
A.HARICHE a.hariche@univ-dbkm.dz

1

MI-GLSD-M1 -UEM213 :

Programming languages paradigms

Chapter IV: Logic paradigm

A. HARICHE

University of Djilali Bounaama, Khemis Meliana (UDBKM)

Faculty of Sciences & Technology

Mathematics & Computer Science Department

a.hariche@univ-dbkm.dz

Progress of the last lectures

A.HARICHE a.hariche@univ-dbkm.dz
2

Reminder of the last lecture

A.HARICHE a.hariche@univ-dbkm.dz
3

A.HARICHE a.hariche@univ-dbkm.dz
4

Timeline of programming
languages

A.HARICHE a.hariche@univ-dbkm.dz
5

Timeline of programming
languages

Logic programming

foundations?

A.HARICHE a.hariche@univ-dbkm.dz
6

⚫⚫ The logic programming is based on relations and not mapping:

⚫⚫ All logic programming languages restricted to Horn Clauses.

⚫⚫ Logic programming focuses on logical relation which could be true

or false between tow sets 𝑆 × 𝑇 :

∀𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇 ∙ 𝑅 𝑥, 𝑦 = true ∨ 𝑅 𝑥, 𝑦 = 𝑓𝑎𝑙𝑠𝑒 ∨ 𝑅 𝑥, 𝑦 = 𝑛𝑜𝑛𝑒
⚫⚫ 𝑅 𝑥, 𝑦 could be seen as predicate.

⚫⚫ Relation can be unary binary or ternary.

⚫⚫ 𝑅 𝑥, 𝑦 could be seen as predicate.

Prolog :principales

A.HARICHE a.hariche@univ-dbkm.dz
7

⚫⚫ Prolog was created on 1980 by P.ROOSSEL inside Marseille

university.

⚫⚫ Several distribution: PROLOG 1 , 2, 3, CPROLOG, visual

PROLOG, EPILOG, Quintus turbo-PROLOG, XILOG, GOIDEL, OZ
…etc..
⚫⚫ Prolog is used for :

✓ Interrogation of databases.

✓ Expert system realization.

✓ Native language comprehension.

⚫⚫Prolog is limited to :

✓ No data-program distinction.

✓ No control structure.

⚫⚫ Prolog uses Backtracking technique.

⚫⚫ Executing on Prolog means finding a proof to an expression.

⚫⚫ Inter-object relation totally applied inside Prolog (invertibilty).

Prolog :concepts

A.HARICHE a.hariche@univ-dbkm.dz
8

⚫⚫ Facts : predicate(argument1, argument2,….)

Example: Male(Ali)

Father(Ali,Samia)

where Predicate is an affirmation that could be TRUE or FALSE.

⚫⚫ Arity: arguments counter.

Example : Male is unary fact with relation of 1 arity
Father is binary fact with a relation o arity equal to 2 objects.

⚫⚫ Queries and Questions: it can be launched as follow:

?-male(x)

X=Ali;

⚫⚫ ; means ask for next solution.

⚫⚫ « » means stop searching for solutions.

⚫⚫ Uppercase serve to variables when lowercase leads into

canstants.

Prolog :concepts

A.HARICHE a.hariche@univ-dbkm.dz
9

⚫⚫Atomes : alphanumerical strings that:

✓ Start with a lowercase letter .

✓ Strings between « » or ‘’.

✓ Numbers

⚫⚫ Variables with an uppercase Xyz, A

⚫⚫ Domaine : separate between symbol (variables), integer(long),

float …

⚫⚫ Unification : try to make two formulas identical by giving the value

which contains.

Example: Father(X,X) and father(Omar,Ali) cannot be unified.

⚫⚫ Substitution : Giving argument on a formula its corresponding

terms.

We note {𝑋1 = 𝑉𝑎𝑙𝑢𝑒1⋯𝑋𝑛 = 𝑉𝑎𝑙𝑢𝑒𝑛}
A term A is said to be an instance of B if there is a substitution from A

to B.

Example: Male(Omar) and Male(Ali) are instance of Male(x)

𝑋 = 𝑂𝑚𝑎𝑟 , 𝑋 = 𝐴𝑙𝑖 are corresponding substitutions.

Prolog :concepts

A.HARICHE a.hariche@univ-dbkm.dz
10

⚫⚫Shared variables : Same variable with two arguments and still give

the same value:

✓ Can be used for the conjuction of predicates of a same query .

Example: -?Father(X,X) will reach no goal.

-?Father(X,Y)Male(X) search all sons of the father Y.

⚫⚫ Clauses or Rules: Made to express conjunctions of goals.

✓ General form: < 𝐻𝑒𝑎𝑑 >:− −𝐶1, 𝐶2, 𝐶3⋯𝐶𝑛
✓ :-- means « if »

✓ , means « and »

✓ ; means « or »

✓ 𝐶1, 𝐶2, 𝐶3⋯𝐶𝑛 Are sub-goals to demonstrate the head of the rule, it

is necessary to demonstrate all its sub-goals.

✓ Otherwise the head is true if and only if the sub-goals are true

✓ This rule can also be called Horn clause.

✓ Rules can be recursives.

Example: GrandFather(x, y) :-- Father (x,z) ,Father (z, y).

Application Example : Family tree.

Prolog :Data-structure

A.HARICHE a.hariche@univ-dbkm.dz
11

⚫⚫Types: Prolog supports as types:

✓ Standard integer, float, char, symbol.

✓ Compound (see also data structure).

⚫⚫ Variables: Follow this regular expression:

✓ [𝐴 − 𝑍]{1}|_ + [𝑎 − 𝑧𝐴 − 𝑍]+|[0 − 9]+|_
✓ The scope of variables is global.

Example: Ax,Bz_nA3 are two variables.

⚫⚫ Constants: Follow this regular expression:
✓ Numbers|Sybmol
✓ The scope of constants is local (limited by a clause).

Example:123456,ahmed, ‘Ali123@*/’ are constants

⚫⚫ Lists: A list L whose elements are of type type is defined as follow:

L type* (Domains)

✓ [] is for representing an empty list.

✓ [a,b,c] is list of three char elements.

✓ [X!Y] is a list where X is car and Y is the cdr

✓ [a,b,c]=[a![b,c]]=[a,b![c]]=[a,b,c![]]

⚫⚫Structures: use the keyword Domain:

Example: datetype=date(integer,integer,integer)

Prolog :the program

A.HARICHE a.hariche@univ-dbkm.dz
12

𝐷𝑜𝑚𝑎𝑖𝑛𝑠

New types constructors

𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠

Types of related objects

𝐶𝑙𝑎𝑢𝑠𝑒𝑠

Facts and clauses

𝐺𝑜𝑎𝑙

The targetting goals

Prolog :Practical example

A.HARICHE a.hariche@univ-dbkm.dz
13

Prolog :Practical example

A.HARICHE a.hariche@univ-dbkm.dz
14

Why to do Prolog-style logic

programming in Oz?

A.HARICHE a.hariche@univ-dbkm.dz
15

⚫⚫ The Oz language is the result of a decade of research into programming

based on logic:

⚫⚫ Search-based logic programming (such as Prolog, CHIP, and cc“FD”)

and committed-choice (concurrent) and logic programming(including

at languages such as Parlog, FCP, and FGHC Concurrent Prolog and

GHC) with deep guards.

⚫⚫ Oz provides new abilities, such as first-class top levels and constant-time

merge.
⚫⚫ Oz use interactive graphic tools the Browser and the Explorer useful for

developing and running logic.

⚫⚫ The real strengths of Oz is constraint programming and distributed
programming.

⚫⚫ Oz is equal to or better than any other system existing in the world today

for Example compute-intensive constraint problems Oz provides parallel

search engines that can be used transparently .i.e. without changing the

problem specification.

How to do Prolog-style logic

programming in Oz?

A.HARICHE a.hariche@univ-dbkm.dz
16

⚫⚫ Focuses on logic programming for general-purpose applications:

⚫⚫ Manipulating structured data according to logical rules (rule-based

expert systems or compilers).

⚫⚫ It scratches the surface of the real strengths of Oz with two

truemendous areas: constraint programming (finite domains, finite

sets of integers and natural language processing) and distributed
programming.

⚫⚫ Deterministic logic programming .i.e. sequential logic programming

without search for examining data structures with Browser.

⚫⚫ Extends this to nondeterministic logic programming, i.e., including

search for the exploration of the search tree using first-class top levels

with the Explorer.

⚫⚫ Committed-choice logic programming and search-based are

combined.

⚫⚫ Oz Logic programming kernel language.

⚫⚫ Some glimpses in to constraints and distribution in Oz.

Deterministic Logic

Programming

A.HARICHE a.hariche@univ-dbkm.dz
17

⚫⚫ Supported by three statements: if , case , and cond.

⚫⚫ Example : defines an Append predicate that can b e used to app

end t wo lists.

⚫⚫ In a case statement, variables in the branches of the case (like X

and M1) are declared implicitly and their scope covers one branch of

the case.

⚫⚫ The definition has a precise logical semantics in addition to its

operational semantics(as it is presented in the red box)

declare
proc {Append L1 L2 L3}
case L1
of nil then L2=L3
[] X|M1 then L3=X|{Append M1 L2}
end
end

Deterministic Logic

Programming :Prolog Vs OZ

A.HARICHE a.hariche@univ-dbkm.dz
18

⚫⚫ Variable declaration and variable scope are defined quite differently

in Oz and Prolog:

⚫⚫ In Prolog:

⚫⚫ Both declaration and scope are defined implicitly through the

clausal syntax.

⚫⚫ Namely, variables in the head are universal over the whole clause

and new variables in the body are existential over the whole clause

body.

⚫⚫ In Oz:

⚫⚫ Declaration and scope are defined explicitly. The scope is

restricted to the statement in which the declaration occurs.

⚫⚫ This is important because Oz is fully compositional (all statements

can be nested). Oz has syntactic support to make the explicit

declarations less verbose.

⚫⚫ Elements of Oz lists are not separated by commas as in Prolog.

Deterministic Logic

Programming: the power of OZ

A.HARICHE a.hariche@univ-dbkm.dz
19

⚫⚫ This code displays the output of Append in the Browser which is

fully concurrent and it can display any number of data structures

simultaneously (see Figure).

⚫⚫ The display of a data structure containing unbound variables is up

dated when one of the variables is bound.

⚫⚫ The Browser has options to let it either ignore sharing or display

sharing. In the second case, shared sub-terms (including cycles) are

displayed only once.

⚫⚫ A nondeterministic Append can be shown as the follow two

definitions: declare X in {Browse X=f(X)}

⚫⚫ The first displays X as a tree, stopping at the default depth limit of

15.

⚫⚫ The second displays X as a minimal graph, which makes all cycles

and sharing explicit.

declare A in
{Append [1 2 3] [4 5 6] A}
{Browse A}

{Browse {Append [1 2 3] [4 5 6]}}

Deterministic Logic

Programming: the power of OZ

A.HARICHE a.hariche@univ-dbkm.dz
20

⚫⚫ This code displays the output of Append in the Browser which is

fully concurrent and it can display any number of data structures

simultaneously (see Figure).

⚫⚫ The display of a data structure containing unbound variables is up

dated when one of the variables is bound.

⚫⚫ The Browser has options to let it either ignore sharing or display

sharing. In the second case, shared sub-terms (including cycles) are

displayed only once.

⚫⚫ A nondeterministic Append can be shown as the follow two

definitions: declare X in {Browse X=f(X)}

⚫⚫ The first displays X as a tree, stopping at the default depth limit of

15.

⚫⚫ The second displays X as a minimal graph, which makes all cycles

and sharing explicit.

declare A in
{Append [1 2 3] [4 5 6] A}
{Browse A}

{Browse {Append [1 2 3] [4 5 6]}}

Non-deterministic Logic

Programming (dis,choice)

A.HARICHE a.hariche@univ-dbkm.dz
21

⚫⚫ Supported by two concepts: disjunctions (dis and choice) and

first-class top levels.

⚫⚫ Example : defines an nondeterministic version of Append
predicate

⚫⚫ The dis statement is a determinacy-directed disjunction. The “X

M1 M3 in “declares variables for the second branch of the disjunction.

⚫⚫ The choice statement is more primitive than dis ; it generates a

choice point immediately for all its clauses without checking if any

clauses fail.

declare
proc {FullAppend L1 L2 L3}
dis L1=nil L2=L3
[] X M1 M3 in
L1=X|M1 L3=X|M3 {FullAppend M1
L2 M3}
end
end

Both Append and FullAppend have exactly the
same logical semantics. They differ only in
their operational semantics. If used inside a
top level, FullAppend gives results in cases
where Append blocks.

Non-deterministic Logic

Programming (First class Top Level)

A.HARICHE a.hariche@univ-dbkm.dz
22

⚫⚫ To get an answer, you need to execute the nondeterministic call in

a top level. Here's how to create a top level with a given query.

⚫⚫ Example : defines an nondeterministic version of Append
predicate with top levels and query.

⚫⚫ Each top level is initialized with a query. The query is entered as

a one-argument procedure called a script.

{Browse {FullAppend [1 2] [3 4]}} % Shows [1 2 3 4] Deterministic
{Browse {FullAppend X Y [1 2 3 4]}} % Blocks Non-deterministic

declare
proc {Q A}
X Y
in
{FullAppend X Y [1 2 3 4]} A=X#Y
end
S={New Search.object script(Q)}

The search.object class makes it possible to
create any number of top levels. The top levels
are accessed like objects, can run concurrently,
and can b e passed as arguments and stored in
data structures. Top level are first class.
In this example, procedure Q contains the query.
The procedure's output is A , i.e., the pair X#Y

Non-deterministic Logic

Programming (First class Top Level)

A.HARICHE a.hariche@univ-dbkm.dz
23

⚫⚫ This exploits two syntactic short-cuts. First, the “$ " is a nesting

marker that implicitly declares the variable Q.

⚫⚫ Second, putting an equation left of in implicitly declares all

variables of the equation's left-hand side. That is,”X#Y=A in "

declares X and Y , creates the pair X#Y , and unifies the pair with

A.
⚫⚫ You can get answers one by one by calling S as follows:

⚫⚫ . This is similar to the semicolon “ ; " in an interactive Prolog

session. It is not idenical, since the next must be called to get the first

answer..

{declare
S={New Search.object script(
proc {$ A} X#Y=A in {FullAppend X Y [1 2 3 4]} end)}

{Browse {S next($)}}

[nil#[1 2 3 4]]
[[1]#[2 3 4]]
[[1 2]#[3 4]]
[[1 2 3]#[4]]
[[1 2 3 4]#nil]
nil

A.HARICHE a.hariche@univ-dbkm.dz
24

⚫⚫ The Oz discuss top levels with a few random remarks:

⚫⚫ Creating a new top level is very cheap; you should not hesitate to do so for

each query.

⚫⚫ A program can consist of deterministic and nondeterministic predicates

used together in any way. A top level script can call such a program; this is

possible because both deterministic and nondeterministic predicates have

logical semantics. Of course, only the nondeterministic predicates can create

choice points.

⚫⚫ It is easy to add information to an existing top level while it is active. It

suffices for the script to have an external reference, i.e., to have a reference to

something outside of the top level..

Non-deterministic Logic

Programming (First class Top Level)

Non-deterministic Logic

Programming (OZ explorer)

A.HARICHE a.hariche@univ-dbkm.dz
25

⚫⚫ the Explorer, a graphic tool for interactive exploration of the search

tree.

⚫⚫ Example : defines an nondeterministic version of Append
predicate with top levels and query.

⚫⚫ Each top level is initialized with a query. The query is entered as

a one-argument procedure called a script.

{Explorer.object script(
proc {$ A} X#Y=A in {FullAppend X Y [1 2 3 4]} end)}

declare
proc {Q A}
X Y
in
{FullAppend X Y [1 2 3 4]} A=X#Y
end
S={New Search.object script(Q)}

This opens a window that displays the
search tree. Initially, just the root is
displayed, as a gray circle. The circle
means that the root has a choice point.
The gray color means that the choice point
is not fully explored. It is in fact completely
unexplored.

Select the root by clicking on it, and press
“n " (Next Solution, in the Search menu).
This adds a green diamond 1 , which
corresponds to one solution. Double-
clicking on the green diamond numbers the
diamond (here it is 1)

No w select the root again and press “a "
(All Solutions, in the Search menu)

2#((1|2|_)#_)

3#([1]#[2 3 4])

Committed-choice Logic

Programming

A.HARICHE a.hariche@univ-dbkm.dz
26

⚫⚫ The case and if statements are special cases of cond. which does

a general don't-care choice, i.e., if the guard of any branch succeeds

then execution can commit to that branch and discard all the others.

⚫⚫ Example : defines producer-consumer program with flow control
predicate

⚫⚫ The

declare
proc {Producer N L}
case L of X|Ls then X=N {Producer
N+1 Ls}
else skip end
end
fun {Consumer N L A}
if N>0 then X L1 in L=X|L1
{Consumer N-1 L1 A+X}
else A end
end

local L S in % Variable declaration
thread {Producer 0 L} end
thread S={Consumer 100000 L 0} end
{Browse S}
end

Committed-choice Logic

Programming (Example)

A.HARICHE a.hariche@univ-dbkm.dz
27

⚫⚫ Example : defines producer-consumer program with flow control
predicate

declare
proc {Producer N L}
case L of X|Ls then X=N {Producer
N+1 Ls}
else skip end
end
fun {Consumer N L A}
if N>0 then X L1 in L=X|L1
{Consumer N-1 L1 A+X}
else A end
end

local L S in % Variable declaration
thread {Producer 0 L} end
thread S={Consumer 100000 L 0} end
{Browse S}
end

The producer and consumer each runs in its
own thread. The producer generates the list [0
1 2 3 ... and the consumer sums the list’s first
100000 elements. The main thread
immediately displays an unbound variable and
later up dates the display to 4999950000 when
the consumer terminates.

A.HARICHE a.hariche@univ-dbkm.dz
28

⚫⚫ Because only case and if are used, both the producer and the

consumer have a precise logical semantics as well as an operational

semantics. (This is not true for cond unless its conditions are mutually

exclusive.)

⚫⚫ The if statement has the logical semantics (𝑐 ∧ 𝑡) ∨ (¬𝑐 ∧ 𝑒)
where c is the boolean condition, t is derived from the then part, and

e is derived from the else part.

⚫⚫ The if statement has the following operational semantics. It waits until

enough information exists to decide the truth or falsity of its boolean

condition. A t that poin t, it executes its then or else part.

Committed-choice Logic

Programming (If,case Vs Cond)

A.HARICHE a.hariche@univ-dbkm.dz
29

⚫⚫ If a logic program has only a single thread and uses the dis statement to

express nondeterminism, then its behavior is exactly like that of a Prolog

program where the Prolog system is modified to do clause selection

according to the Andorra principle. However, because of concurrency

and first-class top levels, Oz lets you do much more.

⚫⚫ Example: two sequential logic programs. There is a design choice

when running them, i.e., whether to put them in the same top level or

in different top levels:
⚫⚫ If the programs are independent, e.g., two independent queries

to a database, then they should b e run in different top levels.

This ensures that each program gets a fair share of the processing

power and that no wasted work is done

⚫⚫ If the programs are dependent. i.e., they are cooperating to solve

one problem, then it is often best to run them in the same top level. This is

not often used in logic programming, but it is very important for constraint

Programming using a thread a propagator with spaces and never creates a

choice point. This is so used in finite domains, finite sets, and rational

trees.

Non-deterministic concurrent Logic

Programming

OZ kernel for logic programming

A.HARICHE a.hariche@univ-dbkm.dz
30

Logic programming with

distributions & constraints?

A.HARICHE a.hariche@univ-dbkm.dz
31

⚫⚫ Oz was never in tended to be just a Prolog substitute.

The main power of Oz is in constraint programming and

distributed programming:

⚫⚫ Oz implements for distributed programming because

⚫⚫ it separates the aspects of language semantics and

distribution structure .

⚫⚫ It is open and implemented by means of a network

layer that contains a distributed algorithm for each type of

language entity, as well as distributed garbage collection,

⚫⚫ It is fruitfully interactive with non-trivial fault tolerance

abstractions within the language.

Logic programming with

distributions & constraints?

A.HARICHE a.hariche@univ-dbkm.dz
32

⚫⚫ The constraint and distribution abilities of Oz can be

combined, the Search module implements a parallel

search engine that is very useful for compute-intensive

constraint problems :

⚫⚫ giving it a list of machine names and a script.

⚫⚫ The parallelism is completely transparent, i.e., the

problem is specified without any knowledge of whether it is

executed in parallel or not,

⚫⚫ The same script can b e used with a top level, with

the Explorer, and with a parallel search engine.

Logic paradigm

briefly

⚫⚫ Prolog-style of doing logic programming in Oz not only

but more.

⚫⚫ Introduce first-class top levels, concurrency, and the

Browser and Explorer tools.

⚫⚫Explore logic programming with Oz capabilities:

⚫⚫ Explains how search-based and committed-choice logic

programming with deep guards are integrated

⚫⚫ Outlines how the logic programming support smoothly ties
into constraint programming

⚫⚫The constraint and distribution abilities of Oz for current active

research such as the one applied for constrain t debugging, fault

tolerant and secure distributed execution

A.HARICHE a.hariche@univ-dbkm.dz
33

Many
important ideas

l  Identifiers and environments
l  Functional programming
l  Recursion
l  Invariant programming
l  Lists, trees, and records
l  Symbolic programming
l  Instantiation
l  Genericity
l  Higher-order programming
l  Complexity and Big-O notation
l  Moore’s Law
l  NP and NP-complete problems
l  Kernel languages
l  Abstract machines
l  Mathematical semantics

l  Explicit state
l  Data abstraction
l  Abstract data types and objects
l  Polymorphism
l  Inheritance
l  Multiple inheritance
l  Object-oriented programming
l  Exception handling
l  Concurrency
l  Nondeterminism
l  Scheduling and fairness
l  Dataflow synchronization
l  Deterministic dataflow
l  Agents and streams
l  Multi-agent programming

Louv1.1x Louv1.2x

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

PLP_Drive space

A.HARICHE a.hariche@univ-dbkm.dz
49

https://drive.google.com/drive/folders/1YBCIZzAldeiT19DIfDiREQwP-NAQ1qMN

admin
Rectangle

https://drive.google.com/drive/folders/1YBCIZzAldeiT19DIfDiREQwP-NAQ1qMN

