
A.HARICHE a.hariche@univ-dbkm.dz

1

MI-GLSD-M1 -UEM213 :

Programming paradigms

PW(TP): The research language OZ

A. HARICHE

University of Djilali Bounaama, Khemis Meliana (UDBKM)

Faculty of sciences & technology

Mathematics & computer sciences department

a.hariche@univ-dbkm.dz

In the last lectures

A.HARICHE a.hariche@univ-dbkm.dz
2

file:///C:/Users/Public/Desktop/VUE.lnk

OZ Conceptual types

A.HARICHE a.hariche@univ-dbkm.dz
3

OZ types

A.HARICHE a.hariche@univ-dbkm.dz
4

Abbreviation Type

A atom

B bool

C chunk

F float

I integer

K class

L literal

N name

O object

P procedure

R record

OZ types

A.HARICHE a.hariche@univ-dbkm.dz
5

Abbreviation Type

S string

T tuple

U unit

V virtual string

X Y Z value

FI number

LI feature

AFI atom, float, or int

PO unary procedure or object

Xs lists of elements of type X

Primary types

A.HARICHE a.hariche@univ-dbkm.dz
6

Numbers are either integers or floats.

Literals are either atoms or names.

Tuples are special records whose features are the integers

from 1 to n for some integer n, n >= 0.

Procedures are classified according to their arity. We

speak about n-ary procedures.

Chunks serve to represent abstract data structures. They

are defined similarly to records but provide only a restricted

set of operations. This makes it possible to hide some or all

of their features. Typical chunks are objects and classes,

locks and ports, and arrays and dictionaries. There are

chunks which do not belong to these types.

OZ as research language

A.HARICHE a.hariche@univ-dbkm.dz
7

⚫⚫ Research language with a wide range of

programming/system abstractions to develop quickly

and robustly advanced applications. And, yet it is a

simple and coherent design.

⚫⚫ It is a high level programming language that is

designed for modern advanced, concurrent, intelligent,

net worked, soft real-time, parallel, interactive and pro-

active applications.

OZ with multiple paradigms

A.HARICHE a.hariche@univ-dbkm.dz
8

Oz combines :

⚫⚫ Oriented Object Programming: state, abstract data, types,

classes, objects and inheritance.

⚫⚫ Functional Programming : it is providing:
⚫⚫ first class procedures : procedures, threads, classes, methods, and

objects.

⚫⚫ Lexical scoping with privates calls during the compiling phase.

⚫⚫ Logic and constraint programming: logical variables,

disjunctions, flexible search mechanisms and constraint programming.

⚫⚫ Concurrent language dynamical interactions of any number of

sequential threads (data-flow threads) respecting a real data flow

dependencies on the variables involved in each statement.

⚫⚫ Variables Declaration

A.HARICHE a.hariche@univ-dbkm.dz
9

The sequential programming

style of Oz

⚫⚫ Variables assignement

A.HARICHE a.hariche@univ-dbkm.dz
10

The sequential programming

style of Oz

Skip. The statement skip is the empty statement.
Example : Skip

S1 S2

Thread executes statements in a sequential order.

However a thread, contrary to conventional

languages, may suspend in some statement, so

above a thread has to complete execution of S1 ,

before starting S2.

Example : sequential execution?

⚫⚫ Variables assignement

A.HARICHE a.hariche@univ-dbkm.dz
11

The sequential programming

style of Oz

local I F C in
I = 5
F = 5.5
C = &t
{Browse [I F C]}
end

⚫⚫ Example : Numbers

no automatic type conversion,
So
5.0 = 5

will raise an exception

⚫⚫ Variables assignement

A.HARICHE a.hariche@univ-dbkm.dz
12

The sequential programming

style of Oz

local L1 L2 L3 Head Tail in
L1 = Head|Tail
Head = 1
Tail = 2|nil
L2 = [1 2]
{Browse L1==L2}
L3 = ´ | ´ (1:1 2: ´ | ´ (2 nil))
{Browse L1==L3}
end

⚫⚫ Example : Lists

⚫⚫ Conditional instruction

A.HARICHE a.hariche@univ-dbkm.dz
13

The sequential programming

style of Oz

⚫⚫ If condition

local X Y F Z in
X = 5
Y = 10
F = X > Y
if F = true then
Z = X
else
Z = Y
end
end

⚫⚫ Conditional instruction

A.HARICHE a.hariche@univ-dbkm.dz
14

The sequential programming

style of Oz

⚫⚫ Case condition

local X Y Z in
X = 5
Y = 10
case X >= Y then Z = X
else Z = Y end
end

⚫⚫ Sub-program

A.HARICHE a.hariche@univ-dbkm.dz
15

The sequential programming

style of Oz

⚫⚫ Procedure
local
Max = proc {$ X Y Z}
case X >= Y then
Z = X
else Z = Y end
end
X = 5
Y = 10
Z
in
{Max X Y Z} {Browse Z}
end

local Max X Y Z in
proc {Max X Y Z}
case X >= Y then
Z = X
else Z = Y
end
end
X = 5
Y = 10
{Max X Y Z} {Browse Z}
end

⚫⚫ iterative instruction

A.HARICHE a.hariche@univ-dbkm.dz
16

The sequential programming

style of Oz

⚫⚫ For as procedure

local
proc {HelpPlus C To Step P}
case C=<To then {P C} {HelpPlus C+Step To Step P}
else skip end
end
proc {HelpMinus C To Step P}
case C>=To then {P C} {HelpMinus C+Step To Step P}
else skip end
end
in
proc {For From To Step P}
case Step>0 then {HelpPlus From To Step P}
else {HelpMinus From To Step P} end
end
end

⚫⚫ Sub-program

A.HARICHE a.hariche@univ-dbkm.dz
17

The sequential programming

style of Oz

⚫⚫ Function

declare
fun {Map Xs F}
case Xs
of nil then nil
[] X|Xr then {F X}|{Map Xr F}
end
end
{Browse {Map [1 2 3 4] fun {$ X} X*X end}}

⚫⚫ Sub-program

A.HARICHE a.hariche@univ-dbkm.dz
18

The sequential programming

style of Oz
When To Function or not to Function.

⚫⚫ Use function definitions when things are really functional, i.e. there is one
output and, possibly many inputs, and the output is a mathematical function of

the input arguments.

⚫⚫ Use procedures in most of the other cases, i.e. multiple outputs or

nonfunctional definition due to stateful data types or nondeterministic

definitions

References

OZ syntax.

A.HARICHE a.hariche@univ-
dbkm.dz

19

The tutorial of oz by seif Haridi

Syntaxe sommaire du langage Oz.pdf
Tutorial_of_Oz_2.pdf

PLP_Drive Space

A.HARICHE a.hariche@univ-dbkm.dz
20

https://drive.google.com/drive/folders/1YBCIZzAldeiT19DIfDiREQwP-NAQ1qMN

https://drive.google.com/drive/folders/1YBCIZzAldeiT19DIfDiREQwP-NAQ1qMN

Many
important ideas

l  Identifiers and environments
l  Functional programming
l  Recursion
l  Invariant programming
l  Lists, trees, and records
l  Symbolic programming
l  Instantiation
l  Genericity
l  Higher-order programming
l  Complexity and Big-O notation
l  Moore’s Law
l  NP and NP-complete problems
l  Kernel languages
l  Abstract machines
l  Mathematical semantics

l  Explicit state
l  Data abstraction
l  Abstract data types and objects
l  Polymorphism
l  Inheritance
l  Multiple inheritance
l  Object-oriented programming
l  Exception handling
l  Concurrency
l  Nondeterminism
l  Scheduling and fairness
l  Dataflow synchronization
l  Deterministic dataflow
l  Agents and streams
l  Multi-agent programming

Louv1.1x Louv1.2x

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

