
A.HARICHE a.hariche@univ-dbkm.dz

1

MI-GLSD-M1 -UEM213 :

Programming Paradigms

Chapter VI: Concurrent Paradigm

A. HARICHE

University of Djilali Bounaama, Khemis Meliana (UDBKM)

Faculty of sciences & technology

Mathematics & computer sciences department

a.hariche@univ-dbkm.dz

The world
is concurrent
l  The real world is concurrent

l  It is made of activities that progress independently

l  The computing world is concurrent too
l  Distributed system: computers linked by a network

l  A concurrent activity is called a computing node (computer)
l  Operating system: management of a single computer

l  A concurrent activity is called a process
l  Processes have independent memory spaces

l  Process: execution of a single program
l  A concurrent activity is called a thread
l  Threads share the same memory space

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Concurrent
programming
l  Concurrency is natural

l  Many activities are naturally independent
l  Activities that are independent are ipso facto concurrent
l  So how can we write a program with many independent activities?
l  Concurrency must be supported by the language!

l  A concurrent program
l  Multiple progressing activities that exist at the same time
l  Activities that can communicate and synchronize

l  Communicate: information passes from one activity to another
l  Synchronize: an activity waits for another to perform a specific

action

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Concurrency
can be (very) hard

l  It introduces many difficulties such as nondeterminism, race conditions,
reentrancy, deadlocks, livelocks, fairness, handling shared data, and
concurrent algorithms can be complicated
l  Java’s synchronized objects are tough to program with
l  Erlang’s and Scala’s actors are better, but they still have race conditions
l  Libraries can hide some of these problems, but they always peek through

l  Adding distribution makes it even harder

l  Adding partial failure makes it even much harder than that

l  The Holy Grail: can we make concurrent programming

as easy as sequential programming?
l  Yes, it can be done, if the paradigm is chosen wisely
l  In this course we will see deterministic dataflow, which is a concurrent

paradigm that is a form of functional programming

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Deterministic
dataflow
l  There are three main paradigms of concurrent programming
l  The simplest is called deterministic dataflow

l  That is what we are going to see now
l  It supports all the techniques of functional programming

l  What are the two other paradigms?
l  Message-passing concurrency (e.g., Erlang and Scala actors)

l  Activities send messages to each other (like sending letters)
l  Relatively straightforward, can be combined with dataflow

l  Shared-state concurrency (e.g., Java monitors)
l  Activities share the same data and they try to work together

without getting in each other’s way
l  Much more complicated
l  Unfortunately, many current languages still use this paradigm

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

10

An unbound variable
l  An unbound variable is created in memory

but not bound to a value
l  What happens when you invoke an

operation with an unbound variable?
local X Y in

 Y=X+1
 {Browse Y}

end
l  What happens?

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

11

What to do with an
uninitialized variable?
l  Different languages do different things

l  In C, the addition continues and X has a “garbage
value” (= content of X’s memory at that moment)

l  In Java, the addition continues and X’s value is 0
(if X is an object attribute with type integer)

l  In Prolog, execution stops with an error
l  In Java, the compiler detects an error

(if X is a local variable)
l  In Oz, execution waits just before the addition and

continues when X is bound (dataflow execution)
l  In constraint programming, the equation “Y=X+1” is

added to the set of constraints and execution continues.
A superb way to compute!

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Continuing
the execution
l  The waiting instruction:

declare X
local Y in

 Y=X+1
 {Browse Y}

end
l  If someone would bind

X, then execution could
continue

l  But who can do it?

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Continuing
the execution

l  Answer: another
concurrent activity!

l  If another activity does:
 X=20

l  Then the addition will
continue and display
21!

l  This is called dataflow
execution

l  The waiting instruction:
declare X
local Y in

 Y=X+1
 {Browse Y}

end
l  If someone would bind

X, then execution could
continue

l  But who can do it?

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Dataflow execution

l  Activity A waits patiently at point (1) just before the addition
l  When activity B binds X=20 at point (2), then activity A can

continue
l  If activity B binds X=20 before activity A reaches point (1),

then activity A does not have to wait

Y=X+1 {Browse Y}
Activity A’s progress

(1)
X=20

Activity B’s progress
(2)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Threads
l  We add a language concept to support concurrent activities

l  In a program, an activity is a sequence of executing instructions
l  We add this concept to the language and call it a thread

l  Each thread is sequential
l  Each thread is independent of the others

l  There is no order defined between different threads
l  The system executes all threads using interleaving semantics:

it is as if only one thread executes at a time, with execution
stepping from one thread to another

l  The system guarantees that each thread receives a fair share
of the computational capacity of the processor

l  Two threads can communicate if they share a variable
l  For example, the variable corresponding to identifier X in the

example we just saw

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Thread creation
l  Creating a thread in Oz is simple
l  Any instruction can be executed in a new thread:

 thread <s> end
l  For example:

 declare X
 thread {Browse X+1} end
 thread X=1 end

l  What does this small program do?
l  Several executions are possible, but they all eventually

arrive at the same result: 2 is displayed!

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

A small program (1)

l  A small program with several threads:
 declare X0 X1 X2 X3 in
 thread X1=1+X0 end
 thread X3=X1+X2 end
 {Browse [X0 X1 X2 X3]}

l  The Browser displays [X0 X1 X2 X3]
l  The variables are all unbound
l  The Browser also uses dataflow:

when a variable is bound, the display is updated

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

A small program (2)

l  A small program with several threads:
 declare X0 X1 X2 X3 in
 thread X1=1+X0 end
 thread X3=X1+X2 end
 {Browse [X0 X1 X2 X3]}

l  Two threads will wait:
l  X1=1+X0 waits (since X0 is unbound)
l  X3=X1+X2 waits (since X1 and X2 are unbound)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

A small program (3)

l  A small program with several threads:
 declare X0 X1 X2 X3 in
 thread X1=1+X0 end
 thread X3=X1+X2 end
 {Browse [X0 X1 X2 X3]}

l  Let’s bind one variable
l  Bind X0=4

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

A small program (4)

l  A small program with several threads:
 declare X0 X1 X2 X3 in
 thread X1=1+X0 end
 thread X3=X1+X2 end
 {Browse [X0 X1 X2 X3]}

l  Let’s bind one variable
l  Bind X0=4

l  The first thread executes and binds X1=5
l  The Browser displays [4 5 X2 X3]

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

A small program (5)

l  A small program with several threads:
 declare X0 X1 X2 X3 in
 thread X1=1+X0 end % terminated
 thread X3=X1+X2 end
 {Browse [X0 X1 X2 X3]}

l  The second thread is still waiting
l  Because X2 is still unbound

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

A small program (6)

l  A small program with several threads:
 declare X0 X1 X2 X3 in
 thread X1=1+X0 end % terminated
 thread X3=X1+X2 end
 {Browse [X0 X1 X2 X3]}

l  Let’s do another binding
l  Bind X2=7

l  The second thread executes and binds X3=12
l  The Browser displays [4 5 7 12]

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The Browser is a
dataflow program
l  The Browser executes with its own threads
l  For each unbound variable that is displayed,

there is a thread in the Browser that waits until
the variable is bound
l  When the variable is bound, the display is updated

l  This does not work with cells
l  The Browser targets the dataflow paradigm
l  The Browser does not look at the content of cells,

since they do not execute with dataflow

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Streams
l  A stream is a list that ends in an unbound

variable
l  S=a|b|c|d|S2
l  A stream can be extended with new elements as

long as necessary
l  The stream can be closed by binding the end to nil

l  A stream can be used as a communication
channel between two threads
l  The first thread adds elements to the stream
l  The second thread reads the stream

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Programming
with streams
l  This program displays the elements of a

stream as they appear:

proc {Disp S}
 case S of X|S2 then {Browse X} {Disp S2} end
end
declare S
thread {Disp S} end

l  We can add elements gradually:
 declare S2 in S=a|b|c|S2
 declare S3 in S2=d|e|f|S3

l  Try it yourself!

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Producer/
consumer (1)

l  A producer generates a stream of data
 fun {Prod N} {Delay 1000} N|{Prod N+1} end

l  The {Delay 1000} slows down execution enough to observe it

l  A consumer reads the stream and performs
some action (like the Disp procedure)

l  A producer/consumer program:
 declare S
 thread S={Prod 1} end
 thread {Disp S} end

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Producer/
consumer (2)

l  Each circle is a concurrent activity that reads and
writes streams
l  We call this an agent

l  Agents P and C communicate through stream S
l  The first thread creates the stream, the second reads it

 thread S={Prod 1} end thread {Disp S} end

S=1|2|3|4|…

Agent P Agent C

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Pipeline (1)
l  We can add more agents between P and C
l  Here is a transformer that modifies the stream:

 fun {Trans S}
 case S of X|S2 then X*X|{Trans S2} end
 end

l  This program has three agents:
 declare S1 S2
 thread S1={Prod 1} end
 thread S2={Trans S1} end
 thread {Disp S2} end

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Pipeline (2)

l  We now have three agents
l  The producer (agent P) creates stream S1
l  The transformer (agent T) reads S1 and creates S2
l  The consumer (agent C) reads S2

l  The pipeline is a very useful technique!
l  For example, it is omnipresent in operating systems since Unix

 thread S1={Prod 1} end thread {Disp S2} end

S1=1|2|3|…

Agent P Agent C

thread S2={Trans S1} end

Agent T

S2=1|4|9|…

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Agents
l  An agent is a concurrent activity that reads and writes

streams
l  The simplest agent is a list function executing in one thread
l  Since list functions are tail-recursive, the agent can execute

with a fixed memory size
l  This is the deep reason why single assignment is important:

it makes tail-recursive list functions, which makes
deterministic dataflow into a practical paradigm

l  All list functions can be used as agents
l  All functional programming techniques can be used in

deterministic dataflow
l  Including higher-order programming! In the next lesson will see more

examples of the power of the model.

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Deterministic
concurrency
l  Each thread in a deterministic dataflow program

always executes the same instructions in the same order
l  This is true even though the threads can vary their relative speeds

from one execution to the next
l  Speeds can vary because of input/output, hardware interrupts,

cache misses, and other sources of timing changes

l  A deterministic dataflow program always gives the same outputs
for the same inputs, despite variations in thread speeds
l  We say the program has no observable nondeterminism

(no race conditions)
l  This is a major advantage of the deterministic dataflow paradigm

that is not shared by the two other paradigms

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Nondeterminism
and the scheduler
l  Nondeterminism is the ability of the system to make

decisions that are visible by a running program
l  The application programmer does not make the decisions
l  The decisions can vary from one execution to the next

l  The scheduler is the part of the system that decides
at each moment which thread to execute
l  This decision is called nondeterminism

l  Nondeterminism is a property of any concurrent
system
l  It must be, since the concurrent activities are independent
l  A crucial part of any concurrent program is how to manage

its nondeterminism

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Example of
nondeterminism (1)
l  What does the following program do?

 declare X
 thread X=1 end
 thread X=2 end

l  The execution order of the two threads is not fixed
l  X will be bound to 1 or 2, we don’t know which
l  The other thread will have an error (raise an exception)

l  A variable cannot be assigned to two values

l  This is an example of nondeterminism
l  A choice made by the system during execution
l  The system is free to choose one or the other

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Example of
nondeterminism (2)
l  What does the following program do?

 declare X={NewCell 0}
 thread X:=1 end
 thread X:=2 end

l  The execution order of the two threads is not fixed
l  Cell X will first be bound to one value, then to the other
l  When both threads terminate, X will contain 1 or 2, we

don’t know which
l  This time there is no error

l  This is an example of nondeterminism
l  A choice made by the system during execution

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Example of
nondeterminism (3)
l  What does the following program do?

 declare X={NewCell 0}
 thread X:=1 end
 thread X:=1 end

l  It makes a choice, just like the previous program
l  But in this case, the final results are the same

l  This is still nondeterminism!
l  The important point is the choice: the running program still

sees a difference in the threads’ execution order
l  Maybe the results are the same by accident (depending on

the computations done), but the choice remains

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Managing
nondeterminism
l  Nondeterminism must always be managed

l  It should not affect program correctness
l  The most complicated case is when threads and cells

are used in the same program (see previous example)
l  Unfortunately, this is exactly how many languages

handle concurrency

l  Deterministic dataflow has a major advantage
l  The result of a program is always the same (except if there is a

programming error – if a thread raises an exception)
l  The nondeterminism of the scheduler does not affect the result

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Deterministic
dataflow summary
l  We have introduced a simple and expressive

paradigm for concurrent programming
l  By design, it has no observable nondeterminism

(no race conditions)
l  It is based on two simple ideas

l  Synchronization of single-assignment variables on binding
l  Threads, a sequence of executing instructions

l  We can build multi-agent programs using streams
(a list with unbound tail) and agents (a list function
running in a thread)
l  Deterministic dataflow is a form of functional programming

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Concurrency
must get simpler
l  Parallel programming has finally arrived (a surprise to old timers like me!)

l  Multicore processors: dual and quad today, a dozen tomorrow, a hundred
in a decade, soon most apps will do it

l  Distributed computing: data-intensive with tens of nodes today (NoSQL,
MapReduce), hundreds and thousands tomorrow, most apps will do it

l  Something fundamental will have to change
l  Sequential programming can’t be the default (it’s a centralized bottleneck)
l  Libraries can only hide so much (interface complexity, distribution structure)

l  Concurrency will have to get a lot easier
l  Deterministic dataflow is functional programming!
l  It can be extended cleanly to distributed computing

l  Open network transparency
l  Modular fault tolerance
l  Large-scale distribution

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

But is determinism
the right default?

l  Deterministic dataflow has strong limitations!
l  Any program that needs nondeterminism can’t be written
l  Even a simple client/server can’t be written

l  But determinism has big advantages too
l  Race conditions are impossible by design
l  With determinism as default, we can reduce the need for nondeterminism (in the

client/server, it’s needed only at the point where the server accepts requests)
l  Any functional program can be made concurrent without changing the result

Client 1

Client 2

Server

A client/server can’t be
written in a

deterministic paradigm!

It’s because the server
must accept requests
nondeterministically
from the two clients

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

History of
deterministic dataflow
l  Deterministic concurrency has a long history that starts in 1974

l  Gilles Kahn. The semantics of a simple language for parallel programming. In IFIP
Congress, pp. 471-475, 1974. Deterministic concurrency.

l  Gilles Kahn and David B. MacQueen. Coroutines and networks of parallel processes. In
IFIP Congress, pp. 993-998, 1977. Lazy deterministic concurrency.

l  Why was it forgotten for so long?
l  Message passing and monitors arrived at about the same time:

l  Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular ACTOR formalism for artificial
intelligence. In 3rd International Joint Conference on Artificial Intelligence (IJCAI), pp. 235-245, Aug.
1973.

l  Charles Antony Richard Hoare. Monitors: An operating system structuring concept. Communications of
the ACM, 17(10):549-557, Oct. 1974.

l  Actors and monitors express nondeterminism, so they are better. Right?

l  Dataflow computing also has a long history that starts in 1974
l  Jack B. Dennis. First version of a data flow procedure language. Springer Lecture Notes in

Computer Science, vol. 19, pp. 362-376, 1974.
l  Dataflow remained a fringe subject since it was always focused on parallel programming,

which only became mainstream with the arrival of multicore processors in mainstream
computing (e.g., IBM POWER4, the first dual-core processor, in 2001).

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Next lesson
l  General programming techniques for

deterministic dataflow
l  « Concurrency for dummies »

l  More sophisticated programming with
deterministic dataflow
l  Higher-order programming and concurrent

deployment
l  Semantics of threads: how concurrency

extends the abstract machine
l  A small extension to our abstract machine

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Deterministic dataflow
techniques and semantics

l  Concurrency transparency
l  Adding threads to make a program more incremental, without

changing the result

l  A for loop abstraction that collects results
l  Using cells to build concurrency abstractions

l  Multi-agent programming
l  Sieve of Eratosthenes: dynamically building a pipeline of

concurrent agents
l  Digital logic simulation: using higher-order programming together

with deterministic dataflow

l  Thread semantics
l  Extending the abstract machine with multiple semantic stacks

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Concurrency
transparency
l  We saw that multi-agent programs are deterministic

l  Their nondeterminism is not observable
l  The agent Trans with input 1|2|3|_ always outputs 1|4|9|_

l  In these programs, concurrency does not change the result
but only the order in which computations are done (that is,
when the result is calculated)
l  It is possible to add threads at will to a program without changing

the result (we call this concurrency transparency)
l  The only effect of added threads is to make the program more

incremental (to remove roadblocks)

l  Concurrency transparency is only true of declarative paradigms
l  It is no longer true when using cells and threads together (Java!)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Example of
transparency (1)

fun {Map Xs F}
 case Xs
 of nil then nil
 [] X|Xr then
 {F X} | {Map Xr F}
 end
end

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Example of
transparency (2)

fun {CMap Xs F}
 case Xs
 of nil then nil
 [] X|Xr then
 thread {F X} end | {CMap Xr F}
 end
end

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Example of
transparency (3)

fun {CMap Xs F}
 case Xs
 of nil then nil
 [] X|Xr then
 thread {F X} end | {CMap Xr F}
 end
end

thread … end
can be used as
an expression

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Example of
transparency (4)
fun {CMap Xs F}
 case Xs
 of nil then nil
 [] X|Xr then
 thread {F X} end | {CMap Xr F}
 end
end

l  What happens when we execute:
 declare F
 {Browse {CMap [1 2 3 4] F}}

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Example of
transparency (5)
fun {CMap Xs F}
 case Xs
 of nil then nil
 [] X|Xr then
 thread {F X} end | {CMap Xr F}
 end
end

l  The Browser displays [_ _ _ _]
l  CMap calculates a list with unbound variables
l  The new threads wait until F is bound

l  What would happen if {F X} was not in its own thread?
l  Nothing would be displayed! The CMap call would block.

declare F
{Browse {CMap [1 2 3 4] F}}

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Example of
transparency (6)
fun {CMap Xs F}
 case Xs
 of nil then nil
 [] X|Xr then
 thread {F X} end | {CMap Xr F}
 end
end

l  What happens when we add:
 F = fun {$ X} X+1 end

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Example of
transparency (7)
fun {CMap Xs F}
 case Xs
 of nil then nil
 [] X|Xr then
 thread {F X} end | {CMap Xr F}
 end
end

l  The Browser displays [2 3 4 5]
l  With or without the thread creation,

the final result is always [2 3 4 5]

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

“Concurrency
for dummies”

l  Threads can be added at will to a functional program
without changing the result

l  Therefore it is very easy to take a functional program
and make it concurrent

l  It suffices to insert thread … end in those places that
need concurrency

l  Warning: concurrency for dummies does not work in a
program with explicit state (= with cells)!
l  For example, it does not work in Java
l  En Java, concurrency is handled with the concept of a

monitor, which coordinates how multiple threads access
an object. This is much more complicated than
deterministic dataflow.

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Why does
it work? (1)

fun {Fib X}
 if X==0 then 0

 elseif X==1 then 1
 else

 thread {Fib X-1} end + {Fib X-2}
 end

end

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

fun {Fib X}
 if X==0 then 0 elseif X==1 then 1
 else F1 F2 in
 F1 = thread {Fib X-1} end

 F2 = {Fib X-2}

 F1 + F2
end

end

Dataflow dependency

It works because variables can
only be bound to one value

Why does
it work? (2)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Execution
of {Fib 6}

F6

F5

F4 F2

F3

F2

F1

F2

F3

F2

F1

F4

F1 F3

F2

Create a thread

Synchronize
with the result

Running thread

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Observing the
execution of Fib

Oz Compiler Panel
(in Oz menu) Total number of threads

created since system startup

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

A for loop abstraction
that collects results
l  We show how to use state (a cell) and higher-

order programming together to build a powerful
new abstraction for deterministic dataflow
l  The imperative and functional paradigms are not

antagonistic! Using cells can give extra power to
dataflow programs.

l  Our new abstraction will generalize the
declarative for loop of Oz to collect results
l  It is a powerful form of list comprehension

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Declarative
for loop
l  Oz has a declarative for loop

for I in [1 2 3] do {Browse I*I} end

l  This is exactly the same as executing the following three
statements one after the other:

local I=1 in {Browse I*I} end
local I=2 in {Browse I*I} end
local I=3 in {Browse I*I} end

l  Each iteration is independent; the identifier I references
one element of the list in each iteration

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Collecting results
in the for loop

l  We would like to extend the declarative
for loop to accumulate results

R = for I in [1 2 3] do (accumulate I*I) end

l  We would like this to return R=[1 4 9]
l  The existing for loop cannot do this, but we

will define a new abstraction that can

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The ForCollect
abstraction
l  The ForCollect abstraction extends the for loop

with the ability to accumulate results:

R = {ForCollect [1 2 3] proc {$ C I} <stmt> end}

l  The loop body is <stmt>
l  I is the loop index
l  C is the « collect procedure »: calling {C X} in the loop

body will accumulate X in R

R = {ForCollect [1 2 3] proc {$ C I} {C I*I} end}
⇒ R=[1 4 9]

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Defining the
collect procedure (1)

l  How can we define the collect procedure C?
l  C cannot be written in the functional paradigm

because it has memory: each time we call {C X}
we need to append X to the output list. Each time
we call C the output changes.

l  C can only be defined using state, i.e., a cell
l  The cell is used to append X to the output list

l  But seen from the outside, ForCollect will still
be functional!
l  Let us see how to define the collect procedure...

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Defining the
collect procedure (2)
l  Assume we are building the output list and we have

already added three elements to it:

R = 1|4|9|R1

l  To add another element, we need to bind R1:

R1=16|R2

l  This makes the new R = 1|4|9|16|R2
l  The new end of this list is R2!
l  So the cell always has to store the end of the list

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Defining the
collect procedure (3)
l  We can define the collect procedure like this:

Acc={NewCell R} % Cell Acc contains end of the list

proc {C X}
 R2 % New end of list
in
 @Acc=X|R2 % Bind old end of list to X|R2
 Acc:=R2 % Set C to new end of list R2
end

l  This appends X to the output list

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Definition
of ForCollect
l  This gives us the following definition of ForCollect:

proc {ForCollect Xs P Ys}
 Acc={NewCell Ys}
 proc {C X} R2 in @Acc=X|R2 Acc:=R2 end
in
 for X in Xs do {P C X} end
 @Acc=nil
end

l  We need to write ForCollect as a procedure,
even though we will call it as a function
l  It is because we need to access the output Ys (= initial content of Acc)

Doing Acc:=nil would be
wrong! Do you see why?

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Concurrent agent
with ForCollect
l  We have defined ForCollect on lists, but it can do more!

l  ForCollect also works on streams

l  Running ForCollect in a thread makes a concurrent agent:

Ys=thread {ForCollect Xs
 proc {$ C X} if X mod 2 == 0 then {C X*X} end end}
 end

l  This agent reads an input stream Xs and returns an
output stream Ys that contains the squares of the even
elements of Xs

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Conclusions
of ForCollect
l  ForCollect is a powerful abstraction that combines

and generalizes both Map and Filter
l  When used with lists, it is called a list comprehension
l  Some languages have syntax for this, e.g., Haskell and Python
l  In Oz, list comprehensions can be concurrent agents

l  ForCollect is defined by combining cells and higher-order
programming
l  There is no antagonism between the imperative and functional

paradigms; they can be used together to the benefit of both
l  Even though ForCollect uses a cell internally, it is completely

deterministic when viewed from the outside. This is because we
use the cell in a single thread.

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Alternative definition
of ForCollect
l  If the collect procedure C might be used in more than one thread,

then we need to change its definition to use Exchange:

proc {ForCollect Xs P Ys}
 Acc={NewCell Ys}
 proc {C X} R2 in {Exchange Acc X|R2 R2} end
in
 for X in Xs do {P C X} end
 {Exchange Acc nil _}
end

l  {Exchange Acc Old New} does two operations atomically:
l  Old is bound to the old content and New becomes the new content
l  This avoids errors when cells are used by multiple threads: doing @Acc and

Acc:=R2 as two separate operations would permit another operation on Acc
to be done in between, which is wrong!

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Multi-agent
programming
l  In the last lesson we saw some simple

examples of multi-agent programs
l  Producer/consumer
l  Producer/transformer/consumer (pipeline)

l  Let’s see two more sophisticated examples
l  Sieve of Eratosthenes: dynamically building a

pipeline during its execution
l  Digital logic simulation: using higher-order

programming together with concurrency

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The Sieve of
Eratosthenes

l  The Sieve of Eratosthenes is an algorithm for
calculating a sequence of prime numbers

l  Each agent in the pipeline removes multiples of
an integer

l  Starting with a sequence containing all integers,
we end up with a sequence of primes

-2k -3k -5k
2|3|4|5|6|7|8|…

3|5|7|9|11|13|15|… 5|7|11|13|17|19|…

7|11|13|17|19|…

…

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

A filter agent
l  A list function that removes multiples of K:

fun {Filter Xs K}
 case Xs of X|Xr then
 if X mod K \= 0 then X|{Filter Xr K}
 else {Filter Xr K} end
 else nil
 end

end

l  We make an agent by putting it in a thread:

thread Ys={Filter Xs K} end

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The Sieve program
l  Sieve builds the pipeline during execution:

fun {Sieve Xs}
 case Xs
 of nil then nil
 [] X|Xr then X|{Sieve thread {Filter Xr X} end}
 end

end

declare Xs Ys in
thread Xs={Prod 2} end
thread Ys={Sieve Xs} end
{Browse Ys}

Concurrent deployment:
building the infrastructure of
a program during execution

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

An optimization
l  Otherwise too many do-nothing agents are created!

fun {Sieve2 Xs M}

 case Xs
 of nil then nil
 [] X|Xr then
 if X=<M then
 X|{Sieve2 thread {Filter Xr X} end M}
 else Xs end
 end

end

l  We call {Sieve2 Xs 316} to generate a list of primes
up to 100000 (why?)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Thread
semantics (1)

l  We extend the abstract machine with threads
l  Each thread has one semantic stack

l  The instruction thread <s> end creates a new stack
l  All stacks share the same memory

l  There is one sequence of execution states,
and threads take turns executing instructions
l  (MST1,σ1) → (MST2,σ2) → (MST3,σ3) → ...
l  MST is a multiset of semantic stacks
l  This is called interleaving semantics

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Thread
semantics (2)

A semantic stack
that is about to
create a thread

l Memory σ

(thread <s> end,E)
ST

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Thread
semantics (3)

We now have
two stacks! [(<s>,E)] ST

l Memory σ

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Why interleaving
semantics?
l  What happens when activities execute ”at the same time”?
l  We can imagine that all threads execute in parallel, each with

its own processor but all sharing the same memory
l  We have to be careful to understand what happens when

threads operate simultaneously on the same memory word
l  If the threads share the same processor, then this problem is

avoided (interleaving semantics)

l  Interleaving semantics is much easier to reason about than
truly concurrent semantics
l  Truly concurrent semantics also models the case where threads

”step on each others’ toes”, but usually this is not needed, since
the hardware is careful to keep this from happening

l  For example, in a multicore processor the cache coherence
protocol avoids simultaneous operations on one memory word

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Order of
execution states
l  In a sequential program, execution states are in a total order

l  Total order = when comparing any two execution states,
one must happen before the other

l  In a concurrent program, execution states of the same thread
are in a total order
l  The execution states of the complete program (with multiple

threads) are in a partial order
l  Partial order = when comparing any two execution states, there

might be no order between them (either may happen first)
l  In a concurrent program, many executions are compatible

with the partial order
l  In the actual execution, the scheduler chooses one

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Total order in a
sequential program
l  In a sequential program, execution states are

in a total order
l  A sequential program has one thread
l  Earlier paradigms always had this situation

One execution step

Sequential
execution

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Partial order in a
concurrent program

Thread T1

Thread T2

Thread T3

Bind a dataflow variable (”X=20”)

Wait for the value of a dataflow variable (”Y=X+1”)

X

Z

X

Thread
creation

One execution step

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Partial order in a
concurrent program
l  In a concurrent program, many executions are

compatible with the partial order
l  The scheduler chooses one of them during the

actual execution (nondeterminism)

One execution step

Thread T1

Thread T2

Thread T3

Thread
creation

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Digital logic
simulation
l  The deterministic dataflow paradigm makes

it easy to model digital logic circuits

l  We show how to model combinational logic
circuits (no memory) and sequential logic
circuits (with memory)

l  Signals in time are represented as streams;
logic gates are represented as agents

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Modeling
digital circuits
l  Real digital circuits consist of active circuit elements

called gates which are interconnected using wires that
carry digital signals

l  A digital signal is a voltage in function of time
l  Digital signals are meant to carry two possible values, called

0 and 1, but they may have noise, glitches, ringing, and other
undesirable effects

l  A digital gate has input and output signals
l  The output signal is slightly delayed with respect to the input

l  We will model gates as agents and signals as streams
l  This assumes perfectly clean signals and zero gate delay
l  We will later add a delay gate in order to model gate delay

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Digital signals
as streams

l  A signal is modeled by a stream that
contains elements with values 0 or 1

S=a0|a1|a2|...|ai|...

l  Time instants are numbered from when
the circuit starts running

l  At instant i, the signal’s value ai∈{0,1}

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Digital logic gates

l  Some typical logic gates with their standard pictorial
symbols and the boolean functions that define them

l  But gates are not just boolean functions!

00
0

0
1

1
1

1
x

x
y

y

x
y

z

z

z

x Not

Or

And

Xorz

x Not And Or Xor
z

1

0

0 1 1
0 0 1 1

1 1 0

0 0 0

y

1

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Digital gates
as agents
l  A gate is much more than a boolean function; it is an active entity

that takes input streams and calculates an output stream

fun {And A B} if A==1 andthen B==1 then 1 else 0 end end
fun {Loop S1 S2}
 case S1#S2 of (A|T1)#(B|T2) then {And A B}|{Loop T1 T2} end
end
thread Sc={Loop Sa Sb} end

l  Example execution:

Sx=0|1|0|Tx % input signal x
Sy=1|1|0|Ty % input signal y
Sz=0|1|0|Tz % output signal z

x

y
z

And gate

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Creating
many gates
l  Let us define a proper abstraction for building all the

different kinds of logic gates we need
l  We define the function GateMaker that takes a two-argument

boolean function Fun, where {GateMaker Fun} returns a function
FunG that creates gates

l  Each call to FunG creates a running gate based on Fun

l  This gives three levels of abstraction that we can
compare with object-oriented programming:
l  GateMaker is analogous to a generic class
l  FunG is analogous to a class
l  A running gate is analogous to an object

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

GateMaker
implementation
l  Calling {GateMaker F} creates a gate maker:

fun {GateMaker F}
 fun {$ Xs Ys}
 fun {GateLoop Xs Ys}
 case Xs#Ys of (X|Xr)#(Y|Yr) then
 {F X Y}|{GateLoop Xr Yr}
 end
 end
 in
 thread {GateLoop Xs Ys} end
 end
end

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Making gates
l  Each of these functions can make gates:

AndG={GateMaker fun {$ X Y} X*Y end}
OrG={GateMaker fun {$ X Y} X+Y-X*Y end}
NandG={GateMaker fun {$ X Y} 1-X*Y end}
NorG={GateMaker fun {$ X Y} 1-X-Y+X*Y end}
XorG={GateMaker fun {$ X Y} X+Y-2*X*Y end}

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Combinational logic
l  Combinational logic has no memory: all

calculation is done at the same time instant
l  A gate is a simple combinational function:

zi = xi And yi

l  Therefore, any number of interconnected
gates also defines a combinational function

l  We define a useful circuit called a full adder

x

y
z

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Full adder
specification

l  A full adder adds three 1-bit binary numbers x, y, and z
giving a sum bit s and carry bit c

l  An n-bit adder can be built by connecting n full adders

x

y

z c

s

l x y z c s

l 0 0 0 0 0
l 0 0 1 0 1
l 0 1 0 0 1
l 0 1 1 1 0
l 1 0 0 0 1
l 1 0 1 1 0
l 1 1 0 1 0
l 1 1 1 1 1

a

b

d

e

f

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Full adder
implementation
l  Full adder creation as five-argument component:

proc {FullAdder X Y Z C S}
 A B D E F
in
 A={AndG X Y}
 B={AndG Y Z}
 D={AndG X Z}
 F={OrG B D}
 C={OrG A F}
 E={XorG X Y}
 S={XorG Z E}
end

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Sequential logic

l  Sequential logic has memory: past values
of a signal influence the present values

l  We add a way for the past to influence the
present: a Delay gate

S=a0|a1|a2|...|ai|...
T=b0|b1|b2|...|bi|...

bi=ai-1 ⇒ T=0|S

s t

Delay

fun {DelayG S} 0|S end

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Latch
specification

l  A latch is a simple circuit with memory; it has two stable
states and can memorize its input

l  Output do follows input di and freezes when c is 1

Delay

id

do

c
f a

b e

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Latch
implementation
l  Latch creation as a three-argument component:

proc {Latch C Di Do}
 A B E F
in
 F={DelayG Do}
 A={AndG C F}
 E={NotG C}
 B={AndG E Di}
 Do={OrG A B}
end

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Conclusions for
deterministic dataflow
l  Deterministic dataflow generalizes the functional paradigm

l  There is no observable nondeterminism
l  All functional patterns become concurrency patterns

l  Concurrency is transparent: « concurrency for dummies »
l  Threads can be added at will without changing the result
l  To remove roadblocks and make computation more incremental

l  Deterministic dataflow is a good default
l  Nondeterminism can be added where needed and nowhere else
l  Deterministic concurrency is seeing a well-deserved resurgence

after decades of neglect, at both large and small scales (big data
computing and multicore computing)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Learning more
about concurrency
l  Paradigms that can avoid race conditions

l  Deterministic dataflow
l  Lazy deterministic dataflow
l  Constraint programming
l  Others (e.g., E: capability-based programming)

l  Paradigms that can express nondeterminism
l  Message-passing concurrency

l  Scala, Erlang
l  Shared-state concurrency

l  Transactions
l  Monitors (only recommended for legacy systems)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Multi-agent
dataflow paradigm

l  We can combine deterministic dataflow and message passing
l  We add one concept to deterministic dataflow: a named stream (port)
l  This adds nondeterminism (any thread can send a message to the port)
l  Since the named stream is still a stream, it can be used in deterministic

dataflow programs
l  This gives multi-agent dataflow programming

l  This paradigm allows adding nondeterminism only where needed
l  Concurrency patterns can be written very concisely

l  A simple contract-net protocol can be written in just three lines
l  Ozma was an experiment to extend Scala to support multi-agent dataflow.

This worked quite well, but it needs fine-grained concurrency (cheap threads)
to achieve maximum usefulness (only partial success on JVM).

l  Multi-agent dataflow is the best all-round concurrent paradigm
l  Even better than Erlang, since it allows managing nondeterminism Opinion

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Many
important ideas

l  Identifiers and environments
l  Functional programming
l  Recursion
l  Invariant programming
l  Lists, trees, and records
l  Symbolic programming
l  Instantiation
l  Genericity
l  Higher-order programming
l  Complexity and Big-O notation
l  Moore’s Law
l  NP and NP-complete problems
l  Kernel languages
l  Abstract machines
l  Mathematical semantics

l  Explicit state
l  Data abstraction
l  Abstract data types and objects
l  Polymorphism
l  Inheritance
l  Multiple inheritance
l  Object-oriented programming
l  Exception handling
l  Concurrency
l  Nondeterminism
l  Scheduling and fairness
l  Dataflow synchronization
l  Deterministic dataflow
l  Agents and streams
l  Multi-agent programming

Louv1.1x Louv1.2x

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

PLP_Drive space

A.HARICHE a.hariche@univ-dbkm.dz
49

https://drive.google.com/drive/folders/1YBCIZzAldeiT19DIfDiREQwP-NAQ1qMN

admin
Rectangle

https://drive.google.com/drive/folders/1YBCIZzAldeiT19DIfDiREQwP-NAQ1qMN

