contains various relevant data types. The DI package contains mainly abstract types that are to be properly extended and
refined by concrete types in domain-specific DI packages. In this sense, the DI package plays the role of a framework that
is meant for extension rather than a component that is ready to be used out of the box. The benefit of this design is
capture common assumptions in the DI package in order to facilitate the integration between various graphical domains
that define their DI packages as extensions.

Diagrams are generally considered depictions of part or all of the elements in a domain-specific model. Therefore, one of
the best practices adopted in the design of the DI package and that can be subsumed by the extending domain-specific DI
packages is to minimize any redundancy with the depicted model when possible. For example, the text representing the
name of a UML class is not defined as part of the UML class shape. This is primarily achieved by the fact that diagram
elements reference their counterparts in the domain model as their context model elements instead of duplicating data
from them. This design has the side effect of coupling the diagram models with their corresponding domain models,
which is generally a common practice by tools. However, the DI package does not enforce this best practice and domain-
specific DI packages can decide to have some level of duplication to decouple the models.

Another best practice adopted by the DI package is to avoid defining any data that is not changeable by the user but is
rather derivable from the diagram’s model context, like graphical rendering details. For example, the option to render a
UML actor as a stick man or a as rectangle can be defined in a DI model as a boolean property to allow a user to choose
between them. However, the definition of the actual line segments making up such shapes need not be interchanged in a
DI model as it can be defined in the tool itself.

Other decisions that are left to the individual domain-specific DI packages include: whether to allow 1-n vs. m-n
relationships between the domain elements and their referencing diagram elements, the formatting properties (styles) that
affect the aesthetics of diagrams rather than their semantics that are allowed to be interchanged, and the degree of
pragmatic redundancy that is allowed in the DI models to balance their footprint with the ease of their import/export.

Business Process Model and Notation (BPMN), v2.0.2 487

B.4.2 Abstract Syntax

De

zimports

1.
DI

Figure B.5 — Dependencies of the DI package

«8Classs
CMOF::Element

0.1 + modelElement
{readCrly, union}
{read®nly, union}

{readOnly, union}
+ /diagramElement

+ lowningElement

——pa DiagramElement
0.1 * 0.1 style

* + fdiagramElement + [style

{readOnly, union} {readOnly, union}

+ lownedElement

{readOnly, union}

Figure B.6 — Diagram Element

DiagramElement

FaY

Node

Figure B.7 — Node

488 Business Process Model and Notation (BPMN), v2.0.2

{readOnly, union}

+ fsource
DiagramElement
0.1
0.1
+ ftarget
{readOnly, union}
{readOnly, union}
+ [targetEdge
Edge
+ waypoint : Point [2..*] {ordered, nonunique} | =+
-

+ fsourceEdge

{readCnly, union}

Figure B.8 — Edge

{readOnly, union} {readOnly, union}

Diagram
+ name : String [0..1]
+ documentation @ String [0..1] 0.1 q
+ resolution @ Real [0..1]

+ lowningDiagram +frootElement| piagramElement

1 + fowningDiagram
{readOnly, union}
{readOnly, union}

» | +lownedStyle

Style

Figure B.9 — Diagram

Node

{subsets owningElement} {ordered, subsets ownedElement}

Plane g)lane + planeElement | pjagramElement
0.1 i

Figure B.10 — Plane

Business Process Model and Notation (BPMN), v2.0.2 489

Edge Node

{readOnly, union, subsets {readOnly, union,

owningElement} subsets ownedElement}
LabeledE dge élowningEdge +JownedLahel Label
0.1 > +bounds : Bounds [0.1]

Figure B.11 — Labeled Edge

A
freadOnly, union, subsets {readOnly, union, subsets
owningElement} ownedElement}

LabeledShape + fowningShape +lownedLabel Label
0.1 * + bounds : Bounds [0..1]

Figure B.12 - Labeled Shape

Node

Shape
+ hounds : Bounds

Figure B.13 — Shape
B.4.3 Classifier Descriptions

B.4.3.1 Diagram [Class]

Diagram is a container of a graph of diagram elements depicting all or part of a model.

Description

Diagram represents a depiction of all or part of a MOF model. A model can have one or more diagrams, each of which
has a name and a description. A diagram contains the root of a graph of diagram elements that could reference various

elements in a model. The root element is defined as a derived union, allowing domain-specific diagrams to specialize the
root. All lengths specified by diagram elements are expressed in logical units of lengths. This unit of length would map
to a unit of screen resolution (i.e., pixel) when rendering to the screen. To allow for predictable lengths when printing

diagrams to paper, a diagram can also specify an intended printing resolution in Unit Per Inch (UPI). For example, a UPI
of 300 means that a diagram element that is 300 unit wide would print as 1 inch wide on paper. A diagram can also own

490 Business Process Model and Notation (BPMN), v2.0.2

a collection of styles that are referenced by its diagram elements. Styles contain unique combination of formatting
properties used by different elements across the diagram. This allows for a large number of diagram elements to reference
a small number of unique styles, which would dramatically reduce a diagram’s footprint.

Abstract Syntax
* Figure B.9 Diagram

Attributes

* + name : String [0..1]

the name of the diagram.

* + documentation : String [0..1]

the documentation of the diagram.

* + resolution : Real [0..1]

the printing resolution of the diagram expressed in Unit Per Inch (UPI).

Associations

* 7 + /rootElement : DiagramElement [1] {readOnly, union}

the root of containment for all diagram elements contained in the diagram.

* 7 + /JownedStyle : Style [*] {readOnly, union}

the collection of styles owned by the diagram and referenced by its contained diagram elements.

B.4.3.2 DiagramElement [Class]

DiagramElement is the abstract supertype of all elements that can be nested in a diagram. It has two subtypes: Node and
Edge.

Description

DiagramElement specifies an element that can be owned by a diagram and rendered to graphics. It is an abstract class that
is further specialized by classes Node and Edge. A diagram element can either depict (reference) another context model
element from an abstract syntax model (like UML or BPMN) or be purely notational (i.e., for enhancing the diagram
understanding). In the case of depiction, data from both the diagram element and the model element are used for
rendering. For example, the text of the name label of a UML class shape comes from the class, while the color of the label
comes from the diagram element. A diagram element can reference a maximum of one model element, which can be any
MOF-based element. The model element reference is a derived union and can be specialized in a domain-specific DI
metamodel to be of a more concrete type.

Diagram elements can also own other diagram elements in a graph-like hierarchy. The collection of owned diagram
elements is defined as a derived union. Domain-specific DI metamodels can specialize this collections to define what
other diagram elements can be nested in a given diagram element.

Diagram elements can be specialized in a domain-specific DI metamodel to have domain-specific properties. Some of
those properties augment the semantics of diagram elements and are therefore defied on the diagram elements. Other
properties are considered formatting properties that influence the visual rendering of diagram elements but do not
contribute to their semantics. Examples of such formatting properties include font, fill and stroke properties. Such
properties tend to have similar values for diagram elements across the diagram and therefore to reduce the footprint of

Business Process Model and Notation (BPMN), v2.0.2 491

diagrams, they are defined in Style elements that are owned by the diagram and referenced by individual diagram
elements. For every unique combination of values for the style properties there would be a separate style element that is
owned by the diagram. See “DiagramElement [Class]” on page 491 for more details.

There shall always be other properties that some tools wish to interchange that cannot be made normative. These can be
interchanged using the extensibility mechanism that is native to the used interchange format (for example, an XSD
schema following the XMI mapping would allow extraneous data to be placed on elements within <xmi:extension> tags,
while a different XSD schema could allow this through xsd:any and xsd:anyAttribute elements placed in the definitions of
extensible complex types).
Abstract Syntax

* Figure B.6 Diagram Element

* Figure B.7 Node

» Figure B.§ Edge

* Figure B.9 Diagram

* Figure B.10 Plane

Specializations
* Node
* Edge

Associations

* + /owningDiagram : Diagram [0..1] {readOnly, union}

a reference to the diagram that directly owns this diagram element. The reference is only set for the root
element in a diagram.

* + /owningElement : DiagramElement [0..1] {readOnly, union}

a reference to the diagram element that directly owns this diagram element. The reference is set for all
elements except the root element in a diagram.

* 7 + /ownedElement : DiagramElement [*] {readOnly, union}

a collection of diagram elements that are owned by this diagram element.

* + /modelElement : Element [0..1] {readOnly, union}

a reference to a context model element, which can be any MOF-based element, for the diagram element.

* + /style : Style [0..1] {readOnly, union}

a reference to an optional style containing formatting properties for the diagram element.

B.4.3.3 Edge [Class]

Edge specifies a given edge in a graph of diagram elements. It represents a polyline connection between two graph
elements: a source and a target.

492 Business Process Model and Notation (BPMN), v2.0.2

Description

Edge represents a given connection between two elements in a diagram, a source element and a target element. An edge
often references a relationship element (like a UML generalization or a BPMN message flow) as a context model element.
It can also be purely notational, i.e., does not reference any model element. When referencing a relationship model
element, the edge’s source and target reference the relationship's source and target respectively as their model elements. If
the edge’s source and target can be derived unambiguously from other info (like the edge’s model element or the edge’s
class type), they are not explicitly set on the edge to avoid redundancy, otherwise they need to be set. The source and
target are defined as derived unions to allow domain-specific DI metamodels to specialize them appropriately.

An edge is often depicted as a line with 2 or more points (i.e., one or more connected line segments) in the coordinate
system, called waypoints. The first point typically intersects with the edge’s source, while the last point typically
intersects with the edge’s target. Any points in between establish a route for the line to traverse in the diagram.
Abstract Syntax

* Figure B.8 Edge

* Figure B.11 Labeled Edge

Generalizations

* DiagramElement

Specializations
* LabeledEdge

Attributes
* + waypoint : Point [2..*] {ordered, nonunique}

a list of two or more points relative to the origin of the coordinate system (e.g., the origin of a containing
plane) that specifies the connected line segments of the edge.
Associations

* + /source : DiagramElement [0..1] {readOnly, union}

the edge’s source diagram element, i.c., where the edge starts from. It is optional and needs to be set only if
it cannot be unambiguously derived.

* + /target : DiagramElement [0..1] {readOnly, union}

the edge’s target diagram element, i.e., where the edge ends at. It is optional and needs to be set only if it
cannot be unambiguously derived.

B.4.3.4 Label [Class]

Label represents a node that is owned by another main diagram element in a plane and that depicts some (usually textual)
aspect of that element within its own separate bounds.

Description

Label represents an owned node of another diagram element, typically a LabeledShape or a LabeledEdge. A label
typically depicts some (usually textual) aspect of its owning element that needs to be laid out separately using the label’s
own bounds. The bounds are optional and if not specified, the label will be positioned in its default position.

Business Process Model and Notation (BPMN), v2.0.2 493

A label’s model element is typically not specified as it can be derived from its owning element. However, if the model
element cannot be unambiguously derived, then a label could be given ts own separate model element to disambiguate it.
Abstract Syntax

* Figure B.11 (Labeled Edge)
* Figure B.12 Labeled Shape

Generalizations
* Node

Attributes
* + bounds : Bounds [1]

the bounds (%, y, width and height) of the label relative to the origin of a containing plane.

B.4.3.5 LabeledEdge [Class]

LabeledEdge represents an edge that owns a collection of labels.

Description

LabeledEdge is an edge that owns a collection of labels (see “LabeledEdge [Class]” on page 494) that depict some aspects
of it. An example is a UML association that has a number of labels (e.g., a name label, two role name labels and two
multiplicity labels) positioned beside it. The existence of a label in this collection specifies that it is visible. The separate
optional bounds of the label indicate where it should be positioned and if not specified the label can be positioned in its
default position.

Abstract Syntax

* Figure B.11 Labeled Edge
Generalizations
* Edge

Associations
* 7+ /ownedLabel : Label [*] {readOnly, union, subsets ownedNode}

the collection of labels owned by this edge.

B.4.3.6 LabeledShape [Class]
LabeledShape represents a shape that owns a collection of labels.
Description

LabeledShape is a shape that owns a collection of labels (see “LabeledShape [Class]” on page 494) that depict some
aspects of it. An example is a UML port shape that is rendered as a filled box and has a name label positioned beside it.
The existence of a label in this collection specifies that it is visible. The separate optional bounds of the label indicate
where it should be positioned and if not specified the label can be positioned in its default position.

Abstract Syntax
* Figure B.12 Labeled Shape

494 Business Process Model and Notation (BPMN), v2.0.2

Generalizations

* Shape

Associations
* 7+ /JownedLabel : Label [*] {readOnly, union, subsets ownedNode}

the collection of labels owned by this shape.

B.4.3.7 Node [Class]

Node specifies a given node in a graph of diagram elements.

Description

Node represents a given node (or vertex) in a diagram, which is a graph of diagram elements. A node often references a
non-relationship element (like a UML class or a BPMN activity) as a model element. It can also be purely notational, i.e.,
does not reference any model element.

The abstract node class does not have any particular layout characteristics. However, it may gets specialized in a domain-
specific DI metamodel to define nodes that have certain layout characteristics. Examples include planes with infinite
bounds, shapes with limited bounds, tree items and graph vertices...etc.

Abstract Syntax
* Figure B.7 Node
* Figure B.10 Plane
* Figure B.11 Labeled Edge
* Figure B.12 Labeled Shape
* Figure B.13 Shape

Generalizations

* DiagramElement

Specializations
* Label
* Shape

* Plane

B.4.3.8 Plane [Class]

Plane is a node with an infinite bounds in the x-y coordinate system that owns a collection of shapes and edges that are
laid out relative to its origin point.

Description

Plane has an origin point (0, 0) and an infinite size along the x and y axes. The coordinate system of the plane increases
along the x-axis from left to right and along the y-axis from top to bottom. All the nested shapes and edges are laid out
relative to their plane’s origin.

Business Process Model and Notation (BPMN), v2.0.2 495

A plane is often chosen as a root element for a two dimensional diagram that depicts an inter-connected graph of shapes
an edges. A plane may have its own reference to a model element, in which case the whole plane is considered a depiction
of that element. Alternatively, a plane without a reference to a model element is simply a layout container for its shapes
and edges.

The collection of plane elements (shapes and edges) in a plane is ordered with the order specifying the z-order of these
plane elements relative to each other. The higher the z-order, the more to the front (on top) the plane element is.
Abstract Syntax

* Figure B.10 Plane

Generalizations
* Node

Associations

* 7 + planeElement : DiagramElement [*] {subsets ownedNode}

the ordered collection of diagram elements owned by this plane with the order defining the z-order of the
diagram element.

B.4.3.9 Shape [Class]

Shape represents a node that has bounds that is relevant to the origin of a containing plane.

Description

Shape represents a node that is directly or indirectly owned by a plane (See “Shape [Class]” on page 496.) and that is laid
out according to a given bounds that is relevant to the origin of the plane. A shape does not have any particular graphical
rendering, i.e., the rendering is domain-specific.

A shape can be purely notational (i.e., does not reference any model element), like a block arrow pointing to a UML class
shape with some textual message or an overlay rectangle with some transparent fill enclosing a bunch of shapes on the
diagram to make them stand out. However, a shape often represents a depiction of a non-relational element from a
business model (like UML class or BPMN activity) and hence references such an element as its model element.
Abstract Syntax

* Figure B.13 Shape

* Figure B.12 Labeled Shape

Generalizations
* Node

Specializations
* LabeledShape

Attributes
* + bounds : Bounds [1]

the bounds (X, y, width and height) of the shape relative to the origin of a containing plane.

496 Business Process Model and Notation (BPMN), v2.0.2

B.4.3.10 Style [Class]

A style is a container for a collection of properties that affect the formatting of a set of diagram elements rather than their
structure or semantics.

Description

A style represents a bag of properties that affect the appearance of a group of diagram elements. A style property (like
font, fill, or stroke) is distinguishable from a property on a diagram element in that it is meant for the aesthetics of the
element rather than being part of its intrinsic syntax.

A style tends to have only a few unique value combinations for its properties across the diagram. Such combinations are
represented by different style instances owned by the diagram and referenced by the diagram elements. This allows for
conserving the footprint of diagrams (over making style instances owned by diagram elements).

Style is defined as an abstract class without prescribing any style properties to leave it up to domain-specific DI
metamodels to define concrete style classes that are applicable to their diagram element types.

Abstract Syntax
* Figure B.6 Diagram Element
* Figure B.9 Diagram

Business Process Model and Notation (BPMN), v2.0.2 497

498 Business Process Model and Notation (BPMN), v2.0.2

A
Activity

Abstract Process

Artifact

Association

Atomic Activity

Business Analyst

Business Process

Business Process
Management

BPM System
C
Choreography
Collaboration

Collapsed Sub-Process

Annex C
Glossary

(informative)

Work that a company or organization performs using business processes. An activity
can be atomic or non-atomic (compound). The types of activities that are a part of a
Process Model are: Process, Sub-Process, and Task.

A Process that represents the interactions between a private business process and
another process or participant.

A graphical object that provides supporting information about the Process or
elements within the Process. However, it does not directly affect the flow of the
Process.

A connecting object that is used to link information and Artifacts with Flow Objects.
An association is represented as a dotted graphical line with an arrowhead to
represent the direction of flow.

An activity not broken down to a finer level of Process Model detail. It is a leaf in
the tree-structure hierarchy of Process activities. Graphically it will appear as a Task
in BPMN.

A specialist who analyzes business needs and problems, consults with users and
stakeholders to identify opportunities for improving business return through
information technology, and defines, manages, and monitors the requirements into
business processes.

A defined set of business activities that represent the steps required to achieve a
business objective. It includes the flow and use of information and resources.

The services and tools that support process management (for example, process
analysis, definition, processing, monitoring and administration), including support
for human and application-level interaction. BPM tools can eliminate manual
processes and automate the routing of requests between departments and
applications.

The technology that enables BPM.

An ordered sequence of B2B message exchanges between two or more Participants.
In a Choreography there is no central controller, responsible entity, or observer of
the Process.

Collaboration is the act of sending messages between any two Participants in a
BPMN model. The two Participants represent two separate BPML processes.

A Sub-Process that hides its flow details. The Collapsed Sub-Process object uses a
marker to distinguish it as a Sub-Process, rather than a Task. The marker is a small
square with a plus sign (+) inside.

Business Process Model and Notation (BPMN), v2.0.2 499

Compensation Flow

Compound Activity

Controlled Flow

D

Decision

E
End Event

Event Context

Exception

Exception Flow

Expanded Sub-Process

Flow

Flow Object

Flow that defines the set of activities that are performed while the transaction is
being rolled back to compensate for activities that were performed during the
Normal Flow of the Process. A Compensation Flow can also be called from a
Compensate End or Intermediate Event.

An activity that has detail that is defined as a flow of other activities. It is a branch
(or trunk) in the tree-structure hierarchy of Process activities. Graphically, it will
appear as a Process or Sub-Process in BPMN.

Flow that proceeds from one Flow Object to another, via a Sequence Flow link, but
is subject to either conditions or dependencies from other flow as defined by a

Gateway. Typically, this is seen as a Sequence flow between two activities, with a
conditional indicator (mini-diamond) or a Sequence Flow connected to a Gateway.

A gateway within a business process where the Sequence Flow can take one of
several alternative paths. Also known as "Or-Split."

An Event that indicates where a path in the process will end. In terms of Sequence
Flows, the End Event ends the flow of the Process, and thus, will not have any
outgoing Sequence Flows. An End Event can have a specific Result that will appear
as a marker within the center of the End Event shape. End Event Results are
Message, Error, Compensation, Signal, Link, and Multiple. The End Event shares
the same basic shape of the Start Event and Intermediate Event, a circle, but is drawn
with a thick single line.

An Event Context is the set of activities that can be interrupted by an exception
(Intermediate Event). This can be one activity or a group of activities in an expanded
Sub-Process.

An event that occurs during the performance of the Process that causes a diversion
from the Normal Flow of the Process. Exceptions can be generated by Intermediate
Events, such as time, error, or message.

A Sequence Flow path that originates from an Intermediate Event attached to the
boundary of an activity. The Process does not traverse this path unless the Activity
is interrupted by the triggering of a boundary Intermediate Event (an Exception - see
above).

A Sub-Process that exposes its flow detail within the context of its Parent Process.
An Expanded Sub-Process is displayed as a rounded rectangle that is enlarged to
display the Flow Objects within.

A directional connector between elements in a Process, Collaboration, or
Choreography. A Sequence Flows represents the sequence of Flow Objects in a
Process or Choreography. A Message Flow represents the transmission of a Message
between Collaboration Participants.The term Flow is often used to represent the
overall progression of how a Process or Process segment would be performed.

A graphical object that can be connected to or from a Sequence Flow. In a Process,
Flow Objects are Events, Activities, and Gateways. In a Choreography, Flow
Objects are Events, Choreography Activities, and Gateways.

500

Business Process Model and Notation (BPMN), v2.0.2

Fork

Intermediate Event

Join

Lane

Merge

Message

Message Flow

N

Normal Flow

P

Parent Process
Participant

Pool

A point in the Process where one Sequence Flow path is split into two or more paths
that are run in parallel within the Process, allowing multiple activities to run
simultaneously rather than sequentially. BPMN uses multiple outgoing Sequence
Flows from Activities or Events or a Parallel Gateway to perform a Fork. Also
known as “AND-Split.”

An event that occurs after a Process has been started. An Intermediate Event affects
the flow of the process by showing where messages and delays are expected,
distributing the Normal Flow through exception handling, or showing the extra flow
required for compensation. However, an Intermediate Event does not start or
directly terminate a process. An Intermediate Event is displayed as a circle, drawn
with a thin double line.

A point in the Process where two or more parallel Sequence Flow paths are
combined into one Sequence Flow path. BPMN uses a Parallel Gateway to perform
a Join. Also known as “AND-Join.”

A partition that is used to organize and categorize activities within a Pool. A Lane
extends the entire length of the Pool either vertically or horizontally. Lanes are often
used for such things as internal roles (e.g., Manager, Associate), systems (e.g., an
enterprise application), or an internal department (e.g., shipping, finance).

A point in the Process where two or more alternative Sequence Flow paths are
combined into one Sequence Flow path. No synchronization is required because no
parallel activity runs at the join point. BPMN uses multiple incoming Sequence
Flows for an Activity or an Exclusive Gateway to perform a Merge. Also know as
“OR-Join.”

An Object that depicts the contents of a communication between two Participants. A
message is transmitted through a Message Flow and has an identity that can be used
for alternative branching of a Process through the Event-Based Exclusive Gateway.

A Connecting Object that shows the flow of messages between two Participants. A
Message Flow is represented by a dashed lined.

A flow that originates from a Start Event and continues through activities on
alternative and parallel paths until reaching an End Event.

A Process that holds a Sub-Process within its boundaries.

A business entity (e.g., a company, company division, or a customer) or a business
role (e.g., a buyer or a seller) that controls or is responsible for a business process. If
Pools are used, then a Participant would be associated with one Pool. In a
Collaboration, Participants are informally known as “Pools.”

A Pool represents a Participant in a Collaboration. Graphically, a Pool is a container
for partitioning a Process from other Pools/Participants. A Pool is not required to
contain a Process, i.€., it can be a “black box.”

Business Process Model and Notation (BPMN), v2.0.2 501

Private Business Process

Process

Result

S

Sequence Flow

Start Event

Sub-Process

Swimlane

T
Task

Token

Transaction

Trigger

U

Uncontrolled Flow

A process that is internal to a specific organization and is the type of process that has
been generally called a workflow or BPM process.

A sequence or flow of Activities in an organization with the objective of carrying
out work. In BPMN, a Process is depicted as a graph of Flow Elements, which are a
set of Activities, Events, Gateways, and Sequence Flow that adhere to a finite
execution semantics.

The consequence of reaching an End Event. Types of Results include Message,
Error, Compensation, Signal, Link, and Multiple.

A connecting object that shows the order in which activities are performed in a
Process and is represented with a solid graphical line. Each Flow has only one source
and only one target. A Sequence Flow can cross the boundaries between Lanes of a
Pool but cannot cross the boundaries of a Pool.

An Event that indicates where a particular Process starts. The Start Event starts the
flow of the Process and does not have any incoming Sequence Flow, but can have a
Trigger. The Start Event is displayed as a circle, drawn with a single thin line.

A Process that is included within another Process. The Sub-Process can be in a
collapsed view that hides its details. A Sub-Process can be in an expanded view that
shows its details within the view of the Process that it is contained in. A Sub-Process
shares the same shape as the Task, which is a rectangle that has rounded corners.

A Swimlane is a graphical container for partitioning a set of activities from other
activities. BPMN has two different types of Swimlanes. See “Pool” and “Lane.”

An atomic activity that is included within a Process. A Task is used when the work
in the Process is not broken down to a finer level of Process Model detail. Generally,
an end-user, an application, or both will perform the Task. A Task object shares the
same shape as the Sub-Process, which is a rectangle that has rounded corners.

A theoretical concept that is used as an aid to define the behavior of a Process that
is being performed. The behavior of Process elements can be defined by describing
how they interact with a token as it “traverses” the structure of the Process. For
example, a token will pass through an Exclusive Gateway, but continue down only
one of the Gateway's outgoing Sequence Flow.

A Sub-Process that represents a set of coordinated activities carried out by
independent, loosely-coupled systems in accordance with a contractually defined
business relationship. This coordination leads to an agreed, consistent, and verifiable
outcome across all participants.

A mechanism that detects an occurrence and can cause additional processing in
response, such as the start of a business Process. Triggers are associated with Start
Events and Intermediate Events and can be of the type: Message, Timer,
Conditional, Signal, Link, and Multiple.

Flow that proceeds without dependencies or conditional expressions. Typically, an
Uncontrolled Flow is a Sequence Flow between two Activities that do not have a
conditional indicator (mini-diamond) or an intervening Gateway.

502

Business Process Model and Notation (BPMN), v2.0.2

	1 Scope
	1.1 General

	2 Conformance
	2.1 General
	2.2 Process Modeling Conformance
	2.2.1 BPMN Process Types
	2.2.2 BPMN Process Elements
	Descriptive Conformance Sub-Class
	Analytic Conformance Sub-Class
	Common Executable Conformance Sub-Class

	2.2.3 Visual Appearance
	2.2.4 Structural Conformance
	2.2.5 Process Semantics
	2.2.6 Attributes and Model Associations
	2.2.7 Extended and Optional Elements
	2.2.8 Visual Interchange

	2.3 Process Execution Conformance
	2.3.1 Execution Semantics
	2.3.2 Import of Process Diagrams

	2.4 BPEL Process Execution Conformance
	2.5 Choreography Modeling Conformance
	2.5.1 BPMN Choreography Types
	2.5.2 BPMN Choreography Elements
	2.5.3 Visual Appearance
	2.5.4 Choreography Semantics
	2.5.5 Visual Interchange

	2.6 Summary of BPMN Conformance Types

	3 Normative References
	3.1 General
	3.2 Normative
	OMG UML
	OMG MOF
	RFC-2119

	3.3 Non-Normative
	Activity Service
	BPEL4People
	Business Process Definition Metamodel
	Business Process Modeling
	Business Transaction Protocol
	Dublin Core Meta Data
	ebXML BPSS
	Open Nested Transactions
	RDF
	SOAP 1.2
	UDDI
	URI
	WfMC Glossary
	Web Services Transaction
	Workflow Patterns
	WSBPEL
	WS-Coordination
	WSDL
	WS-HumanTask
	XML 1.0 (Second Edition)
	XML-Namespaces
	XML-Schema
	XPath
	XPDL

	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Conventions
	6.1.1 Typographical and Linguistic Conventions and Style
	6.1.2 Abbreviations

	6.2 Structure of this Document
	6.3 Acknowledgments
	Submitting Organizations
	Supporting Organizations
	Special Acknowledgments

	7 Overview
	7.1 General
	7.2 BPMN Scope
	7.2.1 Uses of BPMN
	Private (Internal) Business Processes
	Public Processes
	Collaborations
	Choreographies
	Conversations
	Diagram Point of View
	Understanding the Behavior of Diagrams

	7.3 BPMN Elements
	7.3.1 Basic BPMN Modeling Elements
	7.3.2 Extended BPMN Modeling Elements

	7.4 BPMN Diagram Types
	7.5 Use of Text, Color, Size, and Lines in a Diagram
	7.6 Flow Object Connection Rules
	7.6.1 Sequence Flow Connections Rules
	7.6.2 Message Flow Connection Rules

	7.7 BPMN Extensibility
	7.8 BPMN Example

	8 BPMN Core Structure
	8.1 General
	8.2 Infrastructure
	8.2.1 Definitions
	8.2.2 Import
	8.2.3 Infrastructure Package XML Schemas

	8.3 Foundation
	8.3.1 Base Element
	8.3.2 Documentation
	8.3.3 Extensibility
	Extension
	ExtensionDefinition
	ExtensionAttributeDefinition
	ExtensionAttributeValue
	Extensibility XML Schemas
	XML Example

	8.3.4 External Relationships
	8.3.5 Root Element
	8.3.6 Foundation Package XML Schemas

	8.4 Common Elements
	8.4.1 Artifacts
	Common Artifact Definitions
	Artifact Sequence Flow Connections
	Artifact Message Flow Connections
	Association
	Group
	Category
	Text Annotation
	XML Schema for Artifacts

	8.4.2 Correlation
	CorrelationKey
	Key-based Correlation
	Context-based Correlation
	XML Schema for Correlation

	8.4.3 Error
	8.4.4 Escalation
	8.4.5 Events
	8.4.6 Expressions
	Expression
	Formal Expression

	8.4.7 Flow Element
	8.4.8 Flow Elements Container
	8.4.9 Gateways
	8.4.10 Item Definition
	8.4.11 Message
	8.4.12 Resources
	8.4.13 Sequence Flow
	Flow Node

	8.4.14 Common Package XML Schemas

	8.5 Services
	8.5.1 Interface
	8.5.2 EndPoint
	8.5.3 Operation
	8.5.4 Service Package XML Schemas

	9 Collaboration
	9.1 General
	9.2 Basic Collaboration Concepts
	9.2.1 Use of BPMN Common Elements

	9.3 Pool and Participant
	9.3.1 Participants
	PartnerEntity
	PartnerRole
	Participant Multiplicity
	ParticipantAssociation

	9.3.2 Lanes

	9.4 Message Flow
	9.4.1 Interaction Node
	9.4.2 Message Flow Associations

	9.5 Conversations
	9.5.1 Conversation Node
	9.5.2 Conversation
	9.5.3 Sub-Conversation
	9.5.4 Call Conversation
	9.5.5 Global Conversation
	9.5.6 Conversation Link
	9.5.7 Conversation Association
	9.5.8 Correlations

	9.6 Process within Collaboration
	9.7 Choreography within Collaboration
	9.8 Collaboration Package XML Schemas

	10 Process
	10.1 General
	10.2 Basic Process Concepts
	10.2.1 Types of BPMN Processes
	10.2.2 Use of BPMN Common Elements

	10.3 Activities
	Sequence Flow Connections
	Message Flow Connections
	10.3.1 Resource Assignment
	Resource Role
	Expression Assignment
	Parameterized Resource Assignment

	10.3.2 Performer
	10.3.3 Tasks
	Service Task
	Send Task
	Receive Task
	User Task
	Manual Task
	Business Rule
	Script Task

	10.3.4 Human Interactions
	Notation
	Manual Task
	User Task
	Rendering of User Tasks
	Human Performers
	Potential Owners
	XML Schema for Human Interactions
	Examples

	10.3.5 Sub-Processes
	Embedded Sub-Process (Sub-Process)
	Reusable Sub-Process (Call Activity)
	Event Sub-Process
	Transaction
	Ad-Hoc Sub-Process

	10.3.6 Call Activity
	Callable Element

	10.3.7 Global Task
	Types of Global Task

	10.3.8 Loop Characteristics
	Standard Loop Characteristics
	Multi-Instance Characteristics
	Complex Behavior Definition

	10.3.9 XML Schema for Activities

	10.4 Items and Data
	10.4.1 Data Modeling
	Item-Aware Elements
	Data Objects
	DataObject
	States
	Data Objects representing a Collection of Data
	Visual representations of Data Objects
	Lifecycle and Accessibility
	Data Stores
	Properties
	Lifecycle and Accessibility
	Data Inputs and Outputs
	Data Input
	States
	Data Output
	States
	Service Task Mapping
	Send Task Mapping
	Receive Task Mapping
	User Task Mapping
	Call Activity Mapping
	Script Task Mapping
	Events
	InputSet
	OutputSet
	Data Associations
	DataAssociation
	Assignment
	DataInputAssociation
	DataOutputAssociation
	Data Objects associated with a Sequence Flow

	10.4.2 Execution Semantics for Data
	Execution Semantics for DataAssociation

	10.4.3 Usage of Data in XPath Expressions
	Access to BPMN Data Objects
	Access to BPMN Data Input and Data Output
	Access to BPMN Properties
	For BPMN Instance Attributes

	10.4.4 XML Schema for Data

	10.5 Events
	10.5.1 Concepts
	Data Modeling and Events
	Common Event attributes
	Common Catch Event attributes
	Common Throw Event Attributes
	Implicit Throw Event

	10.5.2 Start Event
	Start Event Triggers
	Start Events for Top-level Processes
	Start Events for Sub-Processes
	Start Events for Event Sub-Processes
	Attributes for Start Events
	Sequence Flow Connections
	Message Flow Connections

	10.5.3 End Event
	End Event Results
	Sequence Flow Connections
	Message Flow Connections

	10.5.4 Intermediate Event
	Intermediate Event Triggers
	Intermediate Events in Normal Flow
	Intermediate Events Attached to an Activity Boundary
	Attributes for Boundary Events
	Activity Boundary Connections
	Sequence Flow Connections
	Message Flow Connections

	10.5.5 Event Definitions
	Event Definition Metamodel
	Cancel Event
	Compensation Event
	Conditional Event
	Error Event
	Escalation Event Definition
	Link Event Definition
	Message Event Definition
	Multiple Event
	None Event
	Parallel Multiple Event
	Signal Event
	Terminate Event
	Timer Event

	10.5.6 Handling Events
	Handling Start Events
	Handling Events within normal Sequence Flow (Intermediate Events)
	Handling Events attached to an Activity (Intermediate boundary Events and Event Sub-Processes)
	Interrupting Event Handlers (Error, Escalation, Message, Signal, Timer, Conditional, Multiple, and Parallel Multiple)
	Non-interrupting Event Handlers (Escalation, Message, Signal, Timer, Conditional, Multiple, and Parallel Multiple)
	Handling End Events

	10.5.7 Scopes
	10.5.8 Events Package XML Schemas

	10.6 Gateways
	10.6.1 Sequence Flow Considerations
	10.6.2 Exclusive Gateway
	10.6.3 Inclusive Gateway
	10.6.4 Parallel Gateway
	10.6.5 Complex Gateway
	10.6.6 Event-Based Gateway
	10.6.7 Gateway Package XML Schemas

	10.7 Compensation
	10.7.1 Compensation Handler
	10.7.2 Compensation Triggering
	10.7.3 Relationship between Error Handling and Compensation

	10.8 Lanes
	10.9 Process Instances, Unmodeled Activities, and Public Processes
	10.10 Auditing
	10.11 Monitoring
	10.12 Process Package XML Schemas

	11 Choreography
	11.1 General
	11.2 Basic Choreography Concepts
	11.3 Data
	11.4 Use of BPMN Common Elements
	11.4.1 Sequence Flow
	11.4.2 Artifacts

	11.5 Choreography Activities
	11.5.1 Choreography Task
	11.5.2 Sub-Choreography
	The Parent Sub-Choreography (Expanded)

	11.5.3 Call Choreography
	11.5.4 Global Choreography Task
	11.5.5 Looping Activities
	11.5.6 The Sequencing of Activities

	11.6 Events
	11.6.1 Start Events
	11.6.2 Intermediate Events
	11.6.3 End Events

	11.7 Gateways
	11.7.1 Exclusive Gateway
	11.7.2 Event-Based Gateway
	11.7.3 Inclusive Gateway
	11.7.4 Parallel Gateway
	11.7.5 Complex Gateway
	11.7.6 Chaining Gateways

	11.8 Choreography within Collaboration
	11.8.1 Participants
	11.8.2 Swimlanes
	Choreography Task in Combined View
	Sub-Choreography in Combined View

	11.9 XML Schema for Choreography

	12 BPMN Notation and Diagrams
	12.1 BPMN Diagram Interchange (BPMN DI)
	12.1.1 Scope
	12.1.2 Diagram Definition and Interchange
	12.1.3 How to Read this Clause

	12.2 BPMN Diagram Interchange (DI) Meta-model
	12.2.1 Overview
	12.2.2 Abstract Syntax
	12.2.3 Classifier Descriptions
	12.2.4 Complete BPMN DI XML Schema

	12.3 Notational Depiction Library and Abstract Element Resolutions
	12.3.1 Labels
	12.3.2 BPMNShape
	Markers for Activities
	Tasks [BPMNShape]
	Collapsed Sub-Processes [BPMNShape]
	Expanded Sub-Processes [BPMNShape]
	Collapsed Ad Hoc Sub-Processes [BPMNShape]
	Expanded Ad Hoc Sub-Processes [BPMNShape]
	Collapsed Transactions [BPMNShape]
	Expanded Transactions [BPMNShape]
	Collapsed Event Sub-Processes [BPMNShape]
	Expanded Event Sub-Processes [BPMNShape]
	Call Activities (Calling a Global Task) [BPMNShape]
	Collapsed Call Activities (Calling a Process) [BPMNShape]
	Expanded Call Activities (Calling a Process) [BPMNShape]
	Data [BPMNShape]
	Events [BPMNShape]
	Gateways [BPMNShape]
	Artifacts [BPMNShape]
	Lanes [BPMNShape]
	Pools [BPMNShape]
	Choreography Tasks [BPMNShape]
	Collapsed Sub-Choreographies [BPMNShape]
	Expanded Sub-Choreographies [BPMNShape]
	Call Choreographies (Calling a Global Choreography Task) [BPMNShape]
	Collapsed Call Choreographies (Calling a Choreography) [BPMNShape]
	Expanded Call Choreographies (Calling a Choreography) [BPMNShape]
	Choreography Participant Bands [BPMNShape]
	Conversations [BPMNShape]

	12.3.3 BPMNEdge
	Connecting Objects [BPMNEdge]

	12.4 Example(s)
	12.4.1 Depicting Content in a Sub-Process
	Expanded Sub-Process
	Expanded Sub-Process with Start and End Events on Border
	Collapsed Sub-Process

	12.4.2 Multiple Lanes and Nested Lanes
	12.4.3 Vertical Collaboration
	12.4.4 Conversation
	12.4.5 Choreography

	13 BPMN Execution Semantics
	13.1 General
	13.2 Process Instantiation and Termination
	13.3 Activities
	13.3.1 Sequence Flow Considerations
	13.3.2 Activity
	13.3.3 Task
	13.3.4 Sub-Process/Call Activity
	13.3.5 Ad-Hoc Sub-Process
	Operational semantics

	13.3.6 Loop Activity
	13.3.7 Multiple Instances Activity

	13.4 Gateways
	13.4.1 Parallel Gateway (Fork and Join)
	13.4.2 Exclusive Gateway (Exclusive Decision (data-based) and Exclusive Merge)
	13.4.3 Inclusive Gateway (Inclusive Decision and Inclusive Merge)
	13.4.4 Event-based Gateway (Exclusive Decision (event-based))
	13.4.5 Complex Gateway (related to Complex Condition and Complex Merge)

	13.5 Events
	13.5.1 Start Events
	13.5.2 Intermediate Events
	13.5.3 Intermediate Boundary Events
	13.5.4 Event Sub-Processes
	Operational semantics

	13.5.5 Compensation
	Compensation Handler
	Compensation Triggering
	Relationship between Error Handling and Compensation
	Operational Semantics

	13.5.6 End Events
	Process level end events
	Sub-process level end events

	14 Mapping BPMN Models to WS-BPEL
	14.1 General
	14.2 Basic BPMN-BPEL Mapping
	14.2.1 Process
	14.2.2 Activities
	Common Activity Mappings
	Task Mappings
	Service Task
	Receive Task
	Send Task
	Abstract Task
	Service Package
	Message
	Interface and Operation
	Conversations and Correlation
	Sub-Process Mappings
	Mapping of Event Sub-Processes
	Activity Loop Mapping
	Standard Loops
	Dealing with LoopMaximum
	Multi-Instance Activities

	14.2.3 Events
	Start Event Mappings
	Message Start Events
	Error Start Events
	Compensation Start Events
	Intermediate Event Mappings (Non-boundary)
	Message Intermediate Events (Non-boundary)
	Timer Intermediate Events (Non-boundary)
	Compensation Intermediate Events (Non-boundary)
	End Event Mappings
	None End Events
	Message End Events
	Error End Events
	Compensation End Events
	Terminate End Events
	Boundary Intermediate Events
	Message Boundary Events
	Error Boundary Events
	Compensation Boundary Events
	Multiple Boundary Events, and Boundary Events with Loops

	14.2.4 Gateways and Sequence Flows
	Exclusive (Data-based) Decision Pattern
	Exclusive (Event-based) Decision Pattern
	Inclusive Decision Pattern
	Parallel Pattern
	Sequence Pattern
	Structured Loop Patterns
	Handling Loops in Sequence Flows

	14.2.5 Handling Data
	Data Objects
	Properties
	Input and Output Sets
	Data Associations
	Expressions
	Assignments

	14.3 Extended BPMN-BPEL Mapping
	14.3.1 End Events
	14.3.2 Loop/Switch Combinations From a Gateway
	14.3.3 Interleaved Loops
	14.3.4 Infinite Loops
	14.3.5 BPMN Elements that Span Multiple WSBPEL Sub-Elements

	15 Exchange Formats
	15.1 Interchanging Incomplete Models
	15.2 Machine Readable Files
	15.3 XSD
	15.3.1 Document Structure
	15.3.2 References within the BPMN XSD

	15.4 XMI
	15.5 XSLT Transformation between XSD and XMI
	B.1 Scope
	B.2 Architecture
	B.3 Diagram Common
	B.3.1 Overview
	B.3.2 Abstract Syntax
	B.3.3 Classifier Descriptions

	B.4 Diagram Interchange
	B.4.1 Overview
	B.4.2 Abstract Syntax
	B.4.3 Classifier Descriptions

