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The world ool
IS concurrent

e The real world is concurrent
e Itis made of activities that progress independently

e The computing world is concurrent too
o Distributed system: computers linked by a network
A concurrent activity is called a computing node (computer)
o Operating system: management of a single computer
A concurrent activity is called a process
Processes have independent memory spaces
e Process: execution of a single program
A concurrent activity is called a thread
Threads share the same memory space
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Concurrent T
programming

e Concurrency is natural
e Many activities are naturally independent
e Activities that are independent are ipso facto concurrent
e So how can we write a program with many independent activities?
e Concurrency must be supported by the language!

e A concurrent program
e Multiple progressing activities that exist at the same time
e Activities that can communicate and synchronize
Communicate: information passes from one activity to another

Synchronize: an activity waits for another to perform a specific
action
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Concurrency T
can be (very) hard

e It introduces many difficulties such as nondeterminism, race conditions,
reentrancy, deadlocks, livelocks, fairness, handling shared data, and
concurrent algorithms can be complicated
e Java's synchronized objects are tough to program with
e Erlang’s and Scala’s actors are better, but they still have race conditions
e Libraries can hide some of these problems, but they always peek through

e Adding distribution makes it even harder

e Adding partial failure makes it even much harder than that

e The Holy Grail: can we make concurrent programming
as easy as sequential programming?
e Yes, it can be done, if the paradigm is chosen wisely

e In this course we will see deterministic dataflow, which is a concurrent
paradigm that is a form of functional programming
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Deterministic 43
dataflow

e There are three main paradigms of concurrent programming
e The simplest is called deterministic dataflow

e Thatis what we are going to see now
e It supports all the techniques of functional programming

e What are the two other paradigms?

e Message-passing concurrency (e.g., Erlang and Scala actors)
Activities send messages to each other (like sending letters)
Relatively straightforward, can be combined with dataflow

e Shared-state concurrency (e.g., Java monitors)

Activities share the same data and they try to work together
without getting in each other’'s way

Much more complicated
Unfortunately, many current languages still use this paradigm
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An unbound variable

e An unbound variable is created in memory
but not bound to a value

e \What happens when you invoke an
operation with an unbound variable?
local X Y in

Y=X+1
{Browse Y}
end

e \What happens?

10
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What to do with an H:

uninitialized variable?

e Different languages do different things

In C, the addition continues and X has a “garbage
value” (= content of X’s memory at that moment)

In Java, the addition continues and X's value is 0
(if X is an object attribute with type integer)

In Prolog, execution stops with an error

In Java, the compiler detects an error
(if X is a local variable)

In Oz, execution waits just before the addition and
continues when X is bound (dataflow execution)

In constraint programming, the equation “Y=X+1" is
added to the set of constraints and execution continues.
A superb way to compute!

11
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Continuing +
the execution

e The waiting instruction:
declare X
local Y In
Y=X+1
{Browse Y}
end

e |If someone would bind
X, then execution could
continue

e But who can do it?
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Continuing +
the execution

e The waiting instruction: | e Answer: another
declare X concurrent activity!
local Y In . _

V=X +1 e If another activity does:
{Browse Y} X=20
end e Then the addition will

e If someone would bind continue and display
X, then execution could 21!
continue e This is called dataflow

e But who can do it? execution
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Dataflow execution

Y=X+1 {Browse Y}
| I > Activity A's progress

|
(1)
X=20
|

|
(2)

> Activity B’s progress

e Activity A waits patiently at point (1) just before the addition

e \When activity B binds X=20 at point (2), then activity A can
continue

e If activity B binds X=20 before activity A reaches point (1),
then activity A does not have to wait

HARICHE A. a.hariche@univ-dbkm.dz


admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz


Threads

e \We add a language concept to support concurrent activities
e In a program, an activity is a sequence of executing instructions
e We add this concept to the language and call it a thread

e Each thread is sequential

e Each thread is independent of the others
e There is no order defined between different threads

e The system executes all threads using interleaving semantics:
it is as if only one thread executes at a time, with execution
stepping from one thread to another

e The system guarantees that each thread receives a fair share
of the computational capacity of the processor

e Two threads can communicate if they share a variable

o For example, the variable corresponding to identifier X in the
example we just saw
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Thread creation

e Creating a thread in Oz is simple

e Any instruction can be executed in a new thread:
thread <s> end

e For example:
declare X
thread {Browse X+1} end
thread X=1 end

e \What does this small program do?

e Several executions are possible, but they all eventually
arrive at the same result: 2 is displayed!
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A small program (1)

e A small program with several threads:
declare X0 X1 X2 X3 in
thread X1=1+X0 end
thread X3=X1+X2 end
{Browse [X0 X1 X2 X3]}

e The Browser displays [X0 X1 X2 X3]

e The variables are all unbound

e The Browser also uses dataflow:
when a variable is bound, the display is updated
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A small program (2)

e A small program with several threads:
declare X0 X1 X2 X3 in
thread X1=1+X0 end
thread X3=X1+X2 end
{Browse [X0 X1 X2 X3]}

e Two threads will wait:
o X1=1+X0 waits (since X0 is unbound)
o X3=X1+X2 waits (since X1 and X2 are unbound)
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A small program (3)

e A small program with several threads:
declare X0 X1 X2 X3 in
thread X1=1+X0 end
thread X3=X1+X2 end
{Browse [X0 X1 X2 X3]}

e Let’s bind one variable
e Bind X0=4
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A small program (4)

e A small program with several threads:
declare X0 X1 X2 X3 in
thread X1=1+X0 end
thread X3=X1+X2 end
{Browse [X0 X1 X2 X3]}

e Let’s bind one variable
e Bind X0=4
The first thread executes and binds X1=5
The Browser displays [4 5 X2 X3]
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A small program (5)

e A small program with several threads:
declare X0 X1 X2 X3 in

thread X3=X1+X2 end
{Browse [X0 X1 X2 X3]}

e The second thread is still waiting
o Because X2 is still unbound
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A small program (6)

e A small program with several threads:
declare X0 X1 X2 X3 in

thread X3=X1+X2 end
{Browse [X0 X1 X2 X3]}

e Let's do another binding

e Bind X2=7
The second thread executes and binds X3=12
The Browser displays [4 5 7 12]
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The Browser is a oo
dataflow program

e [The Browser executes with its own threads

e For each unbound variable that is displayed,
there is a thread in the Browser that waits until
the variable is bound

When the variable is bound, the display is updated

e This does not work with cells
The Browser targets the dataflow paradigm

The Browser does not look at the content of cells,
since they do not execute with dataflow
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Streams

e A stream is a list that ends in an unbound
variable

» S=a|b|c|d|S2

e A stream can be extended with new elements as
long as necessary

The stream can be closed by binding the end to nil
e A stream can be used as a communication
channel between two threads
e The first thread adds elements to the stream
e The second thread reads the stream
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Programming T
with streams

e This program displays the elements of a
stream as they appear:
proc {Disp S}
case S of X|S2 then {Browse X} {Disp S2} end

end
declare S
thread {Disp S} end

e \We can add elements gradually:
declare S2 in S=a|b|c|S2
declare S3 in S2=d|e|f|S3

e Tryityourself!
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Producer/ T
consumer (1)

e A producer generates a stream of data
fun {Prod N} {Delay 1000} N|{Prod N+1} end
o The {Delay 1000} slows down execution enough to observe it
e A consumer reads the stream and performs
some action (like the Disp procedure)

e A producer/consumer program:
declare S
thread S={Prod 1} end
thread {Disp S} end
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Producer/ eec:
consumer (2) 2

Agent P Agent C

S=1[2[34...

thread S={Prod 1} end thread {Disp S} end

e Each circle is a concurrent activity that reads and
writes streams
o We call this an agent

e Agents P and C communicate through stream S
e The first thread creates the stream, the second reads it
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Pipeline (1)

e \We can add more agents between P and C

e Here is a transformer that modifies the stream:
fun {Trans S}
case S of X|S2 then X*X|{Trans S2} end

end

e This program has three agents:
declare S1 S2
thread S1={Prod 1} end
thread S2={Trans S1} end
thread {Disp S2} end
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Pipeline (2) T

Agent P Agent T Agent C

S1=1[23]... S2=1|4/9|...

»

>

thread S1={Prod 1} end thread S2={Trans S1} end thread {Disp S2} end

e \We now have three agents
e The producer (agent P) creates stream S1
e The transformer (agent T) reads S1 and creates S2
e The consumer (agent C) reads S2
e The pipeline is a very useful technique!
e For example, it is omnipresent in operating systems since Unix
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Agents

e An agent is a concurrent activity that reads and writes
streams

o The simplest agent is a list function executing in one thread

e Since list functions are tail-recursive, the agent can execute
with a fixed memory size

e This is the deep reason why single assignment is important:
it makes tail-recursive list functions, which makes
deterministic dataflow into a practical paradigm

e All list functions can be used as agents

e All functional programming techniques can be used in
deterministic dataflow

Including higher-order programming! In the next lesson will see more
examples of the power of the model.
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Deterministic T
concurrency

e Each thread in a deterministic dataflow program
always executes the same instructions in the same order

e This is true even though the threads can vary their relative speeds
from one execution to the next

e Speeds can vary because of input/output, hardware interrupts,
cache misses, and other sources of timing changes

e A deterministic dataflow program always gives the same outputs
for the same inputs, despite variations in thread speeds

e We say the program has no observable nondeterminism
(no race conditions)

e This is a major advantage of the deterministic dataflow paradigm
that is not shared by the two other paradigms
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Nondeterminism oo
and the scheduler

e Nondeterminism is the ability of the system to make
decisions that are visible by a running program

The application programmer does not make the decisions
The decisions can vary from one execution to the next

e The scheduler is the part of the system that decides
at each moment which thread to execute
This decision is called nondeterminism
e Nondeterminism is a property of any concurrent
system

It must be, since the concurrent activities are independent

A crucial part of any concurrent program is how to manage
its nondeterminism
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Example of T
nondeterminism (1)

e \What does the following program do?
declare X
thread X=1 end
thread X=2 end

e [he execution order of the two threads is not fixed

e X will be bound to 1 or 2, we don’t know which
e The other thread will have an error (raise an exception)
A variable cannot be assigned to two values

e This is an example of nondeterminism D

e | A choice made by the system during execution
e The system is free to choose one or the other
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Example of T
nondeterminism (2)

e \What does the following program do?
declare X={NewCell 0}
thread X:=1 end
thread X:=2 end

e [he execution order of the two threads is not fixed

e Cell X will first be bound to one value, then to the other

e When both threads terminate, X will contain 1 or 2, we
don’t know which

e This time there is no error

e This is an example of nondeterminism
e [ A choice made by the system during execution D
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Example of T
nondeterminism (3)

e \What does the following program do?
declare X={NewCell 0}
thread X:=1 end
thread X:=1 end

e |t makes a choice, just like the previous program
e But in this case, the final results are the same

e This is still nondeterminism!

e The important point is the choice: the running program still
sees a difference in the threads’ execution order

o Maybe the results are the same by accident (depending on
the computations done), but the choice remains
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Managing T
nondeterminism

e Nondeterminism must always be managed

e It should not affect program correctness

e The most complicated case is when threads and cells
are used in the same program (see previous example)

o Unfortunately, this is exactly how many languages
handle concurrency

e Deterministic dataflow has a major advantage

e The result of a program is always the same (except if there is a
programming error — if a thread raises an exception)

e The nondeterminism of the scheduler does not affect the result
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Deterministic oo
dataflow summary

e \We have introduced a simple and expressive
paradigm for concurrent programming

e By design, it has no observable nondeterminism
(no race conditions)

e |tis based on two simple ideas
e Synchronization of single-assignment variables on binding
o Threads, a sequence of executing instructions

e \We can build multi-agent programs using streams
(a list with unbound tail) and agents (a list function
running in a thread)
e Deterministic dataflow is a form of functional programming
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Concurrency
must get simpler

e Parallel programming has finally arrived (a surprise to old timers like me!)

e Multicore processors: dual and quad today, a dozen tomorrow, a hundred
in a decade, soon most apps will do it

o Distributed computing: data-intensive with tens of nodes today (NoSQL,
MapReduce), hundreds and thousands tomorrow, most apps will do it

e Something fundamental will have to change

e Sequential programming can’t be the default (it's a centralized bottleneck)
e Libraries can only hide so much (interface complexity, distribution structure)

e Concurrency will have to get a lot easier

o Deterministic dataflow is functional programming!

e It can be extended cleanly to distributed computing
Open network transparency
Modular fault tolerance
Large-scale distribution
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But is determinism °°
the right default?

Client 1 A client/server can’t be
written in a
deterministic paradigm!

Server

It's because the server
: must accept requests
Client 2 nondeterministically
from the two clients

e Deterministic dataflow has strong limitations!
e Any program that needs nondeterminism can'’t be written
e Even a simple client/server can’t be written

e But determinism has big advantages too

e Race conditions are impossible by design

e With determinism as default, we can reduce the need for nondeterminism (in the
client/server, it's needed only at the point where the server accepts requests)

e Any functional program can be made concurrent without changing the result
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History of T
deterministic dataflow

e Deterministic concurrency has a long history that starts in 1974

e Gilles Kahn. The semantics of a simple language for parallel programming. In /IFIP
Congress, pp. 471-475, 1974. Deterministic concurrency.

e Gilles Kahn and David B. MacQueen. Coroutines and networks of parallel processes. In
IFIP Congress, pp. 993-998, 1977. Lazy deterministic concurrency.

e Why was it forgotten for so long?

e Message passing and monitors arrived at about the same time:

Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular ACTOR formalism for artificial
intelligence. In 3 International Joint Conference on Atrtificial Intelligence (IJCAI), pp. 235-245, Aug.
1973.

Charles Antony Richard Hoare. Monitors: An operating system structuring concept. Communications of
the ACM, 17(10):549-557, Oct. 1974.

e | Actors and monitors express nondeterminism, so they are better. Right?

e Dataflow computing also has a long history that starts in 1974

e Jack B. Dennis. First version of a data flow procedure language. Springer Lecture Notes in
Computer Science, vol. 19, pp. 362-376, 1974.

e | Dataflow remained a fringe subject since it was always focused on parallel programming,

which only became mainstream with the arrival of multicore processors in mainstream
computing (e.g., IBM POWERA4, the first dual-core processor, in 2001).
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Next lesson

e General programming techniques for
deterministic dataflow

« Concurrency for dummies »
e More sophisticated programming with
deterministic dataflow

Higher-order programming and concurrent
deployment

e Semantics of threads: how concurrency
extends the abstract machine

A small extension to our abstract machine
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Deterministic dataflow T
techniques and semantics

e Concurrency transparency

e Adding threads to make a program more incremental, without
changing the result

e A for loop abstraction that collects results
e Using cells to build concurrency abstractions
e Multi-agent programming

e Sieve of Eratosthenes: dynamically building a pipeline of
concurrent agents

o Digital logic simulation: using higher-order programming together
with deterministic dataflow

e Thread semantics
o Extending the abstract machine with multiple semantic stacks
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Concurrency T
transparency

e We saw that multi-agent programs are deterministic
e Their nondeterminism is not observable
e The agent Trans with input 1|2|3|_ always outputs 1|4[9]| __

e In these programs, concurrency does not change the resuit
but only the order in which computations are done (that is,
when the result is calculated)

e Itis possible to add threads at will to a program without changing
the result (we call this concurrency transparency)

e The only effect of added threads is to make the program more
incremental (to remove roadblocks)

e Concurrency transparency is only true of declarative paradigms
e Itis no longer true when using cells and threads together (Java!)
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Example of
transparency (1)

fun {Map Xs F}
case Xs
of nil then nil
[1 X|Xr then
{F X} | {Map Xr F}
end
end
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Example of T
transparency (2)

fun {CMap Xs F}
case Xs
of nil then nil
[1 X|Xr then
thread {F X} end | {CMap Xr F}
end
end
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Example of T
transparency (3)

fun {CMap Xs F}

case Xs thread ... end
] ] can be used as
Of nll then nll an expressign
[1 X|Xr then 0
thread {F X} end | {CMap Xr F}
end
end
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Example of
transparency (4)

fun {CMap Xs F}
case Xs
of nil then nil
[1 X|Xr then
thread {F X} end | {CMap Xr F}
end
end

e \What happens when we execute:
declare F
{Browse {CMap [1 2 3 4] F}}
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000

Example of T
transparency (5)
fun {CMap Xs F}

case Xs declare F

of nil then nil {Browse {CMap [1 2 3 4] F}}

[1 X|Xr then

thread {F X} end | {CMap Xr F}

end
end
e The Browserdisplays|[ =]

e CMap calculates a list with unbound variables
e The new threads wait until F is bound

e \What would happen if {F X} was not in its own thread?
e Nothing would be displayed! The CMap call would block.
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Example of T
transparency (6)

fun {CMap Xs F}
case Xs
of nil then nil
[1 X|Xr then
thread {F X} end | {CMap Xr F}
end
end

e \What happens when we add:
F = fun {$ X} X+1 end
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Example of T
transparency (7)

fun {CMap Xs F}
case Xs
of nil then nil
[1 X|Xr then
thread {F X} end | {CMap Xr F}
end
end

e The Browser displays [2 3 4 5]

e With or without the thread creation,
the final result is always [2 3 4 5]
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“Concurrency T
for dummies”

e Threads can be added at will to a functional program
without changing the result

e Therefore it is very easy to take a functional program
and make it concurrent

e |t suffices to insert thread ... end in those places that
need concurrency

e \Warning: concurrency for dummies does not work in a
program with explicit state (= with cells)!
e For example, it does not work in Java

e En Java, concurrency is handled with the concept of a
monitor, which coordinates how multiple threads access
an object. This is much more complicated than
deterministic dataflow.
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Why does 33
it work? (1)

fun {Fib X}

if X==0 then O
elseif X==1 then 1
else

thread {Fib X-1} end + {Fib X-2}
end
end
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fun {F
if
els

end
end

Why does 33
it work? (2)

~(F1) + F2

ib X}
==(0 then O elseif X==1 then 1
eF1F2in

—~(F1)= thread {Fib X-1} end

F2 = {Fib X-2)

Dataflow dependency

It works because variables can
only be bound to one value
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Execution oo
of {Fib 6}

_F2
. F3. o
. Create a thread
F4: F2 gl
s O—. N
i F2 .
F5 : F3 : F1 .'"-.. Synchronize
— : O o~ with the result
:F3. F1 O—> :'-.
F6: F4 < F2 B Running thread
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Observing the -

execution of Fib °

~ 0z Panel

Panel Options

|Thraads \ Memory | Problem Solving \

— Runtime

Run: 174 sm E]g

Garbage Collection: 4518 m Bg h ‘

Copy: 0.00 8 [w Bﬁ

Fropagation:. 000 s w ]

— Threads
Created:
Funnahle:

Oz Compiler Panel

Total number of threads (in Oz menu)
created since system startup
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A for loop abstraction T
that collects results

e \We show how to use state (a cell) and higher-
order programming fogether to build a powerful
new abstraction for deterministic dataflow

o The imperative and functional paradigms are not
antagonistic! Using cells can give extra power to
dataflow programs.

e Our new abstraction will generalize the
declarative for loop of Oz to collect results

o ltis a powerful form of list comprehension
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Declarative oo
for loop

e Oz has a declarative for loop

for lin[1 2 3] do {Browse I*I} end

e This is exactly the same as executing the following three
statements one after the other:

local I=1 in {Browse I*I} end
local I=2 in {Browse I*|} end
local 1=3 in {Browse I*|} end

e Each iteration is independent; the identifier | references
one element of the list in each iteration
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Collecting results T
in the for loop

e \We would like to extend the declarative
for loop to accumulate results

R=forlin[12 3] do (accumulate I*]) end
e \We would like this to return R=[1 4 9]

e The existing for loop cannot do this, but we
will define a new abstraction that can
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The ForCollect T
abstraction

e The ForCollect abstraction extends the for loop
with the ability to accumulate resuilts:

R = {ForCollect [1 2 3] proc {$ C I} <stmt> end}

e The loop body is <stmt>
| is the loop index

C is the « collect procedure »: calling {C X} in the loop
body will accumulate X in R

R = {ForCollect [1 2 3] proc {$ C I} {C I"I} end}
= R=[14 9]
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Defining the T
collect procedure (1)

e How can we define the collect procedure C?

C cannot be written in the functional paradigm
because it has memory: each time we call {C X}
we need to append X to the output list. Each time
we call C the output changes.

e C can only be defined using state, i.e., a cell
The cell is used to append X to the output list

e But seen from the outside, ForCollect will still
be functional!
Let us see how to define the collect procedure...
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Defining the oo
collect procedure (2)

e Assume we are building the output list and we have
already added three elements to it:

R = 1[4|9|R1

e [0 add another element, we need to bind R1:
R1=16|R2

e This makes the new R = 1[4|9|16|R2

e The new end of this list is R2!
e So the cell always has to store the end of the list
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Defining the T
collect procedure (3)

e \We can define the collect procedure like this:

Acc={NewCell R} % Cell Acc contains end of the list

proc {C X}
R2 % New end of list
in
@Acc=X|R2 % Bind old end of list to X|R2
Acc:=R2 % Set C to new end of list R2
end

e This appends X to the output list
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Definition T
of ForCollect

e This gives us the following definition of ForCollect:

proc {ForCollect Xs P Ys}

Acc={NewCell Ys}

proc {C X} R2 in @Acc=X|R2 Acc:=R2 end
in

for X in Xs do {P C X} end

@Acc=nil
\ Doing Acc:=nil would be

end wrong! Do you see why?

e \We need to write ForCollect as a procedure,
even though we will call it as a function
e Itis because we need to access the output Ys (= initial content of Acc)
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Concurrent agent T
with ForCollect

e \We have defined ForCollect on lists, but it can do more!
e ForCollect also works on streams

e Running ForCollect in a thread makes a concurrent agent:

Ys=thread {ForCollect Xs
proc {$ C X} if X mod 2 == 0 then {C X*X} end end}
end

e This agent reads an input stream Xs and returns an
output stream Y's that contains the squares of the even
elements of Xs
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Conclusions oo
of ForCollect

e ForCollect is a powerful abstraction that combines
and generalizes both Map and Filter
e When used with lists, it is called a list comprehension
e Some languages have syntax for this, e.g., Haskell and Python
e In Oz, list comprehensions can be concurrent agents

e ForCollect is defined by combining cells and higher-order
programming

e There is no antagonism between the imperative and functional
paradigms; they can be used together to the benefit of both

o Even though ForCollect uses a cell internally, it is completely
deterministic when viewed from the outside. This is because we
use the cell in a single thread.
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Alternative definition oo
of ForCollect

e If the collect procedure C might be used in more than one thread,
then we need to change its definition to use Exchange:

proc {ForCollect Xs P Ys}

Acc={NewCell Ys}

proc {C X} R2 in {Exchange Acc X|R2 R2} end
in

for Xin Xs do {P C X} end

{Exchange Acc nil _}
end

e {Exchange Acc Old New} does two operations atomically:
e Old is bound to the old content and New becomes the new content

e This avoids errors when cells are used by multiple threads: doing @Acc and
Acc:=R2 as two separate operations would permit another operation on Acc
to be done in between, which is wrong!
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Multi-agent oo
programming

e In the last lesson we saw some simple
examples of multi-agent programs
e Producer/consumer
e Producer/transformer/consumer (pipeline)

e Let's see two more sophisticated examples

o Sieve of Eratosthenes: dynamically building a
pipeline during its execution

o Digital logic simulation: using higher-order
programming together with concurrency
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The Sieve of T
Eratosthenes

2|314156|7|8... U U U 7|111[13]17]19]...

35|7|9|11[13|15]...  5|7|11]13[17|19]...

e The Sieve of Eratosthenes is an algorithm for
calculating a sequence of prime numbers

e Each agent in the pipeline removes multiples of
an integer

e Starting with a sequence containing all integers,
we end up with a sequence of primes

HARICHE A. a.hariche@univ-dbkm.dz


admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz


A filter agent

e A list function that removes multiples of K:

fun {Filter Xs K}
case Xs of X|Xr then
if X mod K \= 0 then X|{Filter Xr K}
else {Filter Xr K} end
else nil
end
end

e \We make an agent by putting it in a thread:
thread Ys={Filter Xs K} end
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The Sieve program

e Sieve builds the pipeline during execution:
fun {Sieve Xs}

case Xs
of nil then nil
[1 X|Xr then X|{Sieve thread {Filter Xr X} end}
end
end Concurrent deployment:
. building the infrastructure of
declare Xs Ys in a program during execution

thread Xs={Prod 2} end
thread Ys={Sieve Xs} end
{Browse Ys}
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An optimization

e Otherwise too many do-nothing agents are created!

fun {Sieve2 Xs M}
case Xs
of nil then nil
[1 X|Xr then
if X=<M then
X|{Sieve2 thread {Filter Xr X} end M}
else Xs end
end
end

e We call {Sieve2 Xs 316} to generate a list of primes
up to 100000 (why?)
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Thread 33
semantics (1)

e \We extend the abstract machine with threads

e Each thread has one semantic stack

e The instruction thread <s> end creates a new stack
o All stacks share the same memory

e There is one sequence of execution states,
and threads take turns executing instructions
e (MST,,0,) — (MST,,0,) — (MST,,05) — ...
e MST is a multiset of semantic stacks
e This is called interleaving semantics
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Thread
semantics (2)

A semantic stack

(thread <s> end,E)

that is about to

ST

create a thread

Memory o
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Thread
semantics (3)

We now have

two stacks!

ST

[(<s>,E)]

Memory o
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Why interleaving oo
semantics?

e What happens when activities execute "at the same time”?
e \We can imagine that all threads execute in parallel, each with
its own processor but all sharing the same memory

e We have to be careful to understand what happens when
threads operate simultaneously on the same memory word

e If the threads share the same processor, then this problem is
avoided (interleaving semantics)

e Interleaving semantics is much easier to reason about than
truly concurrent semantics

e Truly concurrent semantics also models the case where threads
"step on each others’ toes”, but usually this is not needed, since
the hardware is careful to keep this from happening

e For example, in a multicore processor the cache coherence
protocol avoids simultaneous operations on one memory word
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Order of ee
execution states

e In a sequential program, execution states are in a total order

e Total order = when comparing any two execution states,
one must happen before the other

e In a concurrent program, execution states of the same thread
are in a total order

e The execution states of the complete program (with multiple
threads) are in a partial order

o Partial order = when comparing any two execution states, there
might be no order between them (either may happen first)

e In a concurrent program, many executions are compatible
with the partial order

e In the actual execution, the scheduler chooses one
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Total order in a T
sequential program

e In a sequential program, execution states are
In a total order

e A sequential program has one thread
e Earlier paradigms always had this situation

» Sequential
execution

«— (One execution step
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Partial order in a T
concurrent program

Wait for the value of a dataflow variable ("Y=X+1")

X

Bind a dataflow variable ("X=207)

/ >eo > o > » Thread T3
> >

> o > o » Thread T2
Thread
Creatio/ Z

> e > o > > o > o » Thread T1

«— (One execution step
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Partial order in a T
concurrent program

e In a concurrent program, many executions are
compatible with the partial order

e The scheduler chooses one of them during the
actual execution (nondeterminism)

/ >e >e > > Thread T3
> >

> > > Thread T2

Thread
creation
> > e > > > o » Thread T1

«— (One execution step
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Digital logic T
simulation

e The deterministic dataflow paradigm makes
it easy to model digital logic circuits

e \We show how to model combinational logic
circuits (no memory) and sequential logic
circuits (with memory)

e Signals in time are represented as streams;
logic gates are represented as agents
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Modeling T
digital circuits

e Real digital circuits consist of active circuit elements
called gates which are interconnected using wires that

carry digital signals

e A digital signal is a voltage in function of time

o Digital signals are meant to carry two possible values, called
0 and 1, but they may have noise, glitches, ringing, and other
undesirable effects

e A digital gate has input and output signals
o The output signal is slightly delayed with respect to the input

e \We will model gates as agents and signals as streams
e This assumes perfectly clean signals and zero gate delay
o We will later add a delay gate in order to model gate delay
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Digital signals oo
as streams

e A signal is modeled by a stream that
contains elements with values 0 or 1

S=agyla,|a,|...|aj...

e [Ime instants are numbered from when
the circuit starts running

e Atinstant i, the signal’s value a,€{0,1}
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X Yy Not And Or Xor
P
v _} z And O 0|1 0 0 O
O 1|1 0 1 1
x }} . Or 1 0|0 0 1 1
Y 1 110 1 1 0

D
y

e Some typical logic gates with their standard pictorial
symbols and the boolean functions that define them

e But gates are not just boolean functions!
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Digital gates oo
as agents

e A gate is much more than a boolean function; it is an active entity
that takes input streams and calculates an output stream

fun {And A B} if A==1 andthen B==1 then 1 else 0 end end
fun {Loop S1 S2}
case S1#S2 of (A|T1)#(B|T2) then {And A B}|{Loop T1 T2} end
end
thread Sc={Loop Sa Sb} end

e Example execution: And gate

Sx=0|1|0|Tx % input signal x ’ _} §
Sy=1|1|0|Ty % input signal y

Sz=0|1|0|Tz % output signal z
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Creating o
many gates

e Let us define a proper abstraction for building all the
different kinds of logic gates we need

o We define the function GateMaker that takes a two-argument
boolean function Fun, where {GateMaker Fun} returns a function
FunG that creates gates

e Each call to FunG creates a running gate based on Fun
e This gives three levels of abstraction that we can

compare with object-oriented programming:

o GateMaker is analogous to a generic class

e FunG is analogous to a class

e A running gate is analogous to an object
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GateMaker 1T
implementation

e Calling {GateMaker F} creates a gate maker:

fun {GateMaker F}
fun {$ Xs Ys}
fun {GateLoop Xs Ys}
case Xs#Ys of (X|Xr)#(Y|Yr) then
{F X Y}|{GateLoop Xr Yr}
end
end
in
thread {GateLoop Xs Ys} end
end
end
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Making gates

e Each of these functions can make gates:

AndG={GateMaker fun {$ X Y} X*Y end}
OrG={GateMaker fun {$ X Y} X+Y-X*Y end}
NandG={GateMaker fun {$ X Y} 1-X*Y end}
NorG={GateMaker fun {$ X Y} 1-X-Y+X*Y end}
XorG={GateMaker fun {$ X Y} X+Y-2*X*Y end}
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Combinational logic

e Combinational logic has no memory: all
calculation is done at the same time instant

e A gate is a simple combinational function:

P

e Therefore, any number of interconnected
gates also defines a combinational function

e \We define a useful circuit called a full adder

z; =x; And y,
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Full adder
specification
x —+——eof \d
— ) xyzl|lcs
D oo|o!
DD e
10110

e A full adder adds three 1-bit binary numbers x, y, and z
giving a sum bit s and carry bit ¢

e An n-bit adder can be built by connecting n full adders
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Full adder I3
implementation

e Full adder creation as five-argument component:

proc {FullAdder XY Z C S}
ABDEF

in
A={AndG X Y}
B={AndG Y Z}
D={AndG X Z}
F={OrG B D}
C={OrG A F}
E={XorG X Y}
S={XorG Z E}

end
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Sequential logic

e Sequential logic has memory: past values
of a signal influence the present values

e \We add a way for the past to influence the
present: a Delay gate

Delay
T=bg|b,[D,]...|0}...
fun {DelayG S} 0|S end
b=a_,= T=0|S
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Latch oe
specification

e A latch is a simple circuit with memory; it has two stable
states and can memorize its input

e Output 4, follows input d; and freezes when c is 1
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Latch 33
implementation

e Latch creation as a three-argument component:

proc {Latch C Di Do}
ABEF

in
F={DelayG Do}
A={AndG C F}
E={NotG C}
B={AndG E Di}
Do={OrG A B}

end
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Conclusions for t
deterministic dataflow

e Deterministic dataflow generalizes the functional paradigm
e There is no observable nondeterminism
e All functional patterns become concurrency patterns

e Concurrency is transparent: « concurrency for dummies »

Threads can be added at will without changing the result
To remove roadblocks and make computation more incremental

e Deterministic dataflow is a good default

Nondeterminism can be added where needed and nowhere else

Deterministic concurrency is seeing a well-deserved resurgence
after decades of neglect, at both large and small scales (big data
computing and multicore computing)
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Learning more oo
about concurrency

e Paradigms that can avoid race conditions
e Deterministic dataflow
e Lazy deterministic dataflow
e Constraint programming
e Others (e.g., E: capability-based programming)

e Paradigms that can express nondeterminism
e Message-passing concurrency
Scala, Erlang

e Shared-state concurrency
Transactions
Monitors (only recommended for legacy systems)
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Multi-agent oo
dataflow paradigm

e We can combine deterministic dataflow and message passing
e We add one concept to deterministic dataflow: a named stream (port)
e This adds nondeterminism (any thread can send a message to the port)

e Since the named stream is still a stream, it can be used in deterministic
dataflow programs

e This gives multi-agent dataflow programming
e This paradigm allows adding nondeterminism only where needed

e Concurrency patterns can be written very concisely
A simple contract-net protocol can be written in just three lines

e Ozma was an experiment to extend Scala to support multi-agent dataflow.
This worked quite well, but it needs fine-grained concurrency (cheap threads)
to achieve maximum usefulness (only partial success on JVM).

e Multi-agent dataflow is the best all-round concurrent paradigm
e Even better than Erlang, since it allows managing nondeterminism
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Many
important ideas

Louv1.1x

e Identifiers and environments

e Functional programming

e Recursion

e Invariant programming

e Lists, trees, and records

e Symbolic programming

e [nstantiation

e Genericity

e Higher-order programming

e Complexity and Big-O notation
e Moore’s Law

e NP and NP-complete problems
e Kernel languages

e Abstract machines

e Mathematical semantics

Louv1.2x

Explicit state

Data abstraction

Abstract data types and objects
Polymorphism

Inheritance

Multiple inheritance
Object-oriented programming
Exception handling
Concurrency
Nondeterminism

Scheduling and fairness
Dataflow synchronization
Deterministic dataflow
Agents and streams
Multi-agent programming

HARICHE A. a.hariche@univ-dbkm.dz


admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz


pace

PLP Drive s

opEEo

https://drive.google.com/drive/folders/1YBCIZzAldeiT19DIfDIREQwWP-NAQ1gMN



admin
Rectangle

https://drive.google.com/drive/folders/1YBCIZzAldeiT19DIfDiREQwP-NAQ1qMN

