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The world 
is concurrent 
l  The real world is concurrent 

l  It is made of activities that progress independently 

l  The computing world is concurrent too 
l  Distributed system: computers linked by a network 

l  A concurrent activity is called a computing node (computer) 
l  Operating system: management of a single computer 

l  A concurrent activity is called a process 
l  Processes have independent memory spaces 

l  Process: execution of a single program 
l  A concurrent activity is called a thread 
l  Threads share the same memory space 
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Concurrent 
programming 
l  Concurrency is natural 

l  Many activities are naturally independent 
l  Activities that are independent are ipso facto concurrent 
l  So how can we write a program with many independent activities? 
l  Concurrency must be supported by the language! 

l  A concurrent program 
l  Multiple progressing activities that exist at the same time 
l  Activities that can communicate and synchronize 

l  Communicate: information passes from one activity to another 
l  Synchronize: an activity waits for another to perform a specific 

action 
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Concurrency 
can be (very) hard 

l  It introduces many difficulties such as nondeterminism, race conditions, 
reentrancy, deadlocks, livelocks, fairness, handling shared data, and 
concurrent algorithms can be complicated 
l  Java’s synchronized objects are tough to program with 
l  Erlang’s and Scala’s actors are better, but they still have race conditions 
l  Libraries can hide some of these problems, but they always peek through 

l  Adding distribution makes it even harder 

l  Adding partial failure makes it even much harder than that 
 
l  The Holy Grail: can we make concurrent programming 

as easy as sequential programming? 
l  Yes, it can be done, if the paradigm is chosen wisely 
l  In this course we will see deterministic dataflow, which is a concurrent 

paradigm that is a form of functional programming 
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Deterministic 
dataflow 
l  There are three main paradigms of concurrent programming 
l  The simplest is called deterministic dataflow 

l  That is what we are going to see now 
l  It supports all the techniques of functional programming 

l  What are the two other paradigms? 
l  Message-passing concurrency (e.g., Erlang and Scala actors) 

l  Activities send messages to each other (like sending letters) 
l  Relatively straightforward, can be combined with dataflow 

l  Shared-state concurrency (e.g., Java monitors) 
l  Activities share the same data and they try to work together 

without getting in each other’s way 
l  Much more complicated 
l  Unfortunately, many current languages still use this paradigm 
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An unbound variable 
l  An unbound variable is created in memory 

but not bound to a value 
l  What happens when you invoke an 

operation with an unbound variable? 
local X Y in 

 Y=X+1 
 {Browse Y} 

end 
l  What happens? 
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What to do with an 
uninitialized variable? 
l  Different languages do different things 

l  In C, the addition continues and X has a “garbage 
value” (= content of X’s memory at that moment) 

l  In Java, the addition continues and X’s value is 0 
(if X is an object attribute with type integer) 

l  In Prolog, execution stops with an error 
l  In Java, the compiler detects an error 

(if X is a local variable) 
l  In Oz, execution waits just before the addition and 

continues when X is bound (dataflow execution) 
l  In constraint programming, the equation “Y=X+1” is 

added to the set of constraints and execution continues. 
A superb way to compute! 
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Continuing 
the execution 
l  The waiting instruction: 

declare X 
local Y in 

 Y=X+1 
 {Browse Y} 

end 
l  If someone would bind 

X, then execution could 
continue 

l  But who can do it? 
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Continuing 
the execution 

l  Answer: another 
concurrent activity! 

l  If another activity does: 
 X=20 

l  Then the addition will 
continue and display 
21! 

l  This is called dataflow 
execution 

l  The waiting instruction: 
declare X 
local Y in 

 Y=X+1 
 {Browse Y} 

end 
l  If someone would bind 

X, then execution could 
continue 

l  But who can do it? 
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Dataflow execution 

l  Activity A waits patiently at point (1) just before the addition 
l  When activity B binds X=20 at point (2), then activity A can 

continue 
l  If activity B binds X=20 before activity A reaches point (1), 

then activity A does not have to wait 

Y=X+1 {Browse Y} 
Activity A’s progress 

(1) 
X=20 

Activity B’s progress 
(2) 
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Threads 
l  We add a language concept to support concurrent activities  

l  In a program, an activity is a sequence of executing instructions 
l  We add this concept to the language and call it a thread 

l  Each thread is sequential 
l  Each thread is independent of the others 

l  There is no order defined between different threads 
l  The system executes all threads using interleaving semantics: 

it is as if only one thread executes at a time, with execution 
stepping from one thread to another 

l  The system guarantees that each thread receives a fair share 
of the computational capacity of the processor 

l  Two threads can communicate if they share a variable 
l  For example, the variable corresponding to identifier X in the 

example we just saw 
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Thread creation 
l  Creating a thread in Oz is simple 
l  Any instruction can be executed in a new thread: 

 thread <s> end 
l  For example: 

 declare X 
 thread {Browse X+1} end 
 thread X=1 end 

l  What does this small program do? 
l  Several executions are possible, but they all eventually 

arrive at the same result: 2 is displayed! 
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A small program (1) 

l  A small program with several threads: 
 declare X0 X1 X2 X3 in 
 thread X1=1+X0 end 
 thread X3=X1+X2 end 
 {Browse [X0 X1 X2 X3]} 

l  The Browser displays [X0 X1 X2 X3] 
l  The variables are all unbound 
l  The Browser also uses dataflow: 

when a variable is bound, the display is updated 
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A small program (2) 

l  A small program with several threads: 
 declare X0 X1 X2 X3 in 
 thread X1=1+X0 end 
 thread X3=X1+X2 end 
 {Browse [X0 X1 X2 X3]} 

l  Two threads will wait: 
l  X1=1+X0 waits (since X0 is unbound) 
l  X3=X1+X2 waits (since X1 and X2 are unbound) 
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A small program (3) 

l  A small program with several threads: 
 declare X0 X1 X2 X3 in 
 thread X1=1+X0 end 
 thread X3=X1+X2 end 
 {Browse [X0 X1 X2 X3]} 

l  Let’s bind one variable 
l  Bind X0=4 
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A small program (4) 

l  A small program with several threads: 
 declare X0 X1 X2 X3 in 
 thread X1=1+X0 end 
 thread X3=X1+X2 end 
 {Browse [X0 X1 X2 X3]} 

l  Let’s bind one variable 
l  Bind X0=4 

l  The first thread executes and binds X1=5 
l  The Browser displays [4 5 X2 X3] 
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A small program (5) 

l  A small program with several threads: 
 declare X0 X1 X2 X3 in 
 thread X1=1+X0 end  % terminated 
 thread X3=X1+X2 end 
 {Browse [X0 X1 X2 X3]} 

l  The second thread is still waiting 
l  Because X2 is still unbound 
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A small program (6) 

l  A small program with several threads: 
 declare X0 X1 X2 X3 in 
 thread X1=1+X0 end  % terminated 
 thread X3=X1+X2 end 
 {Browse [X0 X1 X2 X3]} 

l  Let’s do another binding 
l  Bind X2=7 

l  The second thread executes and binds X3=12 
l  The Browser displays [4 5 7 12] 
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The Browser is a 
dataflow program 
l  The Browser executes with its own threads 
l  For each unbound variable that is displayed, 

there is a thread in the Browser that waits until 
the variable is bound 
l  When the variable is bound, the display is updated 

l  This does not work with cells 
l  The Browser targets the dataflow paradigm 
l  The Browser does not look at the content of cells, 

since they do not execute with dataflow 
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Streams 
l  A stream is a list that ends in an unbound 

variable 
l  S=a|b|c|d|S2 
l  A stream can be extended with new elements as 

long as necessary 
l  The stream can be closed by binding the end to nil 

l  A stream can be used as a communication 
channel between two threads 
l  The first thread adds elements to the stream 
l  The second thread reads the stream 
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Programming 
with streams 
l  This program displays the elements of a 

stream as they appear: 
 

proc {Disp S} 
    case S of X|S2 then {Browse X} {Disp S2} end 
end 
declare S 
thread {Disp S} end 
 

l  We can add elements gradually: 
 declare S2 in S=a|b|c|S2 
 declare S3 in S2=d|e|f|S3 

l  Try it yourself! 
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Producer/ 
consumer (1) 

l  A producer generates a stream of data 
 fun {Prod N} {Delay 1000} N|{Prod N+1} end 

l  The {Delay 1000} slows down execution enough to observe it 

l  A consumer reads the stream and performs 
some action (like the Disp procedure) 

l  A producer/consumer program: 
 declare S 
 thread S={Prod 1} end 
 thread {Disp S} end 
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Producer/ 
consumer (2) 

l  Each circle is a concurrent activity that reads and 
writes streams 
l  We call this an agent 

l  Agents P and C communicate through stream S 
l  The first thread creates the stream, the second reads it 

 thread S={Prod 1} end thread {Disp S} end 

S=1|2|3|4|… 

Agent P Agent C 
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Pipeline (1) 
l  We can add more agents between P and C 
l  Here is a transformer that modifies the stream: 

 fun {Trans S} 
     case S of X|S2 then X*X|{Trans S2} end 
 end 

l  This program has three agents: 
 declare S1 S2 
 thread S1={Prod 1} end 
 thread S2={Trans S1} end 
 thread {Disp S2} end 
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Pipeline (2) 

l  We now have three agents 
l  The producer (agent P) creates stream S1 
l  The transformer (agent T) reads S1 and creates S2 
l  The consumer (agent C) reads S2 

l  The pipeline is a very useful technique! 
l  For example, it is omnipresent in operating systems since Unix 

 thread S1={Prod 1} end thread {Disp S2} end 

S1=1|2|3|… 

Agent P Agent C 

thread S2={Trans S1} end 

Agent T 

S2=1|4|9|… 
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Agents 
l  An agent is a concurrent activity that reads and writes 

streams 
l  The simplest agent is a list function executing in one thread 
l  Since list functions are tail-recursive, the agent can execute 

with a fixed memory size 
l  This is the deep reason why single assignment is important: 

it makes tail-recursive list functions, which makes 
deterministic dataflow into a practical paradigm 

l  All list functions can be used as agents 
l  All functional programming techniques can be used in 

deterministic dataflow 
l  Including higher-order programming!  In the next lesson will see more 

examples of the power of the model. 
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Deterministic 
concurrency 
l  Each thread in a deterministic dataflow program 

always executes the same instructions in the same order 
l  This is true even though the threads can vary their relative speeds 

from one execution to the next 
l  Speeds can vary because of input/output, hardware interrupts, 

cache misses, and other sources of timing changes 

l  A deterministic dataflow program always gives the same outputs 
for the same inputs, despite variations in thread speeds 
l  We say the program has no observable nondeterminism 

(no race conditions) 
l  This is a major advantage of the deterministic dataflow paradigm 

that is not shared by the two other paradigms 
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Nondeterminism 
and the scheduler 
l  Nondeterminism is the ability of the system to make 

decisions that are visible by a running program 
l  The application programmer does not make the decisions 
l  The decisions can vary from one execution to the next 

l  The scheduler is the part of the system that decides 
at each moment which thread to execute 
l  This decision is called nondeterminism 

l  Nondeterminism is a property of any concurrent 
system 
l  It must be, since the concurrent activities are independent 
l  A crucial part of any concurrent program is how to manage 

its nondeterminism 
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Example of 
nondeterminism (1) 
l  What does the following program do? 

 declare X 
 thread X=1 end 
 thread X=2 end 

l  The execution order of the two threads is not fixed 
l  X will be bound to 1 or 2, we don’t know which 
l  The other thread will have an error (raise an exception) 

l  A variable cannot be assigned to two values 

l  This is an example of nondeterminism 
l  A choice made by the system during execution 
l  The system is free to choose one or the other 

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz



Example of 
nondeterminism (2) 
l  What does the following program do? 

 declare X={NewCell 0} 
 thread X:=1 end 
 thread X:=2 end 

l  The execution order of the two threads is not fixed 
l  Cell X will first be bound to one value, then to the other 
l  When both threads terminate, X will contain 1 or 2, we 

don’t know which 
l  This time there is no error 

l  This is an example of nondeterminism 
l  A choice made by the system during execution 
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Example of 
nondeterminism (3) 
l  What does the following program do? 

 declare X={NewCell 0} 
 thread X:=1 end 
 thread X:=1 end 

l  It makes a choice, just like the previous program 
l  But in this case, the final results are the same 

l  This is still nondeterminism! 
l  The important point is the choice: the running program still 

sees a difference in the threads’ execution order 
l  Maybe the results are the same by accident (depending on 

the computations done), but the choice remains 

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz



Managing 
nondeterminism 
l  Nondeterminism must always be managed 

l  It should not affect program correctness 
l  The most complicated case is when threads and cells 

are used in the same program (see previous example) 
l  Unfortunately, this is exactly how many languages 

handle concurrency 

l  Deterministic dataflow has a major advantage 
l  The result of a program is always the same (except if there is a 

programming error – if a thread raises an exception) 
l  The nondeterminism of the scheduler does not affect the result 
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Deterministic 
dataflow summary 
l  We have introduced a simple and expressive 

paradigm for concurrent programming 
l  By design, it has no observable nondeterminism 

(no race conditions) 
l  It is based on two simple ideas 

l  Synchronization of single-assignment variables on binding 
l  Threads, a sequence of executing instructions 

l  We can build multi-agent programs using streams 
(a list with unbound tail) and agents (a list function 
running in a thread) 
l  Deterministic dataflow is a form of functional programming 
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Concurrency 
must get simpler 
l  Parallel programming has finally arrived (a surprise to old timers like me!) 

l  Multicore processors: dual and quad today, a dozen tomorrow, a hundred 
in a decade, soon most apps will do it 

l  Distributed computing: data-intensive with tens of nodes today (NoSQL, 
MapReduce), hundreds and thousands tomorrow, most apps will do it 

l  Something fundamental will have to change 
l  Sequential programming can’t be the default (it’s a centralized bottleneck) 
l  Libraries can only hide so much (interface complexity, distribution structure) 

l  Concurrency will have to get a lot easier 
l  Deterministic dataflow is functional programming! 
l  It can be extended cleanly to distributed computing 

l  Open network transparency 
l  Modular fault tolerance 
l  Large-scale distribution 
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But is determinism 
the right default? 

l  Deterministic dataflow has strong limitations! 
l  Any program that needs nondeterminism can’t be written 
l  Even a simple client/server can’t be written 

l  But determinism has big advantages too 
l  Race conditions are impossible by design 
l  With determinism as default, we can reduce the need for nondeterminism (in the 

client/server, it’s needed only at the point where the server accepts requests) 
l  Any functional program can be made concurrent without changing the result 

Client 1 

Client 2 

Server 

A client/server can’t be 
written in a 

deterministic paradigm! 

It’s because the server 
must accept requests 
nondeterministically 
from the two clients 
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History of 
deterministic dataflow 
l  Deterministic concurrency has a long history that starts in 1974 

l  Gilles Kahn.  The semantics of a simple language for parallel programming.  In IFIP 
Congress, pp. 471-475, 1974.  Deterministic concurrency. 

l  Gilles Kahn and David B. MacQueen.  Coroutines and networks of parallel processes.  In 
IFIP Congress, pp. 993-998, 1977.  Lazy deterministic concurrency. 

l  Why was it forgotten for so long? 
l  Message passing and monitors arrived at about the same time: 

l  Carl Hewitt, Peter Bishop, and Richard Steiger.  A universal modular ACTOR formalism for artificial 
intelligence.  In 3rd International Joint Conference on Artificial Intelligence (IJCAI), pp. 235-245, Aug. 
1973. 

l  Charles Antony Richard Hoare.  Monitors: An operating system structuring concept.  Communications of 
the ACM, 17(10):549-557, Oct. 1974. 

l  Actors and monitors express nondeterminism, so they are better.  Right? 

l  Dataflow computing also has a long history that starts in 1974 
l  Jack B. Dennis. First version of a data flow procedure language.  Springer Lecture Notes in 

Computer Science, vol. 19, pp. 362-376, 1974. 
l  Dataflow remained a fringe subject since it was always focused on parallel programming, 

which only became mainstream with the arrival of multicore processors in mainstream 
computing (e.g., IBM POWER4, the first dual-core processor, in 2001). 
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Next lesson 
l  General programming techniques for 

deterministic dataflow 
l  « Concurrency for dummies » 

l  More sophisticated programming with 
deterministic dataflow 
l  Higher-order programming and concurrent 

deployment 
l  Semantics of threads: how concurrency 

extends the abstract machine 
l  A small extension to our abstract machine 

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz



Deterministic dataflow 
techniques and semantics 

l  Concurrency transparency 
l  Adding threads to make a program more incremental, without 

changing the result 

l  A for loop abstraction that collects results 
l  Using cells to build concurrency abstractions 

l  Multi-agent programming 
l  Sieve of Eratosthenes: dynamically building a pipeline of 

concurrent agents 
l  Digital logic simulation: using higher-order programming together 

with deterministic dataflow 

l  Thread semantics 
l  Extending the abstract machine with multiple semantic stacks 
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Concurrency 
transparency 
l  We saw that multi-agent programs are deterministic 

l  Their nondeterminism is not observable 
l  The agent Trans with input 1|2|3|_ always outputs 1|4|9|_ 

l  In these programs, concurrency does not change the result 
but only the order in which computations are done (that is, 
when the result is calculated) 
l  It is possible to add threads at will to a program without changing 

the result (we call this concurrency transparency) 
l  The only effect of added threads is to make the program more 

incremental (to remove roadblocks) 

l  Concurrency transparency is only true of declarative paradigms 
l  It is no longer true when using cells and threads together (Java!) 
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Example of 
transparency (1) 

fun {Map Xs F} 
      case Xs 
      of nil  then nil 
      [] X|Xr then  
            {F X} | {Map Xr F} 
      end 
end  
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Example of 
transparency (2) 

fun {CMap Xs F} 
      case Xs 
      of nil  then nil 
      [] X|Xr then  
            thread {F X} end | {CMap Xr F} 
      end 
end  
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Example of 
transparency (3) 

fun {CMap Xs F} 
      case Xs 
      of nil  then nil 
      [] X|Xr then  
            thread {F X} end | {CMap Xr F} 
      end 
end  

thread … end 
can be used as 
an expression 
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Example of 
transparency (4) 
fun {CMap Xs F} 
      case Xs 
      of nil  then nil 
      [] X|Xr then  
            thread {F X} end | {CMap Xr F} 
      end 
end 
  

l  What happens when we execute: 
 declare F 
 {Browse {CMap [1 2 3 4] F}} 
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Example of 
transparency (5) 
fun {CMap Xs F} 
      case Xs 
      of nil  then nil 
      [] X|Xr then  
            thread {F X} end | {CMap Xr F} 
      end 
end 
  

l  The Browser displays [ _ _ _ _ ] 
l  CMap calculates a list with unbound variables 
l  The new threads wait until F is bound 

l  What would happen if {F X} was not in its own thread? 
l  Nothing would be displayed!  The CMap call would block.  

declare F 
{Browse {CMap [1 2 3 4] F}} 
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Example of 
transparency (6) 
fun {CMap Xs F} 
      case Xs 
      of nil  then nil 
      [] X|Xr then  
            thread {F X} end | {CMap Xr F} 
      end 
end 
  

l  What happens when we add: 
 F = fun {$ X} X+1 end 
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Example of 
transparency (7) 
fun {CMap Xs F} 
      case Xs 
      of nil  then nil 
      [] X|Xr then  
            thread {F X} end | {CMap Xr F} 
      end 
end 
  

l  The Browser displays [2 3 4 5] 
l  With or without the thread creation, 

the final result is always [2 3 4 5] 
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“Concurrency 
for dummies” 

l  Threads can be added at will to a functional program 
without changing the result 

l  Therefore it is very easy to take a functional program 
and make it concurrent 

l  It suffices to insert thread … end in those places that 
need concurrency 

l  Warning: concurrency for dummies does not work in a 
program with explicit state (= with cells)! 
l  For example, it does not work in Java 
l  En Java, concurrency is handled with the concept of a 

monitor, which coordinates how multiple threads access 
an object.  This is much more complicated than 
deterministic dataflow.  

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz



Why does 
it work? (1) 

fun {Fib X}  
     if X==0 then 0 

 elseif X==1 then 1 
 else  

         thread {Fib X-1} end + {Fib X-2} 
 end  

end 
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fun {Fib X}  
     if X==0 then 0 elseif X==1 then 1 
     else F1 F2 in 
          F1  =  thread {Fib X-1} end 

      F2  = {Fib X-2}  
  

       F1  + F2 
end  

end 

Dataflow dependency 

It works because variables can 
only be bound to one value 

Why does 
it work? (2) 
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Execution 
of {Fib 6} 

F6 

F5 

F4 F2 

F3 

F2 

F1 

F2 

F3 

F2 

F1 

F4 

F1 F3 

F2 

Create a thread 

Synchronize 
with the result 

Running thread 
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Observing the 
execution of Fib 

Oz Compiler Panel 
(in Oz menu) Total number of threads 

created since system startup  
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A for loop abstraction 
that collects results 
l  We show how to use state (a cell) and higher-

order programming together to build a powerful 
new abstraction for deterministic dataflow 
l  The imperative and functional paradigms are not 

antagonistic!  Using cells can give extra power to 
dataflow programs. 

l  Our new abstraction will generalize the 
declarative for loop of Oz to collect results 
l  It is a powerful form of list comprehension 
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Declarative 
for loop 
l  Oz has a declarative for loop 

 

for I in [1 2 3] do {Browse I*I} end 

l  This is exactly the same as executing the following three 
statements one after the other: 
 
local I=1 in {Browse I*I} end 
local I=2 in {Browse I*I} end 
local I=3 in {Browse I*I} end 
 

l  Each iteration is independent; the identifier I references 
one element of the list in each iteration 
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Collecting results 
in the for loop 

l  We would like to extend the declarative 
for loop to accumulate results 
 
R = for I in [1 2 3] do (accumulate I*I) end 
 

l  We would like this to return R=[1 4 9] 
l  The existing for loop cannot do this, but we 

will define a new abstraction that can 
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The ForCollect 
abstraction 
l  The ForCollect abstraction extends the for loop 

with the ability to accumulate results: 
 

R = {ForCollect [1 2 3] proc {$ C I} <stmt> end} 
 

l  The loop body is <stmt> 
l  I is the loop index 
l  C is the « collect procedure »: calling {C X} in the loop 

body will accumulate X in R 

R = {ForCollect [1 2 3] proc {$ C I} {C I*I} end} 
⇒ R=[1 4 9] 
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Defining the 
collect procedure (1) 

l  How can we define the collect procedure C? 
l  C cannot be written in the functional paradigm 

because it has memory: each time we call {C X} 
we need to append X to the output list.  Each time 
we call C the output changes. 

l  C can only be defined using state, i.e., a cell 
l  The cell is used to append X to the output list 

l  But seen from the outside, ForCollect will still 
be functional! 
l  Let us see how to define the collect procedure... 
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Defining the 
collect procedure (2) 
l  Assume we are building the output list and we have 

already added three elements to it: 
 
R = 1|4|9|R1 
 

l  To add another element, we need to bind R1: 
 
R1=16|R2 
 

l  This makes the new R = 1|4|9|16|R2 
l  The new end of this list is R2! 
l  So the cell always has to store the end of the list 
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Defining the 
collect procedure (3) 
l  We can define the collect procedure like this: 

 
Acc={NewCell R} % Cell Acc contains end of the list 
 
proc {C X} 
   R2   % New end of list 
in 
   @Acc=X|R2  % Bind old end of list to X|R2 
   Acc:=R2  % Set C to new end of list R2 
end 
 

l  This appends X to the output list 
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Definition 
of ForCollect 
l  This gives us the following definition of ForCollect: 

 
proc {ForCollect Xs P Ys} 
   Acc={NewCell Ys} 
   proc {C X} R2 in @Acc=X|R2 Acc:=R2 end 
in 
   for X in Xs do {P C X} end 
   @Acc=nil 
end 
 

l  We need to write ForCollect as a procedure, 
even though we will call it as a function 
l  It is because we need to access the output Ys (= initial content of Acc) 

Doing Acc:=nil would be 
wrong! Do you see why? 
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Concurrent agent 
with ForCollect 
l  We have defined ForCollect on lists, but it can do more! 

l  ForCollect also works on streams 

l  Running ForCollect in a thread makes a concurrent agent: 
 
Ys=thread {ForCollect Xs 
                    proc {$ C X} if X mod 2 == 0 then {C X*X} end end} 
      end 
 

l  This agent reads an input stream Xs and returns an 
output stream Ys that contains the squares of the even 
elements of Xs 
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Conclusions 
of ForCollect 
l  ForCollect is a powerful abstraction that combines 

and generalizes both Map and Filter 
l  When used with lists, it is called a list comprehension 
l  Some languages have syntax for this, e.g., Haskell and Python 
l  In Oz, list comprehensions can be concurrent agents 

l  ForCollect is defined by combining cells and higher-order 
programming 
l  There is no antagonism between the imperative and functional 

paradigms; they can be used together to the benefit of both 
l  Even though ForCollect uses a cell internally, it is completely 

deterministic when viewed from the outside.  This is because we 
use the cell in a single thread. 
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Alternative definition 
of ForCollect 
l  If the collect procedure C might be used in more than one thread, 

then we need to change its definition to use Exchange: 
 
proc {ForCollect Xs P Ys} 
   Acc={NewCell Ys} 
   proc {C X} R2 in {Exchange Acc X|R2 R2} end 
in 
   for X in Xs do {P C X} end 
   {Exchange Acc nil _} 
end 
 

l  {Exchange Acc Old New} does two operations atomically: 
l  Old is bound to the old content and New becomes the new content 
l  This avoids errors when cells are used by multiple threads: doing @Acc and 

Acc:=R2 as two separate operations would permit another operation on Acc 
to be done in between, which is wrong! 
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Multi-agent 
programming 
l  In the last lesson we saw some simple 

examples of multi-agent programs 
l  Producer/consumer 
l  Producer/transformer/consumer (pipeline) 

l  Let’s see two more sophisticated examples 
l  Sieve of Eratosthenes: dynamically building a 

pipeline during its execution 
l  Digital logic simulation: using higher-order 

programming together with concurrency 
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The Sieve of 
Eratosthenes 

l  The Sieve of Eratosthenes is an algorithm for 
calculating a sequence of prime numbers 

l  Each agent in the pipeline removes multiples of 
an integer 

l  Starting with a sequence containing all integers, 
we end up with a sequence of primes 

-2k -3k -5k 
2|3|4|5|6|7|8|… 

3|5|7|9|11|13|15|… 5|7|11|13|17|19|… 

7|11|13|17|19|… 

… 
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A filter agent 
l  A list function that removes multiples of K: 

 

fun {Filter Xs K} 
 case Xs of X|Xr then 
  if X mod K \= 0 then X|{Filter Xr K} 
  else {Filter Xr K} end 
 else nil 
 end 

end 

l  We make an agent by putting it in a thread: 
 

thread Ys={Filter Xs K} end 
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The Sieve program 
l  Sieve builds the pipeline during execution: 

 

fun {Sieve Xs} 
 case Xs 
 of nil then nil 
 [] X|Xr then X|{Sieve thread {Filter Xr X} end}  
 end 

end 
 

declare Xs Ys in 
thread Xs={Prod 2} end 
thread Ys={Sieve Xs} end 
{Browse Ys} 

Concurrent deployment: 
building the infrastructure of 
a program during execution 
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An optimization 
l  Otherwise too many do-nothing agents are created! 

 
fun {Sieve2 Xs M} 

 case Xs 
 of nil then nil 
 [] X|Xr then 
     if X=<M then 
         X|{Sieve2 thread {Filter Xr X} end M} 
     else Xs end 
 end 

end 
 

l  We call {Sieve2 Xs 316} to generate a list of primes 
up to 100000 (why?) 
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Thread 
semantics (1) 

l  We extend the abstract machine with threads 
l  Each thread has one semantic stack 

l  The instruction thread <s> end creates a new stack 
l  All stacks share the same memory 

l  There is one sequence of execution states, 
and threads take turns executing instructions 
l  (MST1,σ1) → (MST2,σ2) → (MST3,σ3) → ... 
l  MST is a multiset of semantic stacks 
l  This is called interleaving semantics 
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Thread 
semantics (2) 

A semantic stack 
that is about to 
create a thread 

l Memory σ  

(thread <s> end,E) 
ST 
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Thread 
semantics (3) 

We now have 
two stacks! [(<s>,E)] ST 

l Memory σ  
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Why interleaving 
semantics? 
l  What happens when activities execute ”at the same time”? 
l  We can imagine that all threads execute in parallel, each with 

its own processor but all sharing the same memory 
l  We have to be careful to understand what happens when 

threads operate simultaneously on the same memory word 
l  If the threads share the same processor, then this problem is 

avoided (interleaving semantics) 

l  Interleaving semantics is much easier to reason about than 
truly concurrent semantics 
l  Truly concurrent semantics also models the case where threads 

”step on each others’ toes”, but usually this is not needed, since 
the hardware is careful to keep this from happening 

l  For example, in a multicore processor the cache coherence 
protocol avoids simultaneous operations on one memory word  
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Order of 
execution states  
l  In a sequential program, execution states are in a total order 

l  Total order = when comparing any two execution states, 
one must happen before the other 

l  In a concurrent program, execution states of the same thread 
are in a total order 
l  The execution states of the complete program (with multiple 

threads) are in a partial order 
l  Partial order = when comparing any two execution states, there 

might be no order between them (either may happen first) 
l  In a concurrent program, many executions are compatible 

with the partial order 
l  In the actual execution, the scheduler chooses one 
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Total order in a 
sequential program 
l  In a sequential program, execution states are 

in a total order 
l  A sequential program has one thread 
l  Earlier paradigms always had this situation 

One execution step 

Sequential 
execution 
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Partial order in a 
concurrent program 

Thread T1 

Thread T2 

Thread T3 

Bind a dataflow variable (”X=20”) 

Wait for the value of a dataflow variable (”Y=X+1”) 

X 

Z 

X 

Thread 
creation 

One execution step 
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Partial order in a 
concurrent program 
l  In a concurrent program, many executions are 

compatible with the partial order 
l  The scheduler chooses one of them during the 

actual execution (nondeterminism) 

One execution step 

Thread T1 

Thread T2 

Thread T3 

Thread 
creation 
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Digital logic 
simulation 
l  The deterministic dataflow paradigm makes 

it easy to model digital logic circuits 

l  We show how to model combinational logic 
circuits (no memory) and sequential logic 
circuits (with memory) 

l  Signals in time are represented as streams; 
logic gates are represented as agents 
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Modeling 
digital circuits 
l  Real digital circuits consist of active circuit elements 

called gates which are interconnected using wires that 
carry digital signals 

l  A digital signal is a voltage in function of time 
l  Digital signals are meant to carry two possible values, called 

0 and 1, but they may have noise, glitches, ringing, and other 
undesirable effects 

l  A digital gate has input and output signals 
l  The output signal is slightly delayed with respect to the input 

l  We will model gates as agents and signals as streams 
l  This assumes perfectly clean signals and zero gate delay 
l  We will later add a delay gate in order to model gate delay 
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Digital signals 
as streams 

l  A signal is modeled by a stream that 
contains elements with values 0 or 1 
 
S=a0|a1|a2|...|ai|... 
 

l  Time instants are numbered from when 
the circuit starts running 

l  At instant i, the signal’s value ai∈{0,1} 
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Digital logic gates 

l  Some typical logic gates with their standard pictorial 
symbols and the boolean functions that define them 

l  But gates are not just boolean functions! 

00
0

0
1

1
1

1
x

x
y

y

x
y

z

z

z

x Not

Or

And

Xorz

x Not And Or Xor
z

1

0

0 1 1
0 0 1 1

1 1 0

0 0 0

y

1
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Digital gates 
as agents 
l  A gate is much more than a boolean function; it is an active entity 

that takes input streams and calculates an output stream  
 
fun {And A B} if A==1 andthen B==1 then 1 else 0 end end 
fun {Loop S1 S2} 
   case S1#S2 of (A|T1)#(B|T2) then {And A B}|{Loop T1 T2} end 
end 
thread Sc={Loop Sa Sb} end  
 

l  Example execution: 
 
Sx=0|1|0|Tx  % input signal x 
Sy=1|1|0|Ty  % input signal y 
Sz=0|1|0|Tz  % output signal z 
 

x 

y 
z 

And gate 
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Creating 
many gates 
l  Let us define a proper abstraction for building all the 

different kinds of logic gates we need 
l  We define the function GateMaker that takes a two-argument 

boolean function Fun, where {GateMaker Fun} returns a function 
FunG that creates gates 

l  Each call to FunG creates a running gate based on Fun 

l  This gives three levels of abstraction that we can 
compare with object-oriented programming: 
l  GateMaker is analogous to a generic class 
l  FunG is analogous to a class 
l  A running gate is analogous to an object 
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GateMaker 
implementation 
l  Calling {GateMaker F} creates a gate maker: 

 
fun {GateMaker F} 
   fun {$ Xs Ys} 
      fun {GateLoop Xs Ys} 
         case Xs#Ys of (X|Xr)#(Y|Yr) then 
            {F X Y}|{GateLoop Xr Yr} 
         end 
      end 
   in 
      thread {GateLoop Xs Ys} end 
   end 
end 
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Making gates 
l  Each of these functions can make gates: 

 
AndG={GateMaker fun {$ X Y} X*Y end} 
OrG={GateMaker fun {$ X Y} X+Y-X*Y end} 
NandG={GateMaker fun {$ X Y} 1-X*Y end} 
NorG={GateMaker fun {$ X Y} 1-X-Y+X*Y end} 
XorG={GateMaker fun {$ X Y} X+Y-2*X*Y end} 
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Combinational logic 
l  Combinational logic has no memory: all 

calculation is done at the same time instant 
l  A gate is a simple combinational function: 

 
zi = xi And yi 
 

l  Therefore, any number of interconnected 
gates also defines a combinational function 

l  We define a useful circuit called a full adder 

x 

y 
z 
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Full adder 
specification 

l  A full adder adds three 1-bit binary numbers x, y, and z 
giving a sum bit s and carry bit c 

l  An n-bit adder can be built by connecting n full adders 

x

y

z c

s

l x  y  z     c  s 
 
l 0  0  0    0  0 
l 0  0  1    0  1 
l 0  1  0    0  1 
l 0  1  1    1  0 
l 1  0  0    0  1 
l 1  0  1    1  0 
l 1  1  0    1  0 
l 1  1  1    1  1 

a 

b 

d 

e 

f 
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Full adder 
implementation 
l  Full adder creation as five-argument component: 

 
proc {FullAdder X Y Z C S} 
   A B D E F 
in 
   A={AndG X Y} 
   B={AndG Y Z} 
   D={AndG X Z} 
   F={OrG B D} 
   C={OrG A F} 
   E={XorG X Y} 
   S={XorG Z E} 
end 
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Sequential logic 

l  Sequential logic has memory: past values 
of a signal influence the present values 

l  We add a way for the past to influence the 
present: a Delay gate 
 
S=a0|a1|a2|...|ai|...    
T=b0|b1|b2|...|bi|... 
 
bi=ai-1 ⇒ T=0|S 

s t 

Delay 

fun {DelayG S} 0|S end 
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Latch 
specification 

l  A latch is a simple circuit with memory; it has two stable 
states and can memorize its input 

l  Output do follows input di and freezes when c is 1 

Delay

id

do

c
f a 

b e 
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Latch 
implementation 
l  Latch creation as a three-argument component: 

 
proc {Latch C Di Do} 
   A B E F 
in 
   F={DelayG Do} 
   A={AndG C F} 
   E={NotG C} 
   B={AndG E Di} 
   Do={OrG A B} 
end 
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Conclusions for 
deterministic dataflow 
l  Deterministic dataflow generalizes the functional paradigm 

l  There is no observable nondeterminism 
l  All functional patterns become concurrency patterns 

l  Concurrency is transparent: « concurrency for dummies » 
l  Threads can be added at will without changing the result 
l  To remove roadblocks and make computation more incremental 

l  Deterministic dataflow is a good default 
l  Nondeterminism can be added where needed and nowhere else 
l  Deterministic concurrency is seeing a well-deserved resurgence 

after decades of neglect, at both large and small scales (big data 
computing and multicore computing) 
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Learning more 
about concurrency 
l  Paradigms that can avoid race conditions 

l  Deterministic dataflow 
l  Lazy deterministic dataflow 
l  Constraint programming 
l  Others (e.g., E: capability-based programming) 

l  Paradigms that can express nondeterminism 
l  Message-passing concurrency 

l  Scala, Erlang 
l  Shared-state concurrency 

l  Transactions 
l  Monitors (only recommended for legacy systems) 
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Multi-agent 
dataflow paradigm 

l  We can combine deterministic dataflow and message passing 
l  We add one concept to deterministic dataflow: a named stream (port) 
l  This adds nondeterminism (any thread can send a message to the port) 
l  Since the named stream is still a stream, it can be used in deterministic 

dataflow programs 
l  This gives multi-agent dataflow programming 

l  This paradigm allows adding nondeterminism only where needed 
l  Concurrency patterns can be written very concisely 

l  A simple contract-net protocol can be written in just three lines 
l  Ozma was an experiment to extend Scala to support multi-agent dataflow. 

This worked quite well, but it needs fine-grained concurrency (cheap threads) 
to achieve maximum usefulness (only partial success on JVM). 

l  Multi-agent dataflow is the best all-round concurrent paradigm 
l  Even better than Erlang, since it allows managing nondeterminism Opinion 
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Many 
important ideas 

l  Identifiers and environments 
l  Functional programming 
l  Recursion 
l  Invariant programming 
l  Lists, trees, and records 
l  Symbolic programming 
l  Instantiation 
l  Genericity 
l  Higher-order programming 
l  Complexity and Big-O notation 
l  Moore’s Law 
l  NP and NP-complete problems 
l  Kernel languages 
l  Abstract machines 
l  Mathematical semantics 

l  Explicit state 
l  Data abstraction 
l  Abstract data types and objects 
l  Polymorphism 
l  Inheritance 
l  Multiple inheritance 
l  Object-oriented programming 
l  Exception handling 
l  Concurrency 
l  Nondeterminism 
l  Scheduling and fairness 
l  Dataflow synchronization 
l  Deterministic dataflow 
l  Agents and streams 
l  Multi-agent programming 

Louv1.1x Louv1.2x 
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