
A.HARICHE a.hariche@univ-dbkm.dz

1

MI-GLSD-M1 -UEM213 :

Programming paradigms

Chapter V: Oriented Objects Paradigm

A. HARICHE

University of Djilali Bounaama, Khemis Meliana (UDBKM)

Faculty of sciences & technology

Mathematics & computer sciences department

a.hariche@univ-dbkm.dz

Welcome to Louv1.2x!
l  Louv1.2x is the successor to Louv1.1x

l  We assume that you understand the concepts
and notation of Louv1.1x (Oz language)

l  Louv1.2x continues the story with three topics
l  Data abstraction and state
l  Concurrent programming
l  Programming paradigms

l  Practical organization
l  7 lessons, homework exercises, final exam
l  Exercises in and graded by

Essential concepts for
programs in the real world

CorrectOz Intelligent grader!

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

admin
Rectangle

admin
Typewriter
This Course Inspiration

Louv1.2x course
organisation for 2018
l  Certificate

l  Choose Verified Certificate (with donation) or Audit (no certificate)
l  Lessons

l  Seven lessons (6 + 1 bonus); one lesson per week
l  First lesson Nov. 5, seventh (last) lesson Dec. 17

l  Weekly exercises (50% of grade)
l  Conceptual exercises (multiple choice + fill in blanks)
l  Programming exercises (using Mozart and INGInious with CorrectOz)
l  One week deadline + two-week grace period
l  Infinite number of tries per exercise

l  Final exam (50% of grade)
l  Starts Jan. 7, final due date Jan. 21
l  Two tries per exercise

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Schedule
l  Nov. 5: 1. Explicit state and data abstraction
l  Nov. 12: 2. Object-oriented programming
l  Nov. 19: 3. Java, multiple inheritance, and exceptions
l  Nov. 26: 4. Deterministic dataflow introduction
l  Dec. 3: 5. Deterministic dataflow techniques
l  Dec. 10: 6. Multiagent dataflow programming (bonus)
l  Dec. 17: 7. Paradigms of programming redux
l  Dec. 24: (two-week break for end-of-year festivities)
l  Jan. 7: Final exam
l  Jan. 21: End of course

admin
Rectangle

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Guest lecture
by Seif Haridi

l  Lesson 6 is a bonus lesson on
multiagent dataflow programming (a.k.a. actor dataflow)
l  Multiagent dataflow extends deterministic dataflow with the

ability to add nondeterminism exactly where needed
l  Multiagent dataflow is the best all round paradigm

for concurrent programming that we know

l  Lesson 6 will be given by Seif Haridi
l  Seif Haridi is professor at the Royal Institute of Technology

in Stockholm and chief scientist at the Swedish Institute of
Computer Science

admin
Rectangle

admin
Typewriter
Another Paradigm
 Explore more

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Course textbook
and handouts

l  “Concepts, Techniques, and Models
of Computer Programming” by Peter
Van Roy and Seif Haridi, MIT Press
l  Same book for Louv1.1x and Louv1.2x
l  Each course sees 25% of the book

l  MIT Press has made available part
of the book for the course
l  Chapters 1-3

l  This is complemented by slides
and the last public draft of the book
l  Important for abstraction and concurrency

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Abstraction
and concurrency

l  Data abstraction is the main
organizing principle for building
complex software systems
l  The real world is complex

l  Explicit state allows to model
change in a program
l  The real world has change
l  Explicit state supports data

abstraction

l  Concurrency is a property of
systems that are made of
activities that progress
independently
l  The real world has

independent activities

l  Deterministic dataflow is a
form of concurrency that
always gives the same outputs
for the same inputs

l  Essential concepts for building large programs that
are part of the real world

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Paradigms of
Louv1.1x and Louv1.2x

l  We have seen one
paradigm in Louv1.1x

l  We will see four more
in Louv1.2x

l  Each paradigm has
its own concepts and
kernel language

Functional programming
Functions and recursion
Higher-order programming
Single-assignment variables

Object-oriented programming
Data abstraction
Polymorphism
Inheritance

Deterministic dataflow
No race conditions
Concurrency transparency
Streams and agents

+ state (cells) + concurrency (threads)

Multi-agent dataflow
Extends deterministic dataflow
Nondeterminism where needed

Active objects
Object-oriented programming
Multi-agent dataflow

+ ports (named streams)

Louv1.1x

Lessons
1, 2, 3

Lessons
4, 5

Lesson 6

Lesson 7

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Let’s start

l  This first lesson will introduce explicit state
and data abstraction
l  You will understand exactly what explicit state

adds to functional programming
l  You will see the four fundamentally different ways

of building data abstractions
l  Objects as seen in Java or C++ are just one way

l  This leads to our second paradigm, namely
object-oriented programming

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Adding explicit state
to the language
l  We can make the state explicit

by extending the language
l  With this extension a program

can directly observe the
sequence of values in time
l  This was not possible in the

functional paradigm
l  We call our extension a cell

l  The word “cell” is chosen to avoid
confusion with related terms, such
as the overused word “variable”

l  A cell is a box with a content
l  The content can be changed but

the box remains the same
l  The same cell can have different

contents: we can observe change
l  The sequence of contents is a state

c

c a

c b

An unbound variable

Creating a cell with
initial content a (=5)

Replace the content by
another variable b (=6)

cell

cell

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

A cell
l  A cell is a box with an identity and

a content
l  The identity is a constant

(the “name” or “address” of the cell)
l  The content is a variable

(in the single-assignment store)
l  The content can be replaced by

another variable

A=5
B=6
C={NewCell A} % Create a cell
{Browse @C} % Display content
C:=B % Change content
{Browse @C} % Display content

c An unbound variable

c a

c b

Creating a cell with
initial content a (=5)

Replace the content by
another variable b (=6)

cell

cell

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Adding cells
to the kernel language
l  We add cells and their operations

l  Cells have three operations
l  C={NewCell A}

l  Create a new cell with initial content A
l  Bind C to the cell’s identity

l  C:=B
l  Check that C is bound to a cell’s identity
l  Replace the cell’s content by B

l  Z=@C
l  Check that C is bound to a cell’s identity
l  Bind Z to the cell’s content

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Some examples (1)

l  X={NewCell 0}

l  X:=5
l  Y=X

l  Y:=10
l  @X==10 % true
l  X==Y % true

x 0

x 5

y

x 10

y

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Some examples (2)
l  X={NewCell 0}
l  Y={NewCell 0}

l  X==Y % false
l  Because X and Y refer to

different cells, with different
identities

l  @X==@Y % true
l  Because the contents of X

and Y are the same value

x 0

y 0

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Time and change
l  In the functional paradigm, there is no notion of time

l  All functions are mathematical functions; once defined they never change
l  Programs do execute on a real machine, but a program cannot observe

the execution of another program or of part of itself
l  It can only see the results of a function call, not the execution itself
l  Observing an execution of a program can only be done outside of the

program’s implementation

l  In the real world, there is time and change
l  Organisms change their behavior over time, they grow and learn
l  How can we model this in a program?

l  We need to add time to a program
l  Time is a complicated concept! Let us start with a simplified version of

time, an abstract time, that keeps the essential property that we need:
modeling change.

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

State as an abstract time (1)
l  Here’s one solution: We

define the abstract time as a
sequence of values and we
call it a state

l  A state is a sequence of
values calculated
progressively, which
contains the intermediate
results of a computation

l  The functional paradigm can
use state according to this
definition!

l  The definition of Sum given
here has a state

fun {Sum Xs A}
 case Xs
of nil then A
[] X|Xr then

 {Sum Xr A+X}
end

end

{Browse {Sum [1 2 3 4] 0}}

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

State as an abstract time (2)
l  The two arguments Xs and A give

us an implicit state

Xs A
[1 2 3 4] 0
[2 3 4] 1
[3 4] 3
[4] 6
nil 10

l  It is implicit because the language
has not changed
l  It is purely in the programmer’s head:

the programmer observes the
changes in the program

l  In most cases this is not good
enough: we want the program itself
to observe the changes
l  We need a language extension!
l  We leave the functional paradigm

and enter another paradigm

fun {Sum Xs A}
 case Xs
of nil then A
[] X|Xr then

 {Sum Xr A+X}
end

end

{Browse {Sum [1 2 3 4] 0}}

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Structure equality
and token equality
l  Two lists are equal if their values are equal

(structure equality)
l  Two structures with same values created separately are equal
l  A=[1 2]

B=[1 2]
{Browse A==B} % true

l  Two cells are equal if they are the same cell
(token equality)
l  Two cells created separately are always different
l  C={NewCell [1 2]}

D={NewCell [1 2]}
{Browse C==D} % false
{Browse @C==@D} % true (Since the contents are lists, they are

 compared with structure equality)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Semantics of cells (1)
l  We have extended the kernel language with cells

l  Let us now extend the abstract machine to explain how cells execute

l  There are now two stores in the abstract machine:
l  Single-assignment store (contains variables: immutable store)
l  Multiple-assignment store (contains cells: mutable store)

l  A cell is a pair of two variables
l  The first variable is bound to the name of the cell (a constant)
l  The second variable is the cell’s content

l  Assigning a cell to a new content
l  The pair is changed: the second variable in the pair is replaced by

another variable (the first variable stays the same)
l  Warning: The variables do not change! The single-assignment

store is unchanged when a cell is assigned.

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Semantics of cells (2)
l  The full store σ = σ1 ∪ σ2 has two parts:

l  Single-assignment store (contains variables)
σ1 = {t, u, v, x=ξ, y=ζ, z=10, w=5}

l  Multiple-assignment store (contains pairs)
σ2 = {x:t, y:w}

l  In σ2 there are two cells, x and y
l  The name of x is the constant ξ, the name of y is ζ 	

l  The operation X:=Z changes x:t into x:z
l  The operation @Y returns the variable w

(assuming the environment {X → x, Y → y, Z → z, W → w})

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Imperative paradigm
l  By adding cells, we have left the functional paradigm

and entered the imperative paradigm
l  Imperative paradigm = functional paradigm + cells

l  The imperative paradigm allows programs to
express and observe growth and change
l  This gives new ways of thinking that were not possible in

the functional paradigm
l  The imperative paradigm is the foundation of object-

oriented programming (OOP)
l  OOP has new ways of structuring programs that are

essential for building large systems

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Kernel language of the
imperative paradigm
l  <s> ::= skip

 | <s>1 <s>2
 | local <x> in <s> end
 | <x>1=<x>2
 | <x>=<v>
 | if <x> then <s>1 else <s>2 end
 | {<x> <y>1 … <y>n}
 | case <x> of <p> then <s>1 else <s>2 end
 | {NewCell <y> <x>}
 | <x>:=<y>
 | <y>=@<x>

l  <v> ::= <number> | <procedure> | <record>
l  <number> ::= <int> | <float>
l  <procedure> ::= proc {$ <x>1 … <x>n} <s> end
l  <record>, <p> ::= <lit> | <lit>(<f>1:<x>1 … <f>n:<x>n)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Kernel language of the
imperative paradigm
l  <s> ::= skip

 | <s>1 <s>2
 | local <x> in <s> end
 | <x>1=<x>2
 | <x>=<v>
 | if <x> then <s>1 else <s>2 end
 | {<x> <y>1 … <y>n}
 | case <x> of <p> then <s>1 else <s>2 end
 | {NewCell <y> <x>}
 | {Exchange <x> <y> <z>}

l  <v> ::= <number> | <procedure> | <record>
l  <number> ::= <int> | <float>
l  <procedure> ::= proc {$ <x>1 … <x>n} <s> end
l  <record>, <p> ::= <lit> | <lit>(<f>1:<x>1 … <f>n:<x>n)

<y>=@<x> and <x>:=<z>
(atomically : as one operation)

Both versions are equally expressive (since
Exchange can be expressed with @ and :=
and vice versa), but the second version is
more convenient for concurrent programming

Second version

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Explicit state is useful
for modularity
l  Before looking at data abstraction and object-oriented

programming, let’s take a closer look at what explicit
state is good for

l  We say that a program (or system) is modular with
respect to a given part if that part can be changed without
changing the rest of the program
l  “part” = function, procedure, component, module, class, library,

package, file, …

l  We will show by means of an example that the use of
explicit state allows us to make a program modular
l  This is not possible in the functional paradigm

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

A scenario (1)

l  Once upon a time there
were three developers,
P, U1, and U2

l  P has developed module
M that implements two
functions F and G

l  U1 and U2 are both
happy users of module M

fun {MF} % Module definition
 fun {F ...}
 〈Definition of F〉
 end
fun {G ...}
 〈Definition of G〉
 end

in ’export’(f:F g:G)
end
M = {MF} % Module instantiation

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

A scenario (2)

l  One day, developer U2
writes an application that
runs slowly because it does
too much computation

l  U2 would like to extend M to
count the number of times F
is called by the application

l  U2 asks P to make this
extension, but to keep it
modular so that no
programs have to be
changed to use it

fun {MF}
 fun {F ...}
 〈Definition of F〉
 end
fun {G ...}
 〈Definition of G〉
 end

in ’export’(f:F g:G)
end
M = {MF}

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Oops!
l  This is impossible in the functional paradigm, because

F does not remember what happened in previous
calls: it cannot count its calls
l  The only solution is to change the interface of F by adding two

arguments, Fin and Fout:
fun {F … Fin Fout} Fout=Fin+1 … end

l  The rest of the program has to make sure that the Fout of each
call to F is passed as Fin to the next call of F

l  This means that M’s interface has changed
l  All M’s users, even U1, have to change their programs

l  U1 is especially unhappy, since it makes a lot of
extra work for nothing

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

fun {MF}
 X = {NewCell 0}
 fun {F ...}
 X:=@X+1
 〈Definition of F〉
 end
fun {G ...}
 〈Definition of G〉
end
 fun {Count} @X end

in ’export’(f:F g:G c:Count)
end
M = {MF}

Solution using a cell
l  Create a cell when MF is

called and increment it
inside F
l  Because of static scope,

the cell is hidden from the
rest of the program: it is
only visible inside M

l  M’s interface is extended
without changing existing
calls
l  M.f stays the same
l  A new function M.c appears

that can safely be ignored
l  P, U1, and U2 live happily

ever after

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Comparison
l  Functional paradigm:

l  + A component never changes its behavior (if it is correct, it stays
correct)

l  – Updating a component often means that its interface changes
and therefore many other components must be updated

l  Imperative paradigm:
l  + A component can be updated without changing its interface

and so without changing the rest of the program (modularity)
l  – A component can change its behavior because of past calls (for

example, it might break)

l  Sometimes it is possible to combine both advantages
l  Use explicit state to manage updates, but make sure that the

behavior of components does not change

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Data abstraction
l  Data abstraction is the main organizing principle

for building complex software systems
l  Without data abstraction, computing technology would

stop dead in its tracks
l  We will study what data abstraction is and how it

is supported by the programming language
l  The first step toward data abstraction is called

encapsulation
l  Data abstraction is supported by language concepts

such as higher-order programming, static scoping,
and explicit state

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Encapsulation
l  The first step toward data abstraction, which is the basic organizing

principle for large programs, is encapsulation
l  Assume your television set is not enclosed in a box

l  All the interior circuitry is exposed to the outside
l  It’s lighter and takes up less space, so it’s good, right? NO!

l  It’s dangerous for you: if you touch the circuitry, you can get an
electric shock

l  It’s bad for the television set: if you spill a cup of coffee inside it, you
can provoke a short-circuit
l  If you like electronics, you may be tempted to tweak the insides, to

“improve” the television’s performance
l  So it can be a good idea to put the television in an enclosing box

l  A box that protects the television against damage and that only
authorizes proper interaction (on/off, channel selection, volume)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Encapsulation
in a program
l  Assume your program uses a stack with the

following implementation:
 fun {NewStack} nil end
 fun {Push S X} X|S end
 fun {Pop S X} X=S.1 S.2 end
 fun {IsEmpty S} S==nil end

l  This implementation is not encapsulated!
l  It has the same problems as a television set without enclosure
l  It is implemented using lists that are not protected

l  A user can read stack values without the implementation knowing
l  A user can create stack values outside of the implementation

l  There is no way to guarantee that an unencapsulated
stack will work correctly
l  The stack must be encapsulated → data abstraction

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Definition of
data abstraction
l  A data abstraction is a part of a

program that has an inside, an outside,
and an interface in between

l  The inside is hidden from the outside
l  All operations on the inside must pass

through the interface, i.e., the data
abstraction must use encapsulation

l  The interface is a set of operations that
can be used according to certain rules
l  Correct use of the rules guarantees that

the results are correct
l  The encapsulation must be supported

by the programming language
l  We will see how the language can

support encapsulation, that is, how it can
enforce the separation between inside
and outside

Op1 Op2
Op3

Inside

Outside

Interface

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Advantages of
data abstraction
l  A guarantee that the abstraction will work correctly

l  The interface only allows well-defined interaction with the inside
l  A reduction of complexity

l  The user does not have to know the implementation, but only the
interface, which is generally much simpler

l  A program can be partitioned into many independent
abstractions, which greatly simplifies use

l  The development of large programs becomes possible
l  Each abstraction has a responsible developer: the person who

implements it, maintains it, and guarantees its behavior
l  Each responsible developer only has to know the interfaces of

the abstractions used by the abstraction
l  It’s possible for teams of developers to develop large programs

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The two main kinds
of data abstraction
l  There are two main kinds of data abstraction, namely

objects and abstract data types
l  An object groups together value and operations in a single entity
l  An abstract data type keeps values and operations separate

l  Some real world examples
l  A television set is an object: it can be used directly through its

interface (on/off, channel selection, volume control)
l  Coin-operated vending machines are abstract data types: the

coins and products are the values and the operations are the
vending machines

l  We will look at both objects and ADTs
l  Each has its own advantages and disadvantages

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Abstract data types
l  An ADT consists of a set of values and

a set of operations
l  A common example: integers

l  Values: 1, 2, 3, …
l  Operations: +, -, *, div, …

l  In most of the popular uses of ADTs,
the values and operations have no state
l  The values are constants
l  The operations have no internal memory

(they don’t remember anything in between calls)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

A stack ADT
l  We can implement a stack as an ADT:

l  Values: all possible stacks and elements
l  Operations: NewStack, Push, Pop, IsEmpty

l  The operations take (zero or more) stacks and elements
as input and return (zero or more) stacks and elements
as output
l  S={NewStack}
l  S2={Push S X}
l  S2={Pop S X}
l  {IsEmpty S}

l  For example:
l  S={Push {Push {NewStack} a} b} returns the stack S=[b a]
l  S2={Pop S X} returns the stack S2=[a] and the top X=b

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Unencapsulated
implementation
l  The stack we saw before is almost an ADT:

l  fun {NewStack} nil end
l  fun {Push S X} X|S end
l  fun {Pop S X} X=S.1 S.2 end
l  fun {IsEmpty S} S==nil end

l  Here the stack is represented by a list
l  But this is not a data abstraction, since the list is not protected

l  How can we protect the list, and make this a true ADT?
l  How can we build an abstract data type with encapsulation?
l  We need a way to protect values

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Encapsulation using
a secure wrapper
l  To protect the values, we will use a secure wrapper:

l  The two functions Wrap and Unwrap will “wrap” and “unwrap” a value
l  W={Wrap X} % Given X, returns a protected version W
l  X={Unwrap W} % Given W, returns the original value X

l  The simplest way to understand this is to consider that Wrap and
Unwrap do encryption and decryption using a shared key that is
only known by them

l  We need a new Wrap/Unwrap pair for each ADT that we want to
protect, so we use a procedure that creates them:
l  {NewWrapper Wrap Unwrap} creates the functions Wrap and Unwrap
l  Each call to NewWrapper creates a pair with a new shared key

l  We will not explain here how to implement NewWrapper, but if you
are curious you can look in the book (Section 3.7.5)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Implementing
the stack ADT
l  Now we can implement a true stack ADT:

local Wrap Unwrap in

 {NewWrapper Wrap Unwrap}

 fun {NewStack} {Wrap nil} end
 fun {Push W X} {Wrap X|{Unwrap W}} end
 fun {Pop W X} S={Unwrap W} in X=S.1 {Wrap S.2} end
 fun {IsEmpty W} {Unwrap W}==nil end

end

l  How does this work? Look at the Push function: it first calls
{Unwrap W}, which returns a stack value S, then it builds X|S,
and finally it calls {Wrap X|S} to return a protected result

l  Wrap and Unwrap are hidden from the rest of the program
(static scoping)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Final remarks on ADTs
l  ADT languages have a long history

l  The language CLU, developed by Barbara Liskov and her
students in 1974, is the first

l  This is only a little bit later than the first object-oriented
language Simula 67 in 1967

l  Both CLU and Simula 67 strongly influenced later object-
oriented languages up to the present day

l  ADT languages support a protection concept similar
to Wrap/Unwrap
l  CLU has syntactic support that makes the creation of ADTs

very easy
l  Many object-oriented languages also support ADTs

l  For example, we will see that Java objects are also ADTs

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Objects
l  A single object represents both a value and a set of operations
l  Example interface of a stack object:

S={NewStack}
{S push(X)}
{S pop(X)}
{S isEmpty(B)}

l  The stack value is stored inside the object S
l  Example use of a stack object:

S={NewStack}
{S push(a)}
{S push(b)}
local X in {S pop(X)} {Browse X} end

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Implementing
the stack object
l  Implementation of the stack object:

fun {NewStack}

 C={NewCell nil}
 proc {Push X} C:=X|@C end
 proc {Pop X} S=@C in C:=S.2 X=S.1 end
 proc {IsEmpty B} B=(@C==nil) end

in
 proc {$ M}
 case M of push(X) then {Push X}
 [] pop(X) then {Pop X}
 [] isEmpty(B) then {IsEmpty B} end
 end

end

l  Each call to NewStack creates a new stack object
l  The object is represented by a one-argument procedure that does

procedure dispatching: a case statement chooses the operation to execute
l  Encapsulation is enforced by hiding the cell with static scoping

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Stack as ADT and
stack as object
l  Here is the stack as ADT:

local Wrap Unwrap in

 {NewWrapper Wrap Unwrap}
 fun {NewStack} {Wrap nil} end
 fun {Push W X} {Wrap X|{Unwrap W}} end
 fun {Pop W X} S={Unwrap W} in X=S.1 {Wrap S.2} end
 fun {IsEmpty W} {Unwrap W}==nil end

end

l  Here is the stack as object: (represented by a record)

fun {NewStack}

 C={NewCell nil}
 proc {Push X} C:=X|@C end
 proc {Pop X} S=@C in X=S.1 C:=S.2 end
 fun {IsEmpty} @C==nil end

in
 stack(push:Push pop:Pop isEmpty:IsEmpty)

end

l  Any data abstraction can be implemented as an ADT or as an object

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Final remarks
on objects
l  Objects are omnipresent in computing today
l  The first major object-oriented language was Simula-67,

introduced in 1967
l  It directly influenced Smalltalk (starting in 1971) and C++ (starting

in 1979), and through them, most modern object-oriented
languages (Java, C#, Python, Ruby, and so forth)

l  Most modern OO languages are in fact data abstraction
languages: they incorporate both objects and ADTs
l  And other data abstraction concepts as well, such as

components and modules

l  The next lesson will be completely focused on object-
oriented programming

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Four ways to do
data abstraction
l  We have seen two ways to make data abstractions:

l  Abstract data types (without state)
l  Objects (with state)

l  There are two more ways to build data abstractions
l  Abstract data types with state (stateful ADTs)
l  Objects without state (functional objects)

l  This gives four ways in all
l  Let’s take a look at the two additional ways
l  And then we’ll conclude this lesson on data abstraction

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Four ways to do
data abstraction

•  Objects (with state) and ADTs (stateless) are popular
•  Functional objects are less popular (except in Scala)
•  Stateful ADTs are rarely used

bundling

state

Object ADT

Stateless
(no cells)

Stateful
(with cells)

Object

ADT Functional object

Stateful ADT
(rare)

Java objects

Java integers Scala

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The two less-used
data abstractions
l  A functional object is possible

l  Functional objects are immutable; invoking an object returns
another object with a new value

l  Functional objects are becoming more popular because of Scala

l  A stateful ADT is possible
l  Stateful ADTs were much used in the C language (although

without enforced encapsulation, since it is impossible in C)
l  They are also used in other languages (e.g., classes with static

attributes in Java)

l  Let’s take a closer look at how to build them

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

A functional object
l  We can implement the stack as a functional object:

local
 fun {StackObject S}
 fun {Push E} {StackObject E|S} end
 fun {Pop S1}
 case S of X|T then S1={StackObject T} X end end
 fun {IsEmpty} S==nil end
 in stack(push:Push pop:Pop isEmpty:IsEmpty) end
in
 fun {NewStack} {StackObject nil} end
end

l  This uses no cells and no secure wrappers. It’s the simplest of all
our data abstractions since it only needs higher-order programming.

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Functional objects
in Scala
l  Scala is a hybrid functional-object language: it

supports both the functional and object-oriented
paradigms

l  In Scala we can define an immutable object that
returns another immutable object
l  For example, a RationalNumber class whose instances

are rational numbers (and therefore immutable)
l  Adding two rational numbers returns another rational

number

l  Immutable objects are functional objects
l  The advantage is that they cannot be changed (the

same advantage of any functional data structure)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

A stateful ADT
l  Finally, let us implement our trusty stack as a stateful ADT:

local Wrap Unwrap
 {NewWrapper Wrap Unwrap}
 fun {NewStack} {Wrap {NewCell nil}} end
 proc {Push S E} C={Unwrap S} in C:=E|@C end
 fun {Pop S} C={Unwrap S} in
 case @C of X|S1 then C:=S1 X end
 end
 fun {IsEmpty S} @{Unwrap S}==nil end
in
 Stack=stack(new:NewStack push:Push pop:Pop isEmpty:IsEmpty)
end

l  This uses both a cell and a secure wrapper. Note that Push, Pop,
and IsEmpty do not need Wrap! They modify the stack state by
updating the cell inside the secure wrapper.

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Conclusion
l  Data abstractions are a key concept needed for building large

programs with confidence
l  Data abstractions are built on top of higher-order programming,

static scoping, explicit state, records, and secret keys
l  Data abstractions are defined precisely in terms of these concepts;

our definitions give the semantics of data abstractions
l  There are four kinds of data abstraction, along two axes: objects

versus ADTs on one axis and stateful versus stateless on the other
l  Two kinds are more visible than the others, but the others also have

their uses (for example, functional objects are used in Scala)
l  Modern programming languages strongly support data abstractions

l  They support much more than just objects; it is more correct to consider
them data abstraction languages and not just object-oriented languages

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Object-oriented
programming
l  The concept of object is omnipresent in programming languages today

l  A simple idea: a data abstraction that contains both value and operations
l  First major system was Simula 67, widely disseminated via Smalltalk et C++

l  Caveat: object-oriented programming has become a buzzword
l  There are many variations, but not always correct (e.g., many so-called OO

languages do not provide proper encapsulation, like C++ and Javascript, or
do not properly support inheritance with the substitution principle, like C++)

l  It is not always the right paradigm, e.g., Erlang is better for fault tolerance
l  We will try to be as rigorous as possible, and focus on the main principles

l  OOP provides three main principles for structuring programs:
l  Data abstraction: provide guarantees and reduce complexity
l  Polymorphism: compartmentalize responsibility
l  Inheritance: avoid redundancy and encourage incremental development

l  Abstract data types are just as omnipresent!
l  It is important to understand both objects and ADTs, because languages mix

the two. For example, a Java object is a mix of pure objects and pure ADTs.
l  Advanced object-oriented languages are actually data abstraction languages

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

An object
declare
local

A1={NewCell I1}
…
An={NewCell In}

in
proc {M1 …} … end
…
proc {Mm …} … end

end

This code gives the structure of
an object abstraction.
An object is a combination of
local cells A1, …, An and
global procedures M1, …, Mm.

We call A1, …, An the “attributes”
and M1, …, Mm the “methods”.
Attributes A1, ..., An are hidden
from the outside and
methods M1, ..., Mm are visible
from the outside (interface!).

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

A counter object
declare
local

A1={NewCell 0}
in

proc {Inc} A1:=@A1+1 end
proc {Get X} X=@A1 end

end

{Inc}
local X in {Get X} {Browse X} end

This code creates one object that
implements a counter.
The object has two methods, Inc
and Get, and is initialized to 0.
Since the cell can only be
accessed by the methods, the
behavior is guaranteed correct:
{Get X} binds X to an integer that
gives the number of calls {Inc}
done before.

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Adding abilities to
objects in four steps
l  Objects in OOP are much more than simple

data abstractions: they add important abilities
needed for practical programming

l  Let us start with an object abstraction and
extend it in four steps:
l  First step: a single object (data abstraction)
l  Second step: a single entry point (dispatch)
l  Third step: creating multiple objects (instantiation)
l  Fourth step: specialized syntax (classes)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

First step:
An object
declare
local

A1={NewCell I1}
…
An={NewCell In}

in
proc {M1 …} … end
…
proc {Mm …} … end

end

This code gives the structure of
an object abstraction.
An object is a combination of
local cells A1, …, An and
global procedures M1, …, Mm.

We call A1, …, An the “attributes”
and M1, …, Mm the “methods”.
Attributes A1, ..., An are hidden
from the outside and
methods M1, ..., Mm are visible
from the outside (interface!).

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

First step:
An object
declare
local

A1={NewCell 0}
in

proc {Inc} A1:=@A1+1 end
proc {Get X} X=@A1 end

end

{Inc}
local X in {Get X} {Browse X} end

This code creates one object that
implements a counter.
The object has two methods, Inc
and Get, and is initialized to 0.
Since the cell can only be
accessed with the methods, the
behavior is guaranteed correct:
{Get X} binds X to an integer that
gives the number of calls {Inc}
done before.

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Second step:
Single entry point

declare
local

A1={NewCell 0}
proc {Inc} A1:=@A1+1 end
proc {Get X} X=@A1 end

in
proc {Counter M}

 case M of inc then {Inc}
 [] get(X) then {Get X}
 end

 end
end

This extends the counter
object to invoke all methods
from a single entry point:
the procedure Counter.

{Counter inc}

{Counter inc}
{Counter get(X)}

In this example, this is called
procedure dispatch, since the
entry point is a procedure.
The argument M is usually
called a message.

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Third step:
Creating multiple objects

declare
fun {NewCounter}

A1={NewCell 0}
proc {Inc} A1:=@A1+1 end
proc {Get X} X=@A1 end

in
proc {$ M}

 case M of inc then {Inc}
 [] get(X) then {Get X}
 end

 end
end

We add the ability to create
many counter objects with the
same methods but different
states.
The function NewCounter
creates a new counter object
each time it is called. This is
an example of instantiation
(higher-order programming).
The call C={NewCounter}
creates a new cell in A1 and
returns an object with
methods Inc and Get, that
both access the new cell.
Each new object is completely
independent of the others.

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Using NewCounter
C1={NewCounter} % First object
C2={NewCounter} % Second object

{C1 inc} % Increment first object twice
{C1 inc}

local X in {C1 get(X)} {Browse X} end % Shows 2
local X in {C2 get(X)} {Browse X} end % Shows 0

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Fourth step:
Specialized syntax
class Counter

attr a1
meth init a1:=0 end
meth inc a1:=@a1+1 end
meth get(X) X=@a1 end

end

C1={New Counter init}
{C1 inc}
local X in
 {C1 get(X)} {Browse X}
end

We introduce a new syntax for
defining objects, in which we
define attributes and methods.

We call this definition a class,
since we can use it to define many
objects with the same behavior
(they are of the same class).
We separate the object definition
(the class) from the object creation
(the function New).

The new syntax guarantees that the
object is constructed without error.
It also improves readability and lets
the system improve performance.

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

What is a class? (1)

l  The class Counter that we defined is an
argument to the function New:
l  C={New Counter Init}

l  This means that Counter is a value
l  Class definition and object creation are separated
l  The class is an abstract data type with two basic

operations: class definition and object definition

l  In our earlier example, the function NewCounter
combined both operations: defining the object
behavior and creating the object
l  Most object-oriented languages separate the two

operations to improve flexibility

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

What is a class? (2)
l  How do we represent a class as a value? A class is a record that groups

the attributes and method definitions:

 Counter=c(attrs:[a1] methods:m(init:Init inc:Inc get:Get))

l  The function New takes the record, creates the attributes (cells), and
creates the object (a procedure that calls the methods with the attributes):

 fun {New Class Init}
 S=(...) % S is the state (record containing attributes)

 proc {Obj M} % Obj is a one-argument procedure
 {Class.methods.{Label M} M S}
 end

 in
 {Obj Init} % Obj is initialized before it is returned
 Obj
 end

l  As an exercise, read and understand Section 7.2.2 in the book, which

gives the full definition of New and shows how to create a class record.

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Polymorphism
l  In everyday language, an entity is polymorphic if it

can assume different forms
l  The Greek god Proteus is polymorphic; he is a shape-shifter

able to assume many forms

l  In computing, an operation is polymorphic if it works
correctly for arguments of different types
l  For example, an object message is polymorphic if many

different objects will accept it

l  This ability is needed in order to properly apportion
responsibility over different parts of a program
l  A single responsibility should not be spread out; it should

rather be concentrated in one place if possible

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The responsibility
principle
l  Polymorphism allows to isolate responsibilities to the parts of the

program that are concerned with them
l  A responsibility should be concentrated in one part of the program

l  Example: a patient goes to see a medical doctor
l  The patient does not have to be a doctor!
l  The patient tells the doctor: “cure me”
l  The doctor understands this message and does the right thing (either cures the

patient, or sends the patient to another doctor; we assume that eventually the
right doctor is found!)

l  The message “cure me” is polymorphic: it works with all medical
specialties
l  All doctors understand the message “cure me”	

l  The ability to cure a specific illness is concentrated in the doctor whose

specialty covers that illness; we assume there is a mechanism to find the right
doctor (for example, the generalist directs you to a specialist)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Implementing
polymorphism
l  All data abstractions we have seen can support

polymorphism
l  Both objects and ADTs support it
l  But it is especially simple for objects

l  This is one reason for objects’ enormous success
l  In this course, we will only talk about object

polymorphism
l  The book also explains ADT polymorphism, if you are curious

l  The idea is simple: we define the interface that the
program needs
l  Then the program can accept all abstractions with that interface

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Example: drawing
of geometric figures
class Figure

 …
end
class Circle

 attr x y r
 meth draw … end
 …

end
class Line

 attr x1 y1 x2 y2
 meth draw … end
 …

end

class CompoundFigure
 attr figlist
 meth draw
 for F in @figlist do
 {F draw}
 end
 end
 …

end

This definition of draw in CompoundFigure
works for all possible figures: circles, lines,
and other CompoundFigures!

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Correctness of
a polymorphic program
l  When is a polymorphic program correct?

l  To be correct, each abstraction that the program accepts
needs to satisfy certain properties (namely, those needed by
the program)

l  For each abstraction, we need to verify that its specification
has those properties

l  For the figure drawing example, each draw method must
correctly draw the object’s figure

l  For the doctor example, all doctors must cure the patient for
their specialty
l  And for patients with another illness, the doctor must send the

patient to a doctor better able to cure the illness (no cycles to
avoid infinite loops!)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Similar data abstractions

l  Language support for similar data abstractions is important

l  A simple example is the concept
“collection of elements”
l  Multiset: a collection with no defined order
l  Sequence: a multiset with a total order

l  Sequence = multiset + total order
l  Stack: a sequence where adding and removing

are done on the same side
l  Stack = sequence + add/remove constraint

l  Queue: a sequence where adding is done on
one side and removing on the other side
l  Queue = sequence + add/remove constraint

Multiset

Sequence

Stack Queue

l  Data abstractions are often very similar
l  Especially if the entities they represent are similar (such as “person”

versus “employee”, “car part” versus “airplane part”, and so forth)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Incremental definition
with inheritance
l  It is important to avoid duplicated code in a program

l  Duplicated code is problematic at two levels
l  Different copies tend to diverge slightly with time (low-level bugs)
l  The same idea is expressed twice (high-level bugs)

l  It is much better, for program structure and maintenance,
to express the same idea exactly once

l  Inheritance achieves this for similar data abstractions
l  Definition A can “inherit” from definition B
l  This means that A uses B as a base, possibly with

modifications and extensions
l  The incremental definition A is also called a class

l  A class can either be a complete or incremental definition
l  The resulting definition (A + the classes it inherits from

directly or indirectly) is always complete

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Dangers of inheritance
l  Inheritance can be very useful, but its use is

fraught with dangers
l  The ability to extend A with inheritance is

another interface to A
l  An additional interface to A’s usual interface
l  This interface is extremely difficult to make correct

and maintain correct throughout the lifetime of the
abstraction

l  So we must be very careful when using
inheritance – two general rules:
1.  Prefer composition over inheritance
2.  When using inheritance, always follow the

substitution principle

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

(1) Prefer composition
over inheritance
l  It is important to use inheritance as little as possible

l  Only use it in well-defined ways, for example in well-
established “programming patterns”

l  When defining a class, it should be declared “final” (not
extensible by inheritance) by default

l  Composition is much easier to use than inheritance
and is often sufficient
l  Composition = an object refers to another object in one of

its attributes (such as attribute figlist in CompoundFigure)
l  Composition does not add another interface: the object

referred to is always accessed through its usual interface

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Inheritance versus
composition

B

A

OA

l instance of

B

A

OA

OB

l instance of

l instance of attr b: OB

inherits from

Inheritance Composition

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

(2) Always follow the
substitution principle

l  The use of inheritance is much
easier if the substitution principle is
followed

l  Suppose that A inherits from B with
objects OA et OB
l  Substitution principle: Every

procedure that accepts OB must
accept OA

l  If this principle is followed, then
inheritance does not break
anything! We say that A is a
conservative extension of B.

l  This is also called LSP (Liskov
Substitution Principle)

B

A

inherits from

OA

OB

l instance of

l instance of

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Example:
class Account
class Account

 attr balance:0
 meth transfer(Amount)
 balance := @balance+Amount
 end
 meth getBal(B)
 B=@balance
 end

end
A={New Account transfer(100)}

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Conservative
extension

class VerboseAccount
from Account
 meth verboseTransfer(Amount)
 …
 end

end

The class
VerboseAccount

has methods
transfer, getBal and

the new method
verboseTransfer.

VerboseAccount:
An account that displays
all transactions

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Nonconservative
extension

class AccountWithFee
from VerboseAccount
 attr fee:5
 meth transfer(Amount)
 …
 end

end

The class
AccountWithFee

has methods
transfer, getBal and

verboseTransfer.
The transfer method
has been overridden.

AccountWithFee:
An account with a fee

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Class hierarchy
class VerboseAccount

from Account
 meth verboseTransfer(Amount)
 …
 end

end

class AccountWithFee

from VerboseAccount
 attr fee:5
 meth transfer(Amount)
 …
 end

end

l Account

l VerboseAccount

l AccountWithFee

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Dynamic link
l  Let us define the new

method verboseTransfer
l  In the definition of

verboseTransfer, we need
to call transfer

l  Syntax: {self transfer(A)}
l  The transfer method is

chosen in the class of the
calling object OV

l  self = the calling object,
instance of VerboseAccount

l Classe Account
l Method transfer

Classe VerboseAccount
Method verboseTransfer

inherits from

Objet OV

l instance of

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Definition of
VerboseAccount

class VerboseAccount
from Account
 meth verboseTransfer(Amount)
 {self transfer(Amount)}
 {Browse @balance}
 end

end

The class
VerboseAccount

has methods
transfer, getBal and

verboseTransfer.

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Static link
l  Let us override the old transfer

method in AccountWithFee
l  In the new transfer method, we

need to call the old method!
l  Syntax:

VerboseAccount,transfer(A)
l  The class containing the old

definition has to be named!
l  The transfer method is taken

from the class VerboseAccount

Classe VerboseAccount
l Methode transfer (not changed!)

Classe AccountWithFee
l Methode transfer (new!)

Object OF

Classe Account
Methode transfer

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Definition of
AccountWithFee

class AccountWithFee
from VerboseAccount
 attr fee:5
 meth transfer(Amt)
 VerboseAccount,transfer(Amt-@fee)
 end

end

The class
AccountWithFee

has methods
transfer, getBal and

verboseTransfer.
The transfer method
has been overridden.

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The magic of
dynamic links
l  Look at the following fragment:

 A={New AccountWithFee transfer(100)}
 {A verboseTransfer(200)}

l  What does it do?
l  Which transfer method is called by verboseTransfer?

l  The old one or the new one?
l  Observe: when VerboseAccount was defined, the class

AccountWithFee did not exist yet

l  Answer: !!

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Example of
a dynamic link

l Account

l VerboseAccount

l AccountWithFee

meth verboseTransfer(Amount)
 {self transfer(Amount)}
 {Browse @balance}

end

getBal(B)
transfer(Amt) % old definition
verboseTransfer(Amt)

getBal(B)
transfer(Amt) % new definition
verboseTransfer(Amt)

getBal(B)
transfer(Amt)

OAWF

OVA
Call 1:
{OVA verboseTransfer(200)}

Which transfer
method?

Call 2:
{OAWF verboseTransfer(200)}

Which transfer
method?

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Nonconservative
extension

class AccountWithFee
from VerboseAccount
 attr fee:5
 meth transfer(Amt)
 VerboseAccount,transfer(Amt-@fee)
 end

end

Danger!
The invariants

are broken.

l Invariant:
l {A getBal(B)}

l {A transfer(S)}

l {A getBal(B1)}

l % Is B1=B+S ?

l % No! It’s broken!

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Summary of static
and dynamic links
l  The goal of static and dynamic links is to choose which

method to execute
l  Dynamic link: {self M}

l  The method is chosen in the class of the object
l  This class is only known during execution, this is why it is

called a dynamic link
l  It should always be used by default

l  Static link: SuperClass,M
l  The method is chosen in SuperClass
l  This class is known during compilation (it is SuperClass), this

is why it is called a static link
l  It is only needed for overriding an existing method
l  When a method is overridden, the new definition often has to

access the old one, and it uses a static link to do this

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Whither object-oriented
programming?
l  Data abstraction languages have an enormous literature

l  These two lessons have barely introduced the three main principles of data
abstraction (objects and ADTs), polymorphism, and inheritance

l  The principles of data abstraction are now well-established
l  OOP has traditionally focused on sequential centralized programs. It is now

being extended to long-lived distributed systems (« services »), with concurrency
abstractions, fault tolerance, security, resource management, and configuration
management (component-oriented programming).

l  Influential language developments are Scala (functional/object paradigms,
message-passing concurrency) and Erlang (message passing with support for
high availability), together with interesting experiments too numerous to mention

l  Large-scale distributed programming, including cloud-based big data and peer-to-
peer computation, is pushing the limits of current data abstraction languages

l  To meet these challenges, the structure of data abstraction
languages will change significantly in the next two decades
l  Loose coupling, interoperability, distribution, and security will enter the language

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Static typing
versus dynamic typing
l  A major property of a language is whether it is

statically or dynamically typed

l  Static typing: Variable types are known at compile time
l  Java, Scala, Haskell

l  Dynamic typing: Variable types are not known at compile time
but only at run time
l  Ruby, Python, Erlang, Scheme, Oz (language of this course)

l  Static typing versus dynamic typing?
l  This question evokes intense debate between language designers
l  The main issues are guarantees and flexibility
l  Java augments static typing with concepts to increase flexibility

l  An Object class that is the root of the class hierarchy
l  The ability to define class code at run time with a class loader

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Types in Java
l  Two kinds of types: primitive types and reference types

l  User-defined types (e.g., classes) are reference types

l  Primitive type: boolean (1 bit), character (16 bits), byte (8 bit
integer, -128..127), short (16), int (32), long (64), float (32),
double (64)
l  Characters: Unicode standard (all written languages)
l  Integers: representation in 2’s complement
l  Floating point: IEEE754 standard

l  Reference type: class, interface, or array
l  A value is either “null” or a reference to an object or an array
l  An array type has the form t[] where t can be any type

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Object-oriented
programming in Java
l  Data abstraction in Java

l  Primitive types are ADTs, user-defined types are objects
l  Rules of visibility

l  Private, package, protected, public
l  Objects of the same class can see inside each other (ADT property)

l  Polymorphism in Java
l  Static polymorphism: Methods in the same class with the same name

but different argument types (a.k.a. method overloading)
l  Dynamic polymorphism: Methods with the same name in different classes

l  Inheritance in Java
l  Support for the substitution principle: an argument of a given class type

will accept objects of any subclass
l  Support for multiple inheritance using a new concept called interface

(a specific form of a general data abstraction interface)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Functional
programming in Java
l  Not much support for functional paradigm

l  More support is being added as Java evolves
(lambda expressions in Java 8, which are procedure values)
l  Problem of legacy code!

l  Scala has full support for functional paradigm

l  Final attributes and variables: can only be assigned once
l  Objects can be immutable, but are not functional objects

l  Final classes: cannot be extended with inheritance

l  “inner classes”: a class defined inside another class
l  An instance of an inner class is almost (but not completely) a

procedure value

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Java, multiple inheritance,
and exceptions
l  This lesson completes the discussion of data

abstraction and object-oriented programming with
presentations of Java, multiple inheritance, and
exceptions

l  Java is a popular object-oriented language that has
much support for practical programmers

l  Multiple inheritance is when a class inherits from
more than one class

l  Exceptions are an important concept in imperative
languages for handling error conditions (both
program errors and environment errors)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Introduction to Java
l  Java is the most-used language in the world today

l  Supported by libraries, tools, a high-quality implementation
(the JVM) and a large developer community

l  But Java is >20 years old: there are many competitors, of
which C++, Scala, and Erlang exemplify other parts of the
language space
l  C++: closer to the processor architecture; older than Java
l  Scala: a more modern functional/object language built on the JVM
l  Erlang: a multi-agent language for highly available applications

l  It is important to understand the execution of Java
l  Examples of Java semantics with the abstract machine
l  Java’s support for object-oriented programming
l  Limitations of Java

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Two philosophies:
Java versus C++
l  Both Java and C++ implement an imperative paradigm

supplemented with concurrency
l  (We will discuss concurrency in the next lesson)
l  Structured programming: a program is a set of nested blocks

where each block has an entry and exit; there is no “goto”
instruction in Java (but there is in C++)

l  Imperative control: if, switch, while, for, break, return, etc.

l  Basic difference in design philosophy
l  C++ allows access to internal representation of data structures;

memory management is manual
l  Java hides the internal representation; memory management is

automatic (“garbage collection”)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Example program
in Java

l  The method println is overloaded – there exist many methods with
that name and the implementation chooses the right method according
to the argument type (this is also called static polymorphism)

class Fibonacci {
 public static void main(String [] args) {
 int lo=1;
 int hi=1;
 System.out.println(lo);
 while (hi<50) {
 System.out.println(hi);
 hi=lo+hi;
 lo=hi-lo;
 }
 }
}

l  All programs have a method main
annotated public static void,
executed when the program starts

l  A Java variable (argument or local
variable) is a cell

l  Local variables must be initialized
before use

l  Integers are not objects but ADTs

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

public static void main(…)
l  All methods can be given modifiers

l  The main method has the following modifiers:
l  public: visible in the whole program (no restrictions)
l  static: there is one per class (not one per object)
l  void: the method returns no result

(so it is a procedure, not a function)
l  The main method has one argument

l  String[]: the argument’s type, an array that contains
String objects

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Java semantics with
the abstract machine
l  As for any language, it is important to understand

precisely what the Java language does
l  We can define Java semantics with the abstract machine
l  Most (but not all) of the semantics is straightforward

l  We give two examples to show how to give the
semantics of Java concepts
l  Parameter passing
l  Static attributes in classes

l  For a complete semantics of Java we recommend
the book
l  Java Precisely by Peter Sestoft, MIT Press, 2005

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Parameter passing
in Java

l  Parameter passing is an important part of a
language that needs to be understood precisely

l  This program calls halveIt with argument one:
what does it print?

class ByValueExample {
 public static void main(String[] args) {
 double one=1.0;
 System.out.println(“before: one = “ + one);
 halveIt(one);
 System.out.println(“after: one = “ + one);
 }
 public static void halveIt(double arg) {
 arg /= 2.0;
 }
}

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Semantics of
halveIt

l  Here is how to write halveIt in Oz
l  This definition gives its semantics
l  This defines only the execution

behavior, not the type checking
l  The argument Arg is a local cell

l  The number is passed into the local cell
l  Assignments to Arg affect only the local

cell, not the cell in the method main
l  The number is passed by value

public static void halveIt(double arg) {
 arg = arg/2.0;
}

proc {HalveIt X}
 Arg={NewCell X}
in
 Arg := @Arg / 2.0
end

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Passing an
object parameter

l  The class Body has a constructor (the method Body) and
a static attribute (the integer nextID)

l  The program calls commonName with the object sirius!
l  The content of sirius is modified by commonName, but

assigning bRef to null has no effect on sirius!

class Body {
 public long idNum;
 public String name = “<unnamed>”;
 public Body orbits = null;
 private static long nextID = 0;

 Body(String bName, Body orbArd) {
 idNum = nextID++;
 name = bName;
 orbits = orbArd;
 }
}

class ByValueRef {
 public static void main(String [] args) {
 Body sirius = new Body(“Sirius”, null);
 System.out.println(“bef:“+sirius.name);
 commonName(sirius);
 System.out.println(“aft:“+sirius.name);
 }
 public static void commonName(Body bRef) {
 bRef.name = “Dog Star”;
 bRef = null;
 }
}

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Semantics of
commonName

l  Here is how to write
commonName in Oz

l  BRef is a local cell whose
content is an object reference

l  When CommonName is called,
then BRef is initialized with a
reference to the object Sirius

l  The object reference is passed
by value
l  Changes to the content of BRef

do not affect the object Sirius

public static void commonName(Body bRef)
{
 bRef.name = “Dog Star”;
 bRef = null;
}

proc {CommonName X}
 BRef={NewCell X}
in
 {@BRef setName(“Dog Star”)}
 BRef:=null
end

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The class Body and
its static attribute

declare
local NextID Body in
 NextID={NewCell 0}
 class Body
 attr idNum
 name:”<unnamed>”
 orbits:null
 meth initBody(BName OrbArd)
 idNum:=@NextID
 NextID:=@NextID+1
 name:=BName
 orbits:=OrbArd
 end
 end
end

class Body {
 public long idNum;
 public String name = “<unnamed>”;
 public Body orbits = null;
 private static long nextID = 0;

 Body(String bName, Body orbArd) {
 idNum = nextID++;
 name = bName;
 orbits = orbArd;
 }
}

l  The definition of class Body in Oz gives its semantics
l  NextID is a static attribute: a cell defined outside the

class, at the same time as the class
l  Not like other attributes which are defined per object

l  The constructor Body corresponds to method initBody

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Classes in Java
l  A Java class has fields (attributes or methods),

and members (other classes or interfaces)

l  Java has syntax for static and dynamic links
l  The keyword “super” gives a static link to the class

one level up (as we saw, it should be rarely used!)
l  The keyword “this” is used to mean “self”

l  Java allows single inheritance of classes
l  A class can inherit from exactly one other class

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Inheritance
example

class Point {
public double x, y;

public void clear() {
 x=0.0;
 y=0.0;
}

}

class Pixel extends Point {
Color color;

public void clear() {
 super.clear();
 color=null;
}

}

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The class Object
l  The class Object is the root of the hierarchy

l  All classes inherit from Object

Object oref = new Pixel();
oref = “Some String”;
oref = “Another String”;

l  The reference oref can refer to any object

l  We regain some of the flexibility of dynamic typing
l  (String objects are immutable)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Abstract classes
and concrete classes
l  An abstract class is a class that does not

implement all its methods (bodies are missing)
l  An abstract class cannot be instantiated

l  A concrete class implements all its methods
l  A concrete class can inherit from an abstract class
l  A concrete class can be instantiated

l  With abstract classes, we can write generic
programs
l  We define the missing methods using inheritance,

to get a concrete class that we can instantiate and
execute

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Example of
an abstract class
abstract class Benchmark {
 abstract void benchmark();

 public long repeat(int count) {
 long start=System.currentTimeMillis();
 for (int i=0; i<count; i++)
 benchmark();
 return (System.currentTimeMillis()-start);
 }
}

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Doing the same with
a higher-order function
l  We can achieve the same effect using a higher-order function:

fun {Repeat Count Benchmark}
 Start={OS.time}
in
 for I in 1..Count do {Benchmark} end
 {OS.time}-Start
end

l  Function Repeat corresponds to method repeat !
l  Procedure argument Benchmark corresponds to method

benchmark!
l  With abstract classes, we can achieve the same effect as

passing a procedure as argument
l  We use inheritance to simulate a procedure argument

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Final classes
l  A final class cannot be extended with inheritance

final class NotExtendable {
 ...
}

l  A final method cannot be redefined with inheritance
l  It is good practice to define all classes as final classes,

except those we wish to be extensible
l  Is it a good idea to define an abstract class as final?

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The inheritance
hierarchy

l  We add an edge between each
class and its direct superclasses
l  This gives a directed acyclic graph

called the inheritance hierarchy
l  We know how to define a class

that inherits from one class
(single inheritance), but how can a
class inherit from more than one
(multiple inheritance)?
l  Multiple inheritance is complicated

but it can be a powerful tool
l  We give a simple example; for

much more see the book
l  Object-oriented Software Construction

by Bertrand Meyer, Prentice-Hall, 1997

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Example of multiple
inheritance
l  Geometric figures

class Figure
 meth draw ... end
 ...
end
class Line from Figure
 meth draw ... end
 ...
End

l  A compound figure is both a
figure and a linked list

l  Multiple inheritance works in
this case because the two
superclasses are independent

l  Linked lists
class LinkedList
 meth forall(M)
 ... % invoke M on all elements
 end
 ...
end

l  Compound figures
class CompoundFigure from
 Figure LinkedList
 meth draw
 {self forall(draw)}
 end
 ...
end

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Java interfaces and
multiple inheritance
l  Java only allows single inheritance for classes

l  Multiple inheritance is forbidden, but to keep some of
its expressiveness, Java introduces the concept of
interface

l  An interface is similar to an abstract class with
no method implementations
l  The interface gives the method names and their

argument types, without the implementation
l  Java allows multiple inheritance for interfaces

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Example of a
Java interface
interface Lookup {
 Object find(String name);
}

class SimpleLookup implements Lookup {
 private String[] Names;
 private Object[] Values;
 public Object find(String name) {
 for (int i=0; i<Names.length; i++) {
 if (Names[i].equals(name))
 return Values[i];
 }
 return null;
 }
}

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The diamond
problem

l  The diamond problem is a classic
problem with multiple inheritance

l  When class W has state
(attributes), who will initialise W?
X or Y or both?
l  There is no simple solution
l  This is one reason why multiple

inheritance is not allowed in Java
l  Interfaces give a partial solution to

this problem

W	

Y	

X	

Z	

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

A solution
with interfaces

l  Interfaces are given in red
l  There is no more diamond

inheritance: class Z only
inherits from class Y

l  For an interface, inheritance is
just a constraint on the method
headers (names and arguments)
in the classes
l  Multiple inheritance means more

constraints on the method headers
l  An interface contains no code; no

code means no diamond problem

W	

Y	

X	

Z	

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Java syntax for the
diamond example

interface W { }
interface X extends W { }
class Y implements W { }
class Z extends Y
 implements X { }

W	

Y	

X	

Z	

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Another solution for
the same example

l  In this solution, Z is the
only class in the hierarchy

l  It has the following syntax:

interface W { }
interface X extends W { }
interface Y extends W { }
class Z implements X, Y { }

l  Are there any other solutions
for this example?

W	

Y	

X	

Z	

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Example
using exceptions
fun {Eval E}

if {IsNumber E} then E
else

 case E
 of plus(X Y) then {Eval X}+{Eval Y}
 [] times(X Y) then {Eval X}*{Eval Y}
 else raise badExpression(E) end
 end

end
end

try

{Browse {Eval plus(23 times(5 5))}}
{Browse {Eval plus(23 minus(4 3))}}

catch X then {Browse X} end

l  The error handling code does
not clutter up the program

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

If we did not have
exceptions…
fun {Eval E}

if {IsNumber E} then E
else

 case E
 of plus(X Y) then R={Eval X} in
 case R of badExpression(RE) then badExpression(RE)
 else R2={Eval Y} in
 case R2 of badExpression(RE) then badExpression(RE)
 else R+R2
 end
 end
 [] times(X Y) then
 % … Same code as plus
 else badExpression(E)
 end

end
end

l  Much more code!
l  In this example, 22 lines instead of

10 (more than double)
l  The code is much more complicated

because of all the case statements
handling badExpression

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The “finally” clause
l  The try has an additional finally clause, for an

operation that must always be executed (in both
the correct and error cases):

FH={OpenFile “foobar”}
try

 {ProcessFile FH}
catch X then

 {Show “*** Exception during execution ***”}
finally {CloseFile FH} end % Always close the file

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

How to handle
exceptional situations

l  How can we handle exceptional situations in a program?
l  Such as: division by 0, opening a nonexistent file, and so forth
l  Program errors but also errors from outside the program
l  Things that happen rarely but that must be taken care of

l  We add a new programming concept called exceptions
l  We define exceptions and show how they are used
l  We give the semantics of exceptions in the abstract machine

l  With exceptions, we can handle exceptional situations
without cluttering up the program with rarely used error
checking code

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The containment principle
l  When an error occurs, we would like to be able

to recover from the error
l  Furthermore, we would like the error to affect as

little as possible of the program
l  We propose the containment principle:

l  A program is a set of nested execution contexts
l  An error will occur inside an execution context
l  A recovery routine (exception handler) exists at the

boundary of an execution context, to make sure the
error does not propagate to higher execution contexts

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Handling
an exception

An error that raises
an exception

An execution context

The execution context
that catches the exception

jump

l  An executing program that encounters an error must jump to
another part (the exception handler) and give it a reference
(the exception) that describes the error

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The try and raise
instructions
l  We introduce two new instructions for handling exceptions:

 try <s>1 catch <y> then <s>2 end % Create an execution context
 raise <x> end % Raise an exception

l  With the following behavior:
l  try puts a “marker” on the stack and starts executing <s>1
l  If there is no error, <s>1 executes normally and removes the

marker when it terminates
l  raise is executed when there is an error, which empties the stack

up to the marker (the rest of <s>1 is therefore canceled)
l  Then <s>2 is executed
l  <y> refers to the same variable as <x>
l  The scope of <y> exactly covers <s>2

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Semantics
of exceptions

mark	

<s>1	

mark	

mark	

 <s>2	

Semantic���
stack	

Creation of an���
execution context	

(try)	

No���
error	

Error	

(raise)	

Remove���
marker	

Continue���
execution	

Cancel���
execution	

Recovery	

top	

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

An execution context
l  An execution context is the part of the

semantic stack that starts with a marker
and continues to the stack top:

 try ... % Context 1
 try ... % Context 2
 try ... % Context 3
 catch <x> then <s>3 end
 ...
 catch <x> then <s>2 end
 ...
 catch <x> then <s>1 end

Semantic���
stack	

mark	

mark	

mark	

Co
nt

ex
t 3
	

Co
nt

ex
t 2
	

Co
nt

ex
t 1
	

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Exceptions in Java
l  An exception is an object that inherits from the class

Exception (which is a subclass of Throwable)
l  There are two kinds of exceptions

l  Checked exceptions: The compiler verifies that all methods
only throw the exceptions declared for the class

l  Unchecked exceptions: Some exceptions can arrive
without the compiler being able to verify them. They inherit
from RuntimeException and Error.

l  For exceptions that the program itself defines, you
should always use checked exceptions, since they are
declared and therefore part of the program’s interface

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Java exception syntax
throw new NoSuchAttributeException(name);

try {
 <stmt>
} catch (exctype1 id1) {
 <stmt>
} catch (exctype2 id2) {
 …
} finally {
 <stmt>
}

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Good style

l  We read a file and perform an action
for each item in the file:

try
 while (!stream.eof())
 process(stream.nextToken());
finally
 stream.close();

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Bad style
l  We can use the exception handler to change

the execution order during normal execution:

try {
 for (;;)
 process (stream.next());
} catch (StreamEndException e) {
 stream.close();
}

l  Reaching the end of a stream is completely normal,
it is not an error. What happens if a real error
happens and is mixed in with the normal operation?
You don’t want to handle this. Normal operation
should be kept separate from errors!

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Final remarks
l  This completes the part of the course related to

data abstraction
l  Explicit state and object-oriented programming
l  Java, multiple inheritance, and exceptions

l  We have covered three of the four themes
l  Functional programming (including recursion, invariant

programming, and higher-order programming)
l  Language semantics (a complete operational semantics)
l  Data abstraction (including explicit state and object-oriented

programming)

l  We end this theme with a reflection on language
design and an introduction to concurrent programming

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Java, Scala, and
language design
l  We have discussed some of the principles that

were used to design Java (1990s)
l  True data abstraction (encapsulation, GC)
l  Almost all entities are objects
l  Support for object-oriented design

l  Scala has added two principles to this (2000s)
l  Strict separation between mutable/immutable
l  Everything is an object (including functions)

l  These principles considerably increase Scala’s
expressive power compared to Java
l  We consider that Scala is a worthy successor to Java

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Final theme:
concurrency
l  The final theme of the course will be concurrency

l  Multiple activities that evolve independently and collaborate
l  There are three fundamental forms of concurrent programming:

deterministic dataflow, message passing, and shared state
l  All three were invented (or discovered?) in the early 1970s!

l  We will present deterministic dataflow in depth
l  It is an extremely powerful yet easy to use model that deserves

to be more widely known
l  All the techniques of functional programming generalize for

deterministic dataflow

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Many
important ideas

l  Identifiers and environments
l  Functional programming
l  Recursion
l  Invariant programming
l  Lists, trees, and records
l  Symbolic programming
l  Instantiation
l  Genericity
l  Higher-order programming
l  Complexity and Big-O notation
l  Moore’s Law
l  NP and NP-complete problems
l  Kernel languages
l  Abstract machines
l  Mathematical semantics

l  Explicit state
l  Data abstraction
l  Abstract data types and objects
l  Polymorphism
l  Inheritance
l  Multiple inheritance
l  Object-oriented programming
l  Exception handling
l  Concurrency
l  Nondeterminism
l  Scheduling and fairness
l  Dataflow synchronization
l  Deterministic dataflow
l  Agents and streams
l  Multi-agent programming

Louv1.1x Louv1.2x

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

PLP_Drive space

A.HARICHE a.hariche@univ-dbkm.dz
49

https://drive.google.com/drive/folders/1YBCIZzAldeiT19DIfDiREQwP-NAQ1qMN

admin
Rectangle

https://drive.google.com/drive/folders/1YBCIZzAldeiT19DIfDiREQwP-NAQ1qMN

