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Welcome to Louv1.2x! 
l  Louv1.2x is the successor to Louv1.1x 

l  We assume that you understand the concepts 
and notation of Louv1.1x (Oz language) 

l  Louv1.2x continues the story with three topics 
l  Data abstraction and state 
l  Concurrent programming 
l  Programming paradigms 

l  Practical organization 
l  7 lessons, homework exercises, final exam 
l  Exercises in                  and graded by 

Essential concepts for 
programs in the real world 

CorrectOz Intelligent grader! 
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Louv1.2x course 
organisation for 2018 
l  Certificate 

l  Choose Verified Certificate (with donation) or Audit (no certificate) 
l  Lessons 

l  Seven lessons (6 + 1 bonus); one lesson per week 
l  First lesson Nov. 5, seventh (last) lesson Dec. 17 

l  Weekly exercises (50% of grade) 
l  Conceptual exercises (multiple choice + fill in blanks) 
l  Programming exercises (using Mozart and INGInious with CorrectOz) 
l  One week deadline + two-week grace period 
l  Infinite number of tries per exercise 

l  Final exam (50% of grade) 
l  Starts Jan. 7, final due date Jan. 21 
l  Two tries per exercise 
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Schedule 
l  Nov. 5:  1. Explicit state and data abstraction 
l  Nov. 12:  2. Object-oriented programming 
l  Nov. 19:  3. Java, multiple inheritance, and exceptions 
l  Nov. 26:  4. Deterministic dataflow introduction 
l  Dec. 3:  5. Deterministic dataflow techniques   
l  Dec. 10:  6. Multiagent dataflow programming (bonus) 
l  Dec. 17:  7. Paradigms of programming redux 
l  Dec. 24:  (two-week break for end-of-year festivities) 
l  Jan. 7:  Final exam 
l  Jan. 21:  End of course 
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Guest lecture 
by Seif Haridi 

l  Lesson 6 is a bonus lesson on 
multiagent dataflow programming (a.k.a. actor dataflow) 
l  Multiagent dataflow extends deterministic dataflow with the 

ability to add nondeterminism exactly where needed 
l  Multiagent dataflow is the best all round paradigm 

for concurrent programming that we know 

l  Lesson 6 will be given by Seif Haridi 
l  Seif Haridi is professor at the Royal Institute of Technology 

in Stockholm and chief scientist at the Swedish Institute of 
Computer Science 
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Course textbook 
and handouts 

l  “Concepts, Techniques, and Models 
of Computer Programming” by Peter 
Van Roy and Seif Haridi, MIT Press 
l  Same book for Louv1.1x and Louv1.2x 
l  Each course sees 25% of the book 

l  MIT Press has made available part 
of the book for the course 
l  Chapters 1-3 

l  This is complemented by slides 
and the last public draft of the book 
l  Important for abstraction and concurrency 
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Abstraction 
and concurrency 

l  Data abstraction is the main 
organizing principle for building 
complex software systems 
l  The real world is complex 

l  Explicit state allows to model 
change in a program 
l  The real world has change 
l  Explicit state supports data 

abstraction 

l  Concurrency is a property of 
systems that are made of 
activities that progress 
independently 
l  The real world has 

independent activities 

l  Deterministic dataflow is a 
form of concurrency that 
always gives the same outputs 
for the same inputs 

l  Essential concepts for building large programs that 
are part of the real world 
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Paradigms of 
Louv1.1x and Louv1.2x 

l  We have seen one 
paradigm in Louv1.1x 

l  We will see four more 
in Louv1.2x 

l  Each paradigm has 
its own concepts and 
kernel language 

Functional programming 
Functions and recursion 
Higher-order programming 
Single-assignment variables 

Object-oriented programming 
Data abstraction 
Polymorphism 
Inheritance 

Deterministic dataflow 
No race conditions 
Concurrency transparency 
Streams and agents 

+ state (cells) + concurrency (threads) 

Multi-agent dataflow 
Extends deterministic dataflow 
Nondeterminism where needed 

Active objects 
Object-oriented programming 
Multi-agent dataflow 

+ ports (named streams) 

Louv1.1x 

Lessons 
1, 2, 3 

Lessons 
4, 5 

Lesson 6 

Lesson 7 
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Let’s start 

l  This first lesson will introduce explicit state 
and data abstraction 
l  You will understand exactly what explicit state 

adds to functional programming 
l  You will see the four fundamentally different ways 

of building data abstractions 
l  Objects as seen in Java or C++ are just one way 

l  This leads to our second paradigm, namely 
object-oriented programming 
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Adding explicit state 
to the language 
l  We can make the state explicit 

by extending the language 
l  With this extension a program 

can directly observe the 
sequence of values in time 
l  This was not possible in the 

functional paradigm 
l  We call our extension a cell 

l  The word “cell” is chosen to avoid 
confusion with related terms, such 
as the overused word “variable” 

l  A cell is a box with a content 
l  The content can be changed but 

the box remains the same 
l  The same cell can have different 

contents: we can observe change 
l  The sequence of contents is a state 

c 

c a 

c b 

An unbound variable 

Creating a cell with 
initial content a (=5) 

Replace the content by 
another variable b (=6) 

cell 

cell 
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A cell 
l  A cell is a box with an identity and 

a content 
l  The identity is a constant 

(the “name” or “address” of the cell) 
l  The content is a variable 

(in the single-assignment store) 
l  The content can be replaced by 

another variable 
 
A=5 
B=6 
C={NewCell A}  % Create a cell 
{Browse @C}    % Display content 
C:=B       % Change content 
{Browse @C}    % Display content 
 

c An unbound variable 

c a 

c b 

Creating a cell with 
initial content a (=5) 

Replace the content by 
another variable b (=6) 

cell 

cell 
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Adding cells 
to the kernel language 
l  We add cells and their operations 

l  Cells have three operations 
l  C={NewCell A} 

l  Create a new cell with initial content A 
l  Bind C to the cell’s identity 

l  C:=B 
l  Check that C is bound to a cell’s identity 
l  Replace the cell’s content by B 

l  Z=@C 
l  Check that C is bound to a cell’s identity 
l  Bind Z to the cell’s content 
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Some examples (1) 

l  X={NewCell 0} 
 

l  X:=5 
l  Y=X 

 
l  Y:=10 
l  @X==10  % true 
l  X==Y    % true 

x 0 

x 5 

y 

x 10 

y 
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Some examples (2) 
l  X={NewCell 0} 
l  Y={NewCell 0} 

 
l  X==Y         % false 
l  Because X and Y refer to 

different cells, with different 
identities 
 

l  @X==@Y  % true 
l  Because the contents of X 

and Y are the same value 

x 0 

y 0 
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Time and change 
l  In the functional paradigm, there is no notion of time 

l  All functions are mathematical functions; once defined they never change 
l  Programs do execute on a real machine, but a program cannot observe 

the execution of another program or of part of itself 
l  It can only see the results of a function call, not the execution itself 
l  Observing an execution of a program can only be done outside of the 

program’s implementation 

l  In the real world, there is time and change 
l  Organisms change their behavior over time, they grow and learn 
l  How can we model this in a program? 

l  We need to add time to a program 
l  Time is a complicated concept!  Let us start with a simplified version of 

time, an abstract time, that keeps the essential property that we need: 
modeling change. 
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State as an abstract time (1) 
l  Here’s one solution: We 

define the abstract time as a 
sequence of values and we 
call it a state 

l  A state is a sequence of 
values calculated 
progressively, which 
contains the intermediate 
results of a computation 

l  The functional paradigm can 
use state according to this 
definition! 

l  The definition of Sum given 
here has a state 

fun {Sum Xs A} 
 case Xs 
of nil then A 
[] X|Xr then 

 {Sum Xr A+X} 
end 

end 
 
{Browse {Sum [1 2 3 4] 0}} 
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State as an abstract time (2) 
l  The two arguments Xs and A give 

us an implicit state 
 
Xs     A 
[1 2 3 4]    0 
[2 3 4]      1 
[3 4]     3 
[4]     6 
nil   10 

l  It is implicit because the language 
has not changed 
l  It is purely in the programmer’s head: 

the programmer observes the 
changes in the program 

l  In most cases this is not good 
enough: we want the program itself 
to observe the changes 
l  We need a language extension! 
l  We leave the functional paradigm 

and enter another paradigm 

fun {Sum Xs A} 
 case Xs 
of nil then A 
[] X|Xr then 

 {Sum Xr A+X} 
end 

end 
 
{Browse {Sum [1 2 3 4] 0}} 
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Structure equality 
and token equality 
l  Two lists are equal if their values are equal 

(structure equality) 
l  Two structures with same values created separately are equal 
l  A=[1 2] 

B=[1 2] 
{Browse A==B}   % true 

l  Two cells are equal if they are the same cell 
(token equality) 
l  Two cells created separately are always different 
l  C={NewCell [1 2]}  

D={NewCell [1 2]} 
{Browse C==D}   % false 
{Browse @C==@D}  % true (Since the contents are lists, they are 

 compared with structure equality) 
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Semantics of cells (1) 
l  We have extended the kernel language with cells  

l  Let us now extend the abstract machine to explain how cells execute 

l  There are now two stores in the abstract machine: 
l  Single-assignment store (contains variables: immutable store) 
l  Multiple-assignment store (contains cells: mutable store) 

l  A cell is a pair of two variables 
l  The first variable is bound to the name of the cell (a constant) 
l  The second variable is the cell’s content 

l  Assigning a cell to a new content 
l  The pair is changed: the second variable in the pair is replaced by 

another variable (the first variable stays the same) 
l  Warning: The variables do not change!  The single-assignment 

store is unchanged when a cell is assigned. 
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Semantics of cells (2) 
l  The full store σ = σ1 ∪ σ2 has two parts: 

l  Single-assignment store (contains variables) 
σ1 = {t, u, v, x=ξ, y=ζ, z=10, w=5} 

l  Multiple-assignment store (contains pairs) 
σ2 = {x:t, y:w} 
 

l  In σ2 there are two cells, x and y 
l  The name of x is the constant ξ, the name of y is ζ 	


l  The operation X:=Z changes x:t into x:z 
l  The operation @Y returns the variable w 

(assuming the environment {X → x, Y → y, Z → z, W → w}) 
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Imperative paradigm 
l  By adding cells, we have left the functional paradigm 

and entered the imperative paradigm 
l  Imperative paradigm = functional paradigm + cells 

l  The imperative paradigm allows programs to 
express and observe growth and change 
l  This gives new ways of thinking that were not possible in 

the functional paradigm 
l  The imperative paradigm is the foundation of object-

oriented programming (OOP) 
l  OOP has new ways of structuring programs that are 

essential for building large systems 
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Kernel language of the 
imperative paradigm 
l  <s> ::=   skip 

      | <s>1 <s>2 
      | local <x> in <s> end 
      | <x>1=<x>2 
      | <x>=<v> 
      | if <x> then <s>1 else <s>2 end 
      | {<x> <y>1 … <y>n} 
      | case <x> of <p> then <s>1 else <s>2 end 
      | {NewCell <y> <x>} 
      | <x>:=<y> 
      | <y>=@<x> 

l  <v> ::= <number> | <procedure> | <record> 
l  <number> ::= <int> | <float> 
l  <procedure> ::= proc {$ <x>1 … <x>n} <s> end 
l  <record>, <p> ::= <lit> | <lit>(<f>1:<x>1 … <f>n:<x>n) 
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Kernel language of the 
imperative paradigm 
l  <s> ::=   skip 

      | <s>1 <s>2 
      | local <x> in <s> end 
      | <x>1=<x>2 
      | <x>=<v> 
      | if <x> then <s>1 else <s>2 end 
      | {<x> <y>1 … <y>n} 
      | case <x> of <p> then <s>1 else <s>2 end 
      | {NewCell <y> <x>} 
      | {Exchange <x> <y> <z>} 

l  <v> ::= <number> | <procedure> | <record> 
l  <number> ::= <int> | <float> 
l  <procedure> ::= proc {$ <x>1 … <x>n} <s> end 
l  <record>, <p> ::= <lit> | <lit>(<f>1:<x>1 … <f>n:<x>n) 

<y>=@<x> and <x>:=<z> 
(atomically : as one operation) 

Both versions are equally expressive (since 
Exchange can be expressed with @ and := 
and vice versa), but the second version is 
more convenient for concurrent programming 

Second version 
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Explicit state is useful 
for modularity 
l  Before looking at data abstraction and object-oriented 

programming, let’s take a closer look at what explicit 
state is good for 

l  We say that a program (or system) is modular with 
respect to a given part if that part can be changed without 
changing the rest of the program 
l  “part” = function, procedure, component, module, class, library, 

package, file, … 

l  We will show by means of an example that the use of 
explicit state allows us to make a program modular 
l  This is not possible in the functional paradigm 
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A scenario (1) 

l  Once upon a time there 
were three developers, 
P, U1, and U2 

l  P has developed module 
M that implements two 
functions F and G 

l  U1 and U2 are both 
happy users of module M 

fun {MF}  % Module definition 
 fun {F ...}  
    〈Definition of F〉 
 end 
fun {G ...}  
    〈Definition of G〉 
 end 

in ’export’(f:F g:G) 
end 
M = {MF} % Module instantiation 
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A scenario (2) 

l  One day, developer U2 
writes an application that 
runs slowly because it does 
too much computation 

l  U2 would like to extend M to 
count the number of times F 
is called by the application 

l  U2 asks P to make this 
extension, but to keep it 
modular so that no 
programs have to be 
changed to use it 

fun {MF} 
 fun {F ...}  
    〈Definition of F〉 
 end 
fun {G ...}  
    〈Definition of G〉 
 end 

in ’export’(f:F  g:G) 
end 
M = {MF} 
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Oops! 
l  This is impossible in the functional paradigm, because 

F does not remember what happened in previous 
calls: it cannot count its calls 
l  The only solution is to change the interface of F by adding two 

arguments, Fin and Fout: 
fun {F … Fin Fout} Fout=Fin+1 … end 

l  The rest of the program has to make sure that the Fout of each 
call to F is passed as Fin to the next call of F 

l  This means that M’s interface has changed 
l  All M’s users, even U1, have to change their programs 

l  U1 is especially unhappy, since it makes a lot of 
extra work for nothing 
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fun {MF} 
 X = {NewCell 0} 
 fun {F ...}  
  X:=@X+1 
  〈Definition of F〉 
 end 
fun {G ...} 
       〈Definition of G〉 
end 
 fun {Count} @X end 

in ’export’(f:F g:G c:Count) 
end 
M = {MF} 

Solution using a cell 
l  Create a cell when MF is 

called and increment it 
inside F 
l  Because of static scope, 

the cell is hidden from the 
rest of the program: it is 
only visible inside M 

l  M’s interface is extended 
without changing existing 
calls 
l  M.f stays the same 
l  A new function M.c appears 

that can safely be ignored 
l  P, U1, and U2 live happily 

ever after 
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Comparison 
l  Functional paradigm: 

l  + A component never changes its behavior (if it is correct, it stays 
correct) 

l  – Updating a component often means that its interface changes 
and therefore many other components must be updated 

l  Imperative paradigm: 
l  + A component can be updated without changing its interface 

and so without changing the rest of the program (modularity) 
l  – A component can change its behavior because of past calls (for 

example, it might break) 
 

l  Sometimes it is possible to combine both advantages 
l  Use explicit state to manage updates, but make sure that the 

behavior of components does not change 
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Data abstraction 
l  Data abstraction is the main organizing principle 

for building complex software systems 
l  Without data abstraction, computing technology would 

stop dead in its tracks 
l  We will study what data abstraction is and how it 

is supported by the programming language 
l  The first step toward data abstraction is called 

encapsulation 
l  Data abstraction is supported by language concepts 

such as higher-order programming, static scoping, 
and explicit state 
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Encapsulation 
l  The first step toward data abstraction, which is the basic organizing 

principle for large programs, is encapsulation 
l  Assume your television set is not enclosed in a box 

l  All the interior circuitry is exposed to the outside 
l  It’s lighter and takes up less space, so it’s good, right? NO! 

l  It’s dangerous for you: if you touch the circuitry, you can get an 
electric shock 

l  It’s bad for the television set: if you spill a cup of coffee inside it, you 
can provoke a short-circuit 
l  If you like electronics, you may be tempted to tweak the insides, to 

“improve” the television’s performance 
l  So it can be a good idea to put the television in an enclosing box 

l  A box that protects the television against damage and that only 
authorizes proper interaction (on/off, channel selection, volume) 
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Encapsulation 
in a program 
l  Assume your program uses a stack with the 

following implementation: 
 fun {NewStack} nil end 
 fun {Push S X} X|S end 
 fun {Pop S X} X=S.1 S.2 end 
 fun {IsEmpty S} S==nil end 

l  This implementation is not encapsulated! 
l  It has the same problems as a television set without enclosure 
l  It is implemented using lists that are not protected 

l  A user can read stack values without the implementation knowing 
l  A user can create stack values outside of the implementation 

l  There is no way to guarantee that an unencapsulated 
stack will work correctly 
l  The stack must be encapsulated → data abstraction 
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Definition of 
data abstraction 
l  A data abstraction is a part of a 

program that has an inside, an outside, 
and an interface in between 

l  The inside is hidden from the outside 
l  All operations on the inside must pass 

through the interface, i.e., the data 
abstraction must use encapsulation 

l  The interface is a set of operations that 
can be used according to certain rules 
l  Correct use of the rules guarantees that 

the results are correct 
l  The encapsulation must be supported 

by the programming language 
l  We will see how the language can 

support encapsulation, that is, how it can 
enforce the separation between inside 
and outside 

Op1 Op2 
Op3 

Inside 

Outside 

Interface 
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Advantages of 
data abstraction 
l  A guarantee that the abstraction will work correctly 

l  The interface only allows well-defined interaction with the inside 
l  A reduction of complexity 

l  The user does not have to know the implementation, but only the 
interface, which is generally much simpler 

l  A program can be partitioned into many independent 
abstractions, which greatly simplifies use 

l  The development of large programs becomes possible 
l  Each abstraction has a responsible developer: the person who 

implements it, maintains it, and guarantees its behavior  
l  Each responsible developer only has to know the interfaces of 

the abstractions used by the abstraction 
l  It’s possible for teams of developers to develop large programs 
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The two main kinds 
of data abstraction 
l  There are two main kinds of data abstraction, namely 

objects and abstract data types 
l  An object groups together value and operations in a single entity 
l  An abstract data type keeps values and operations separate 

l  Some real world examples 
l  A television set is an object: it can be used directly through its 

interface (on/off, channel selection, volume control) 
l  Coin-operated vending machines are abstract data types: the 

coins and products are the values and the operations are the 
vending machines 

l  We will look at both objects and ADTs 
l  Each has its own advantages and disadvantages 
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Abstract data types 
l  An ADT consists of a set of values and 

a set of operations 
l  A common example: integers 

l  Values: 1, 2, 3, … 
l  Operations: +, -, *, div, … 

l  In most of the popular uses of ADTs, 
the values and operations have no state 
l  The values are constants 
l  The operations have no internal memory 

(they don’t remember anything in between calls) 
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A stack ADT 
l  We can implement a stack as an ADT: 

l  Values: all possible stacks and elements 
l  Operations: NewStack, Push, Pop, IsEmpty 

l  The operations take (zero or more) stacks and elements 
as input and return (zero or more) stacks and elements 
as output 
l  S={NewStack} 
l  S2={Push S X} 
l  S2={Pop S X} 
l  {IsEmpty S} 

l  For example: 
l  S={Push {Push {NewStack} a} b} returns the stack S=[b a] 
l  S2={Pop S X} returns the stack S2=[a] and the top X=b 
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Unencapsulated 
implementation 
l  The stack we saw before is almost an ADT: 
 

l  fun {NewStack} nil end 
l  fun {Push S X} X|S end 
l  fun {Pop S X} X=S.1 S.2 end 
l  fun {IsEmpty S} S==nil end 

 
l  Here the stack is represented by a list 
l  But this is not a data abstraction, since the list is not protected 

l  How can we protect the list, and make this a true ADT? 
l  How can we build an abstract data type with encapsulation? 
l  We need a way to protect values 
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Encapsulation using 
a secure wrapper 
l  To protect the values, we will use a secure wrapper: 

l  The two functions Wrap and Unwrap will “wrap” and “unwrap” a value 
l  W={Wrap X}  % Given X, returns a protected version W 
l  X={Unwrap W}  % Given W, returns the original value X 

l  The simplest way to understand this is to consider that Wrap and 
Unwrap do encryption and decryption using a shared key that is 
only known by them 

l  We need a new Wrap/Unwrap pair for each ADT that we want to 
protect, so we use a procedure that creates them: 
l  {NewWrapper Wrap Unwrap} creates the functions Wrap and Unwrap 
l  Each call to NewWrapper creates a pair with a new shared key 

l  We will not explain here how to implement NewWrapper, but if you 
are curious you can look in the book (Section 3.7.5) 
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Implementing 
the stack ADT 
l  Now we can implement a true stack ADT: 

 
local Wrap Unwrap in 

 {NewWrapper Wrap Unwrap} 
 

 fun {NewStack} {Wrap nil} end 
 fun {Push W X} {Wrap X|{Unwrap W}} end 
 fun {Pop W X} S={Unwrap W} in X=S.1 {Wrap S.2} end 
 fun {IsEmpty W} {Unwrap W}==nil end 

end 

l  How does this work?  Look at the Push function: it first calls 
{Unwrap W}, which returns a stack value S, then it builds X|S, 
and finally it calls {Wrap X|S} to return a protected result 

l  Wrap and Unwrap are hidden from the rest of the program 
(static scoping) 
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Final remarks on ADTs 
l  ADT languages have a long history 

l  The language CLU, developed by Barbara Liskov and her 
students in 1974, is the first 

l  This is only a little bit later than the first object-oriented 
language Simula 67 in 1967 

l  Both CLU and Simula 67 strongly influenced later object-
oriented languages up to the present day 

l  ADT languages support a protection concept similar 
to Wrap/Unwrap 
l  CLU has syntactic support that makes the creation of ADTs 

very easy 
l  Many object-oriented languages also support ADTs 

l  For example, we will see that Java objects are also ADTs 
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Objects 
l  A single object represents both a value and a set of operations 
l  Example interface of a stack object: 

S={NewStack} 
{S push(X)} 
{S pop(X)} 
{S isEmpty(B)} 
 

l  The stack value is stored inside the object S 
l  Example use of a stack object: 

S={NewStack} 
{S push(a)} 
{S push(b)} 
local X in {S pop(X)} {Browse X} end 
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Implementing 
the stack object 
l  Implementation of the stack object: 

 
fun {NewStack} 

 C={NewCell nil} 
 proc {Push X} C:=X|@C end 
 proc {Pop X} S=@C in C:=S.2 X=S.1 end 
 proc {IsEmpty B} B=(@C==nil) end 

in 
 proc {$ M} 
      case M of push(X) then {Push X} 
      [] pop(X) then {Pop X} 
      [] isEmpty(B) then {IsEmpty B} end 
 end 

end 
 

l  Each call to NewStack creates a new stack object 
l  The object is represented by a one-argument procedure that does 

procedure dispatching: a case statement chooses the operation to execute 
l  Encapsulation is enforced by hiding the cell with static scoping 
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Stack as ADT and 
stack as object 
l  Here is the stack as ADT: 

 
local Wrap Unwrap in 

 {NewWrapper Wrap Unwrap} 
 fun {NewStack} {Wrap nil} end 
 fun {Push W X} {Wrap X|{Unwrap W}} end 
 fun {Pop W X} S={Unwrap W} in X=S.1 {Wrap S.2} end 
 fun {IsEmpty W} {Unwrap W}==nil end 

end 
 

l  Here is the stack as object: (represented by a record) 
 
fun {NewStack} 

 C={NewCell nil} 
 proc {Push X} C:=X|@C end 
 proc {Pop X} S=@C in X=S.1 C:=S.2 end 
 fun {IsEmpty} @C==nil end 

in 
 stack(push:Push pop:Pop isEmpty:IsEmpty) 

end 
 

l  Any data abstraction can be implemented as an ADT or as an object 
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Final remarks 
on objects 
l  Objects are omnipresent in computing today 
l  The first major object-oriented language was Simula-67, 

introduced in 1967 
l  It directly influenced Smalltalk (starting in 1971) and C++ (starting 

in 1979), and through them, most modern object-oriented 
languages (Java, C#, Python, Ruby, and so forth) 

l  Most modern OO languages are in fact data abstraction 
languages: they incorporate both objects and ADTs 
l  And other data abstraction concepts as well, such as 

components and modules 

l  The next lesson will be completely focused on object-
oriented programming 
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Four ways to do 
data abstraction 
l  We have seen two ways to make data abstractions: 

l  Abstract data types (without state) 
l  Objects (with state) 

l  There are two more ways to build data abstractions 
l  Abstract data types with state (stateful ADTs) 
l  Objects without state (functional objects) 

l  This gives four ways in all 
l  Let’s take a look at the two additional ways 
l  And then we’ll conclude this lesson on data abstraction 
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Four ways to do 
data abstraction 

•  Objects (with state) and ADTs (stateless) are popular 
•  Functional objects are less popular (except in Scala) 
•  Stateful ADTs are rarely used 

bundling 

state 

Object ADT 

Stateless 
(no cells) 

Stateful 
(with cells) 

Object 

ADT Functional object 

Stateful ADT 
(rare) 

Java objects 

Java integers Scala 

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz



The two less-used 
data abstractions 
l  A functional object is possible 

l  Functional objects are immutable; invoking an object returns 
another object with a new value 

l  Functional objects are becoming more popular because of Scala 

l  A stateful ADT is possible 
l  Stateful ADTs were much used in the C language (although 

without enforced encapsulation, since it is impossible in C) 
l  They are also used in other languages (e.g., classes with static 

attributes in Java) 

l  Let’s take a closer look at how to build them 
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A functional object 
l  We can implement the stack as a functional object: 

 
local 
   fun {StackObject S} 
      fun {Push E} {StackObject E|S} end 
      fun {Pop S1} 
         case S of X|T then S1={StackObject T} X end end 
      fun {IsEmpty} S==nil end 
   in stack(push:Push pop:Pop isEmpty:IsEmpty) end 
in 
   fun {NewStack} {StackObject nil} end 
end 

l  This uses no cells and no secure wrappers.  It’s the simplest of all 
our data abstractions since it only needs higher-order programming. 
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Functional objects 
in Scala 
l  Scala is a hybrid functional-object language: it 

supports both the functional and object-oriented 
paradigms 

l  In Scala we can define an immutable object that 
returns another immutable object 
l  For example, a RationalNumber class whose instances 

are rational numbers (and therefore immutable) 
l  Adding two rational numbers returns another rational 

number 

l  Immutable objects are functional objects 
l  The advantage is that they cannot be changed (the 

same advantage of any functional data structure) 
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A stateful ADT 
l  Finally, let us implement our trusty stack as a stateful ADT: 

  
local Wrap Unwrap 
    {NewWrapper Wrap Unwrap} 
    fun {NewStack} {Wrap {NewCell nil}} end 
    proc {Push S E} C={Unwrap S} in C:=E|@C end 
    fun {Pop S} C={Unwrap S} in 
        case @C of X|S1 then C:=S1 X end 
    end 
    fun {IsEmpty S} @{Unwrap S}==nil end 
in 
    Stack=stack(new:NewStack push:Push pop:Pop isEmpty:IsEmpty) 
end 
 

l  This uses both a cell and a secure wrapper. Note that Push, Pop, 
and IsEmpty do not need Wrap!  They modify the stack state by 
updating the cell inside the secure wrapper. 
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Conclusion 
l  Data abstractions are a key concept needed for building large 

programs with confidence 
l  Data abstractions are built on top of higher-order programming, 

static scoping, explicit state, records, and secret keys 
l  Data abstractions are defined precisely in terms of these concepts; 

our definitions give the semantics of data abstractions 
l  There are four kinds of data abstraction, along two axes: objects 

versus ADTs on one axis and stateful versus stateless on the other 
l  Two kinds are more visible than the others, but the others also have 

their uses (for example, functional objects are used in Scala) 
l  Modern programming languages strongly support data abstractions 

l  They support much more than just objects; it is more correct to consider 
them data abstraction languages and not just object-oriented languages 
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Object-oriented 
programming 
l  The concept of object is omnipresent in programming languages today 

l  A simple idea: a data abstraction that contains both value and operations 
l  First major system was Simula 67, widely disseminated via Smalltalk et C++ 

l  Caveat: object-oriented programming has become a buzzword 
l  There are many variations, but not always correct (e.g., many so-called OO 

languages do not provide proper encapsulation, like C++ and Javascript, or 
do not properly support inheritance with the substitution principle, like C++) 

l  It is not always the right paradigm, e.g., Erlang is better for fault tolerance 
l  We will try to be as rigorous as possible, and focus on the main principles 

l  OOP provides three main principles for structuring programs: 
l  Data abstraction: provide guarantees and reduce complexity 
l  Polymorphism: compartmentalize responsibility 
l  Inheritance: avoid redundancy and encourage incremental development  

l  Abstract data types are just as omnipresent! 
l  It is important to understand both objects and ADTs, because languages mix 

the two.  For example, a Java object is a mix of pure objects and pure ADTs. 
l  Advanced object-oriented languages are actually data abstraction languages 
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An object 
declare 
local 

A1={NewCell I1} 
… 
An={NewCell In} 

in 
proc {M1 …} … end 
… 
proc {Mm …} … end 

end 

This code gives the structure of 
an object abstraction. 
An object is a combination of 
local cells A1, …, An and 
global procedures M1, …, Mm. 

We call A1, …, An the “attributes” 
and M1, …, Mm the “methods”. 
Attributes A1, ..., An are hidden 
from the outside and 
methods M1, ..., Mm are visible 
from the outside (interface!). 
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A counter object 
declare 
local 

A1={NewCell 0} 
in 

proc {Inc} A1:=@A1+1 end 
proc {Get X} X=@A1 end 

end 
 
{Inc} 
local X in {Get X} {Browse X} end 

This code creates one object that 
implements a counter. 
The object has two methods, Inc 
and Get, and is initialized to 0. 
Since the cell can only be 
accessed by the methods, the 
behavior is guaranteed correct: 
{Get X} binds X to an integer that 
gives the number of calls {Inc} 
done before. 
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Adding abilities to 
objects in four steps 
l  Objects in OOP are much more than simple 

data abstractions: they add important abilities 
needed for practical programming 

l  Let us start with an object abstraction and 
extend it in four steps: 
l  First step: a single object (data abstraction) 
l  Second step: a single entry point (dispatch) 
l  Third step: creating multiple objects (instantiation) 
l  Fourth step: specialized syntax (classes) 
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First step: 
An object 
declare 
local 

A1={NewCell I1} 
… 
An={NewCell In} 

in 
proc {M1 …} … end 
… 
proc {Mm …} … end 

end 

This code gives the structure of 
an object abstraction. 
An object is a combination of 
local cells A1, …, An and 
global procedures M1, …, Mm. 

We call A1, …, An the “attributes” 
and M1, …, Mm the “methods”. 
Attributes A1, ..., An are hidden 
from the outside and 
methods M1, ..., Mm are visible 
from the outside (interface!). 
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First step: 
An object 
declare 
local 

A1={NewCell 0} 
in 

proc {Inc} A1:=@A1+1 end 
proc {Get X} X=@A1 end 

end 
 
{Inc} 
local X in {Get X} {Browse X} end 

This code creates one object that 
implements a counter. 
The object has two methods, Inc 
and Get, and is initialized to 0. 
Since the cell can only be 
accessed with the methods, the 
behavior is guaranteed correct: 
{Get X} binds X to an integer that 
gives the number of calls {Inc} 
done before. 
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Second step: 
Single entry point 

declare 
local 

A1={NewCell 0} 
proc {Inc} A1:=@A1+1 end 
proc {Get X} X=@A1 end 

in 
proc {Counter M} 

 case M of inc then {Inc} 
 [] get(X) then {Get X} 
 end 

 end 
end 

This extends the counter 
object to invoke all methods 
from a single entry point: 
the procedure Counter. 

{Counter inc} 

{Counter inc} 
{Counter get(X)} 

In this example, this is called 
procedure dispatch, since the 
entry point is a procedure.  
The argument M is usually 
called a message. 
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Third step: 
Creating multiple objects 

declare 
fun {NewCounter} 

A1={NewCell 0} 
proc {Inc} A1:=@A1+1 end 
proc {Get X} X=@A1 end 

in 
proc {$ M} 

 case M of inc then {Inc} 
 [] get(X) then {Get X} 
 end 

 end 
end 

We add the ability to create 
many counter objects with the 
same methods but different 
states. 
The function NewCounter 
creates a new counter object 
each time it is called.  This is 
an example of instantiation 
(higher-order programming). 
The call C={NewCounter} 
creates a new cell in A1 and 
returns an object with 
methods Inc and Get, that 
both access the new cell. 
Each new object is completely 
independent of the others. 
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Using NewCounter 
C1={NewCounter} % First object 
C2={NewCounter} % Second object 
 
{C1 inc} % Increment first object twice 
{C1 inc} 
 
local X in {C1 get(X)} {Browse X} end % Shows 2 
local X in {C2 get(X)} {Browse X} end % Shows 0 
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Fourth step: 
Specialized syntax 
class Counter 

attr a1 
meth init a1:=0 end 
meth inc a1:=@a1+1 end 
meth get(X) X=@a1 end 

end 
 
C1={New Counter init} 
{C1 inc} 
local X in 
    {C1 get(X)} {Browse X} 
end 

We introduce a new syntax for 
defining objects, in which we 
define attributes and methods. 

We call this definition a class, 
since we can use it to define many 
objects with the same behavior 
(they are of the same class). 
We separate the object definition 
(the class) from the object creation 
(the function New). 

The new syntax guarantees that the 
object is constructed without error. 
It also improves readability and lets 
the system improve performance. 
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What is a class? (1) 

l  The class Counter that we defined is an 
argument to the function New: 
l  C={New Counter Init} 

l  This means that Counter is a value 
l  Class definition and object creation are separated 
l  The class is an abstract data type with two basic 

operations: class definition and object definition 

l  In our earlier example, the function NewCounter 
combined both operations: defining the object 
behavior and creating the object 
l  Most object-oriented languages separate the two 

operations to improve flexibility 
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What is a class? (2) 
l  How do we represent a class as a value?  A class is a record that groups 

the attributes and method definitions: 
 

 Counter=c(attrs:[a1] methods:m(init:Init inc:Inc get:Get)) 
 

l  The function New takes the record, creates the attributes (cells), and 
creates the object (a procedure that calls the methods with the attributes): 
 

 fun {New Class Init} 
     S=(...)   % S is the state (record containing attributes) 

       proc {Obj M}   % Obj is a one-argument procedure 
           {Class.methods.{Label M} M S}  
      end 

 in 
     {Obj Init}   % Obj is initialized before it is returned 
     Obj 
 end 

 
l  As an exercise, read and understand Section 7.2.2 in the book, which 

gives the full definition of New and shows how to create a class record. 
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Polymorphism 
l  In everyday language, an entity is polymorphic if it 

can assume different forms 
l  The Greek god Proteus is polymorphic; he is a shape-shifter 

able to assume many forms 

l  In computing, an operation is polymorphic if it works 
correctly for arguments of different types 
l  For example, an object message is polymorphic if many 

different objects will accept it 

l  This ability is needed in order to properly apportion 
responsibility over different parts of a program 
l  A single responsibility should not be spread out; it should 

rather be concentrated in one place if possible 
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The responsibility 
principle 
l  Polymorphism allows to isolate responsibilities to the parts of the 

program that are concerned with them 
l  A responsibility should be concentrated in one part of the program 

l  Example: a patient goes to see a medical doctor 
l  The patient does not have to be a doctor! 
l  The patient tells the doctor: “cure me” 
l  The doctor understands this message and does the right thing (either cures the 

patient, or sends the patient to another doctor; we assume that eventually the 
right doctor is found!) 

l  The message “cure me” is polymorphic: it works with all medical 
specialties 
l  All doctors understand the message “cure me”	

l  The ability to cure a specific illness is concentrated in the doctor whose 

specialty covers that illness; we assume there is a mechanism to find the right 
doctor (for example, the generalist directs you to a specialist) 
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Implementing 
polymorphism 
l  All data abstractions we have seen can support 

polymorphism 
l  Both objects and ADTs support it 
l  But it is especially simple for objects 

l  This is one reason for objects’ enormous success 
l  In this course, we will only talk about object 

polymorphism 
l  The book also explains ADT polymorphism, if you are curious 

l  The idea is simple: we define the interface that the 
program needs 
l  Then the program can accept all abstractions with that interface 
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Example: drawing 
of geometric figures 
class Figure 

 … 
end 
class Circle 

 attr x y r 
 meth draw … end 
 … 

end 
class Line 

 attr x1 y1 x2 y2 
 meth draw … end 
 … 

end 

class CompoundFigure 
 attr figlist 
 meth draw 
  for F in @figlist do 
        {F draw} 
  end 
 end 
 … 

end 
 

This definition of draw in CompoundFigure 
works for all possible figures: circles, lines, 
and other CompoundFigures! 
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Correctness of 
a polymorphic program 
l  When is a polymorphic program correct? 

l  To be correct, each abstraction that the program accepts 
needs to satisfy certain properties (namely, those needed by 
the program) 

l  For each abstraction, we need to verify that its specification 
has those properties 

l  For the figure drawing example, each draw method must 
correctly draw the object’s figure 

l  For the doctor example, all doctors must cure the patient for 
their specialty 
l  And for patients with another illness, the doctor must send the 

patient to a doctor better able to cure the illness (no cycles to 
avoid infinite loops!) 
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Similar data abstractions 

l  Language support for similar data abstractions is important 

l  A simple example is the concept  
“collection of elements” 
l  Multiset: a collection with no defined order 
l  Sequence: a multiset with a total order 

l  Sequence = multiset + total order 
l  Stack: a sequence where adding and removing 

are done on the same side 
l  Stack = sequence + add/remove constraint 

l  Queue: a sequence where adding is done on 
one side and removing on the other side 
l  Queue = sequence + add/remove constraint 

Multiset 

Sequence 

Stack Queue 

l  Data abstractions are often very similar 
l  Especially if the entities they represent are similar (such as “person” 

versus “employee”, “car part” versus “airplane part”, and so forth) 
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Incremental definition 
with inheritance 
l  It is important to avoid duplicated code in a program 

l  Duplicated code is problematic at two levels 
l  Different copies tend to diverge slightly with time (low-level bugs) 
l  The same idea is expressed twice (high-level bugs) 

l  It is much better, for program structure and maintenance, 
to express the same idea exactly once 

l  Inheritance achieves this for similar data abstractions  
l  Definition A can “inherit” from definition B 
l  This means that A uses B as a base, possibly with 

modifications and extensions 
l  The incremental definition A is also called a class 

l  A class can either be a complete or incremental definition 
l  The resulting definition (A + the classes it inherits from 

directly or indirectly) is always complete 
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Dangers of inheritance 
l  Inheritance can be very useful, but its use is 

fraught with dangers 
l  The ability to extend A with inheritance is 

another interface to A 
l  An additional interface to A’s usual interface 
l  This interface is extremely difficult to make correct 

and maintain correct throughout the lifetime of the 
abstraction 

l  So we must be very careful when using 
inheritance – two general rules: 
1.  Prefer composition over inheritance 
2.  When using inheritance, always follow the 

substitution principle 
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(1) Prefer composition 
over inheritance 
l  It is important to use inheritance as little as possible 

l  Only use it in well-defined ways, for example in well-
established “programming patterns” 

l  When defining a class, it should be declared “final” (not 
extensible by inheritance) by default  

l  Composition is much easier to use than inheritance 
and is often sufficient 
l  Composition = an object refers to another object in one of 

its attributes (such as attribute figlist in CompoundFigure) 
l  Composition does not add another interface: the object 

referred to is always accessed through its usual interface 
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Inheritance versus 
composition 

B 

A 

OA 

l instance of 

B 

A 
 

OA 

OB 

l instance of 

l instance of attr b: OB 

inherits from 

Inheritance Composition 
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(2) Always follow the 
substitution principle 

l  The use of inheritance is much 
easier if the substitution principle is 
followed 

l  Suppose that A inherits from B with 
objects OA et OB 
l  Substitution principle: Every 

procedure that accepts OB must 
accept OA 

l  If this principle is followed, then 
inheritance does not break 
anything!  We say that A is a 
conservative extension of B. 

l  This is also called LSP (Liskov 
Substitution Principle) 

B 

A 

inherits from 

OA 

OB 

l instance of 

l instance of 
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Example: 
class Account 
class Account 

 attr balance:0 
 meth transfer(Amount) 
  balance := @balance+Amount 
 end 
 meth getBal(B) 
  B=@balance 
 end 

end 
A={New Account transfer(100)} 
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Conservative 
extension 

class VerboseAccount 
from Account 
 meth verboseTransfer(Amount) 
  … 
 end 

end 

The class 
VerboseAccount 

has methods 
transfer, getBal and 

the new method 
verboseTransfer. 

VerboseAccount: 
An account that displays 
all transactions 

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz



Nonconservative 
extension 

class AccountWithFee 
from VerboseAccount 
 attr fee:5 
 meth transfer(Amount) 
  … 
 end 

end 

The class 
AccountWithFee 

has methods 
transfer, getBal and 

verboseTransfer. 
The transfer method 
has been overridden. 

AccountWithFee: 
An account with a fee 
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Class hierarchy 
class VerboseAccount 

from Account 
 meth verboseTransfer(Amount) 
  … 
 end 

end 
 
class AccountWithFee 

from VerboseAccount 
 attr fee:5 
 meth transfer(Amount) 
  … 
 end 

end 

l Account 

l VerboseAccount 

l AccountWithFee 
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Dynamic link 
l  Let us define the new 

method verboseTransfer 
l  In the definition of 

verboseTransfer, we need 
to call transfer 

l  Syntax: {self transfer(A)} 
l  The transfer method is 

chosen in the class of the 
calling object OV 

l  self = the calling object, 
instance of VerboseAccount 

l Classe Account 
l Method transfer 

Classe VerboseAccount 
Method verboseTransfer 

inherits from 

Objet OV 

l instance of 

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz



Definition of 
VerboseAccount 

class VerboseAccount 
from Account 
 meth verboseTransfer(Amount) 
  {self transfer(Amount)} 
  {Browse @balance} 
 end 

end 

The class 
VerboseAccount 

has methods 
transfer, getBal and 

verboseTransfer. 
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Static link 
l  Let us override the old transfer 

method in AccountWithFee  
l  In the new transfer method, we 

need to call the old method! 
l  Syntax: 

VerboseAccount,transfer(A) 
l  The class containing the old 

definition has to be named! 
l  The transfer method is taken 

from the class VerboseAccount 

Classe VerboseAccount 
l Methode transfer (not changed!) 

Classe AccountWithFee 
l Methode transfer (new!) 

Object OF 

Classe Account 
Methode transfer 
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Definition of 
AccountWithFee 

class AccountWithFee 
from VerboseAccount 
 attr fee:5 
 meth transfer(Amt) 
  VerboseAccount,transfer(Amt-@fee) 
 end 

end 

The class 
AccountWithFee 

has methods 
transfer, getBal and 

verboseTransfer. 
The transfer method 
has been overridden. 
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The magic of 
dynamic links 
l  Look at the following fragment: 

 A={New AccountWithFee transfer(100)} 
 {A verboseTransfer(200)} 

l  What does it do? 
l  Which transfer method is called by verboseTransfer? 

l  The old one or the new one? 
l  Observe: when VerboseAccount was defined, the class 

AccountWithFee did not exist yet 

l  Answer: !! 
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Example of 
a dynamic link 

l Account 

l VerboseAccount 

l AccountWithFee 

meth verboseTransfer(Amount) 
 {self transfer(Amount)} 
 {Browse @balance} 

end 

 

getBal(B) 
transfer(Amt) % old definition 
verboseTransfer(Amt) 

getBal(B) 
transfer(Amt) % new definition 
verboseTransfer(Amt) 

getBal(B) 
transfer(Amt) 

OAWF 

OVA 
Call 1: 
{OVA verboseTransfer(200)} 

Which transfer 
method? 

Call 2: 
{OAWF verboseTransfer(200)} 

Which transfer 
method? 
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Nonconservative 
extension 

class AccountWithFee 
from VerboseAccount 
 attr fee:5 
 meth transfer(Amt) 
  VerboseAccount,transfer(Amt-@fee) 
 end 

end 

Danger! 
The invariants 

are broken. 

l Invariant: 
l {A getBal(B)} 

l {A transfer(S)} 

l {A getBal(B1)} 

l % Is B1=B+S ? 

l % No!  It’s broken! 
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Summary of static 
and dynamic links 
l  The goal of static and dynamic links is to choose which 

method to execute 
l  Dynamic link: {self M} 

l  The method is chosen in the class of the object 
l  This class is only known during execution, this is why it is 

called a dynamic link 
l  It should always be used by default 

l  Static link: SuperClass,M 
l  The method is chosen in SuperClass 
l  This class is known during compilation (it is SuperClass), this 

is why it is called a static link 
l  It is only needed for overriding an existing method 
l  When a method is overridden, the new definition often has to 

access the old one, and it uses a static link to do this 
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Whither object-oriented 
programming? 
l  Data abstraction languages have an enormous literature 

l  These two lessons have barely introduced the three main principles of data 
abstraction (objects and ADTs), polymorphism, and inheritance 

l  The principles of data abstraction are now well-established 
l  OOP has traditionally focused on sequential centralized programs.  It is now 

being extended to long-lived distributed systems (« services »), with concurrency 
abstractions, fault tolerance, security, resource management, and configuration 
management (component-oriented programming). 

l  Influential language developments are Scala (functional/object paradigms, 
message-passing concurrency) and Erlang (message passing with support for 
high availability), together with interesting experiments too numerous to mention 

l  Large-scale distributed programming, including cloud-based big data and peer-to-
peer computation, is pushing the limits of current data abstraction languages 

l  To meet these challenges, the structure of data abstraction 
languages will change significantly in the next two decades 
l  Loose coupling, interoperability, distribution, and security will enter the language 
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Static typing 
versus dynamic typing 
l  A major property of a language is whether it is 

statically or dynamically typed 

l  Static typing: Variable types are known at compile time 
l  Java, Scala, Haskell 

l  Dynamic typing: Variable types are not known at compile time 
but only at run time 
l  Ruby, Python, Erlang, Scheme, Oz (language of this course) 

l  Static typing versus dynamic typing? 
l  This question evokes intense debate between language designers 
l  The main issues are guarantees and flexibility 
l  Java augments static typing with concepts to increase flexibility 

l  An Object class that is the root of the class hierarchy 
l  The ability to define class code at run time with a class loader 
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Types in Java 
l  Two kinds of types: primitive types and reference types 

l  User-defined types (e.g., classes) are reference types 

l  Primitive type: boolean (1 bit), character (16 bits), byte (8 bit 
integer, -128..127), short (16), int (32), long (64), float (32), 
double (64) 
l  Characters: Unicode standard (all written languages) 
l  Integers: representation in 2’s complement 
l  Floating point: IEEE754 standard 

l  Reference type: class, interface, or array 
l  A value is either “null” or a reference to an object or an array 
l  An array type has the form t[] where t can be any type 
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Object-oriented 
programming in Java 
l  Data abstraction in Java 

l  Primitive types are ADTs, user-defined types are objects 
l  Rules of visibility 

l  Private, package, protected, public 
l  Objects of the same class can see inside each other (ADT property) 

l  Polymorphism in Java 
l  Static polymorphism: Methods in the same class with the same name 

but different argument types (a.k.a. method overloading) 
l  Dynamic polymorphism: Methods with the same name in different classes 

l  Inheritance in Java 
l  Support for the substitution principle: an argument of a given class type 

will accept objects of any subclass 
l  Support for multiple inheritance using a new concept called interface 

(a specific form of a general data abstraction interface) 

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz



Functional 
programming in Java 
l  Not much support for functional paradigm 

l  More support is being added as Java evolves 
(lambda expressions in Java 8, which are procedure values) 
l  Problem of legacy code! 

l  Scala has full support for functional paradigm 

l  Final attributes and variables: can only be assigned once 
l  Objects can be immutable, but are not functional objects 

l  Final classes: cannot be extended with inheritance 

l  “inner classes”: a class defined inside another class 
l  An instance of an inner class is almost (but not completely) a 

procedure value 
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Java, multiple inheritance, 
and exceptions 
l  This lesson completes the discussion of data 

abstraction and object-oriented programming with 
presentations of Java, multiple inheritance, and 
exceptions 

l  Java is a popular object-oriented language that has 
much support for practical programmers 

l  Multiple inheritance is when a class inherits from 
more than one class 

l  Exceptions are an important concept in imperative 
languages for handling error conditions (both 
program errors and environment errors) 
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Introduction to Java 
l  Java is the most-used language in the world today 

l  Supported by libraries, tools, a high-quality implementation 
(the JVM) and a large developer community  

l  But Java is >20 years old: there are many competitors, of 
which C++, Scala, and Erlang exemplify other parts of the 
language space 
l  C++: closer to the processor architecture; older than Java 
l  Scala: a more modern functional/object language built on the JVM 
l  Erlang: a multi-agent language for highly available applications 

l  It is important to understand the execution of Java 
l  Examples of Java semantics with the abstract machine 
l  Java’s support for object-oriented programming 
l  Limitations of Java 
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Two philosophies: 
Java versus C++ 
l  Both Java and C++ implement an imperative paradigm 

supplemented with concurrency 
l  (We will discuss concurrency in the next lesson) 
l  Structured programming: a program is a set of nested blocks 

where each block has an entry and exit; there is no “goto” 
instruction in Java (but there is in C++) 

l  Imperative control: if, switch, while, for, break, return, etc. 
 

l  Basic difference in design philosophy 
l  C++ allows access to internal representation of data structures; 

memory management is manual 
l  Java hides the internal representation; memory management is 

automatic (“garbage collection”) 
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Example program 
in Java 

l  The method println is overloaded – there exist many methods with 
that name and the implementation chooses the right method according 
to the argument type (this is also called static polymorphism) 

class Fibonacci { 
   public static void main(String [] args) { 
      int lo=1; 
      int hi=1; 
      System.out.println(lo); 
      while (hi<50) { 
         System.out.println(hi); 
         hi=lo+hi; 
         lo=hi-lo; 
      } 
   } 
} 

l  All programs have a method main 
annotated public static void, 
executed when the program starts 

l  A Java variable (argument or local 
variable) is a cell 

l  Local variables must be initialized 
before use 

l  Integers are not objects but ADTs 
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public static void main(…) 
l  All methods can be given modifiers 

l  The main method has the following modifiers: 
l  public: visible in the whole program (no restrictions) 
l  static: there is one per class (not one per object) 
l  void: the method returns no result 

(so it is a procedure, not a function) 
l  The main method has one argument 

l  String[]: the argument’s type, an array that contains 
String objects 
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Java semantics with 
the abstract machine 
l  As for any language, it is important to understand 

precisely what the Java language does 
l  We can define Java semantics with the abstract machine 
l  Most (but not all) of the semantics is straightforward 

l  We give two examples to show how to give the 
semantics of Java concepts 
l  Parameter passing 
l  Static attributes in classes 

l  For a complete semantics of Java we recommend 
the book 
l  Java Precisely by Peter Sestoft, MIT Press, 2005 
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Parameter passing 
in Java 

l  Parameter passing is an important part of a 
language that needs to be understood precisely 

l  This program calls halveIt with argument one: 
what does it print? 

class ByValueExample { 
   public static void main(String[] args) { 
      double one=1.0; 
      System.out.println(“before: one = “ + one); 
      halveIt(one); 
      System.out.println(“after:  one = “ + one); 
   } 
   public static void halveIt(double arg) { 
      arg /= 2.0; 
   } 
} 
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Semantics of 
halveIt 

l  Here is how to write halveIt in Oz 
l  This definition gives its semantics  
l  This defines only the execution 

behavior, not the type checking 
l  The argument Arg is a local cell 

l  The number is passed into the local cell 
l  Assignments to Arg affect only the local 

cell, not the cell in the method main  
l  The number is passed by value 

public static void halveIt(double arg) { 
   arg = arg/2.0; 
} 

proc {HalveIt X} 
    Arg={NewCell X} 
in 
    Arg := @Arg / 2.0 
end 
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Passing an 
object parameter 

l  The class Body has a constructor (the method Body) and 
a static attribute (the integer nextID) 

l  The program calls commonName with the object sirius!
l  The content of sirius is modified by commonName, but 

assigning bRef to null has no effect on sirius! 

class Body { 
   public long idNum; 
   public String name = “<unnamed>”; 
   public Body orbits = null; 
   private static long nextID = 0; 
 
   Body(String bName, Body orbArd) { 
      idNum = nextID++; 
      name = bName; 
      orbits = orbArd; 
   } 
} 

class ByValueRef { 
   public static void main(String [] args) { 
     Body sirius = new Body(“Sirius”, null); 
     System.out.println(“bef:“+sirius.name); 
     commonName(sirius); 
     System.out.println(“aft:“+sirius.name); 
   } 
   public static void commonName(Body bRef) { 
     bRef.name = “Dog Star”; 
     bRef = null; 
   } 
}    
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Semantics of 
commonName 

l  Here is how to write 
commonName in Oz 

l  BRef is a local cell whose 
content is an object reference 

l  When CommonName is called, 
then BRef is initialized with a 
reference to the object Sirius 

l  The object reference is passed 
by value 
l  Changes to the content of BRef 

do not affect the object Sirius 

public static void commonName(Body bRef) 
{ 
   bRef.name = “Dog Star”; 
   bRef = null; 
} 

proc {CommonName X} 
    BRef={NewCell X} 
in 
    {@BRef setName(“Dog Star”)} 
   BRef:=null 
end 
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The class Body and 
its static attribute 

declare 
local NextID Body in 
    NextID={NewCell 0} 
    class Body 
        attr idNum 
            name:”<unnamed>” 
            orbits:null 
        meth initBody(BName OrbArd) 
            idNum:=@NextID 
            NextID:=@NextID+1 
            name:=BName 
            orbits:=OrbArd 
        end 
    end 
end 

class Body { 
   public long idNum; 
   public String name = “<unnamed>”; 
   public Body orbits = null; 
   private static long nextID = 0; 
 
   Body(String bName, Body orbArd) { 
      idNum = nextID++; 
      name = bName; 
      orbits = orbArd; 
   } 
} 

l  The definition of class Body in Oz gives its semantics 
l  NextID is a static attribute: a cell defined outside the 

class, at the same time as the class 
l  Not like other attributes which are defined per object 

l  The constructor Body corresponds to method initBody 
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Classes in Java 
l  A Java class has fields (attributes or methods), 

and members (other classes or interfaces) 

l  Java has syntax for static and dynamic links 
l  The keyword “super” gives a static link to the class 

one level up (as we saw, it should be rarely used!) 
l  The keyword “this” is used to mean “self”  

l  Java allows single inheritance of classes 
l  A class can inherit from exactly one other class 
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Inheritance 
example 

class Point { 
public double x, y; 
 
public void clear() { 
   x=0.0; 
   y=0.0; 
} 

} 
 

class Pixel extends Point { 
Color color; 
 
public void clear() { 
   super.clear(); 
   color=null; 
} 

} 
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The class Object 
l  The class Object is the root of the hierarchy 

l  All classes inherit from Object 
 
Object oref = new Pixel(); 
oref = “Some String”; 
oref = “Another String”; 

 
l  The reference oref can refer to any object 

l  We regain some of the flexibility of dynamic typing 
l  (String objects are immutable) 
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Abstract classes 
and concrete classes 
l  An abstract class is a class that does not 

implement all its methods (bodies are missing) 
l  An abstract class cannot be instantiated 

l  A concrete class implements all its methods 
l  A concrete class can inherit from an abstract class 
l  A concrete class can be instantiated 

l  With abstract classes, we can write generic 
programs 
l  We define the missing methods using inheritance, 

to get a concrete class that we can instantiate and 
execute 
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Example of 
an abstract class 
abstract class Benchmark { 
   abstract void benchmark(); 
 
   public long repeat(int count) { 
      long start=System.currentTimeMillis(); 
      for (int i=0; i<count; i++) 
         benchmark(); 
      return (System.currentTimeMillis()-start); 
   } 
} 
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Doing the same with 
a higher-order function 
l  We can achieve the same effect using a higher-order function: 

 
fun {Repeat Count Benchmark} 
    Start={OS.time} 
in 
    for I in 1..Count do {Benchmark} end 
    {OS.time}-Start 
end 
 

l  Function Repeat corresponds to method repeat !
l  Procedure argument Benchmark corresponds to method 

benchmark!
l  With abstract classes, we can achieve the same effect as 

passing a procedure as argument  
l  We use inheritance to simulate a procedure argument 
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Final classes 
l  A final class cannot be extended with inheritance 

 
final class NotExtendable { 
   ... 
} 
 

l  A final method cannot be redefined with inheritance 
l  It is good practice to define all classes as final classes, 

except those we wish to be extensible 
l  Is it a good idea to define an abstract class as final? 
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The inheritance 
hierarchy 

l  We add an edge between each 
class and its direct superclasses 
l  This gives a directed acyclic graph 

called the inheritance hierarchy 
l  We know how to define a class 

that inherits from one class 
(single inheritance), but how can a 
class inherit from more than one 
(multiple inheritance)? 
l  Multiple inheritance is complicated 

but it can be a powerful tool 
l  We give a simple example; for 

much more see the book 
l  Object-oriented Software Construction 

by Bertrand Meyer, Prentice-Hall, 1997 
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Example of multiple 
inheritance 
l  Geometric figures 

class Figure 
   meth draw ... end 
   ... 
end 
class Line from Figure 
   meth draw ... end 
   ... 
End 
 

l  A compound figure is both a 
figure and a linked list 

l  Multiple inheritance works in 
this case because the two 
superclasses are independent 

l  Linked lists 
class LinkedList 
   meth forall(M) 
      ...  % invoke M on all elements 
   end 
   ... 
end 
 

l  Compound figures 
class CompoundFigure from 
   Figure LinkedList 
   meth draw 
      {self forall(draw)} 
   end 
   ... 
end 
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Java interfaces and 
multiple inheritance 
l  Java only allows single inheritance for classes 

l  Multiple inheritance is forbidden, but to keep some of 
its expressiveness, Java introduces the concept of 
interface 

l  An interface is similar to an abstract class with 
no method implementations 
l  The interface gives the method names and their 

argument types, without the implementation 
l  Java allows multiple inheritance for interfaces 
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Example of a 
Java interface 
interface Lookup { 
   Object find(String name); 
} 
 
class SimpleLookup implements Lookup { 
   private String[] Names; 
   private Object[] Values; 
   public Object find(String name) { 
      for (int i=0; i<Names.length; i++) { 
         if (Names[i].equals(name)) 
            return Values[i]; 
      } 
      return null; 
   } 
} 
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The diamond 
problem 

l  The diamond problem is a classic 
problem with multiple inheritance 

l  When class W has state 
(attributes), who will initialise W?  
X or Y or both? 
l  There is no simple solution 
l  This is one reason why multiple 

inheritance is not allowed in Java 
l  Interfaces give a partial solution to 

this problem 

W	



Y	

X	



Z	
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A solution 
with interfaces 

l  Interfaces are given in red 
l  There is no more diamond 

inheritance: class Z only 
inherits from class Y 

l  For an interface, inheritance is 
just a constraint on the method 
headers (names and arguments) 
in the classes 
l  Multiple inheritance means more 

constraints on the method headers   
l  An interface contains no code; no 

code means no diamond problem 

W	



Y	

X	



Z	
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Java syntax for the 
diamond example 

interface W { } 
interface X extends W { } 
class Y implements W { } 
class Z extends Y 
      implements X { } 

W	



Y	

X	



Z	
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Another solution for 
the same example 

l  In this solution, Z is the 
only class in the hierarchy 

l  It has the following syntax: 
 
interface W { } 
interface X extends W { } 
interface Y extends W { } 
class Z implements X, Y { } 

l  Are there any other solutions 
for this example? 

W	



Y	

X	



Z	
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Example 
using exceptions 
fun {Eval E} 

if {IsNumber E} then E 
else 

 case E 
 of plus(X Y) then {Eval X}+{Eval Y} 
 [] times(X Y) then {Eval X}*{Eval Y} 
 else raise badExpression(E) end 
 end 

end 
end 
 
try 

{Browse {Eval plus(23 times(5 5))}} 
{Browse {Eval plus(23 minus(4 3))}} 

catch X then {Browse X} end 

l  The error handling code does 
not clutter up the program 
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If we did not have 
exceptions… 
fun {Eval E} 

if {IsNumber E} then E 
else 

 case E 
 of plus(X Y) then R={Eval X} in 
     case R of badExpression(RE) then badExpression(RE) 
     else R2={Eval Y} in 
          case R2 of badExpression(RE) then badExpression(RE) 
          else R+R2 
          end 
     end 
 [] times(X Y) then 
     % … Same code as plus 
 else badExpression(E) 
 end 

end 
end 

l  Much more code! 
l  In this example, 22 lines instead of 

10 (more than double) 
l  The code is much more complicated 

because of all the case statements 
handling badExpression 
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The “finally” clause 
l  The try has an additional finally clause, for an 

operation that must always be executed (in both 
the correct and error cases): 
 
FH={OpenFile “foobar”} 
try 

 {ProcessFile FH} 
catch X then 

 {Show “*** Exception during execution ***”} 
finally {CloseFile FH} end % Always close the file 
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How to handle 
exceptional situations 

l  How can we handle exceptional situations in a program? 
l  Such as: division by 0, opening a nonexistent file, and so forth 
l  Program errors but also errors from outside the program 
l  Things that happen rarely but that must be taken care of 

l  We add a new programming concept called exceptions 
l  We define exceptions and show how they are used 
l  We give the semantics of exceptions in the abstract machine 
 

l  With exceptions, we can handle exceptional situations 
without cluttering up the program with rarely used error 
checking code 
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The containment principle 
l  When an error occurs, we would like to be able 

to recover from the error 
l  Furthermore, we would like the error to affect as 

little as possible of the program 
l  We propose the containment principle: 

l  A program is a set of nested execution contexts 
l  An error will occur inside an execution context 
l  A recovery routine (exception handler) exists at the 

boundary of an execution context, to make sure the 
error does not propagate to higher execution contexts 
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Handling 
an exception 

An error that raises 
an exception 

An execution context 

The execution context 
that catches the exception 

jump 

l  An executing program that encounters an error must jump to 
another part (the exception handler) and give it a reference 
(the exception) that describes the error 
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The try and raise 
instructions 
l  We introduce two new instructions for handling exceptions: 

 
   try <s>1 catch <y> then <s>2 end  % Create an execution context 
   raise <x> end      % Raise an exception  

l  With the following behavior: 
l  try puts a “marker” on the stack and starts executing <s>1 
l  If there is no error, <s>1 executes normally and removes the 

marker when it terminates 
l  raise is executed when there is an error, which empties the stack 

up to the marker (the rest of <s>1 is therefore canceled) 
l  Then <s>2 is executed 
l  <y> refers to the same variable as <x> 
l  The scope of <y> exactly covers <s>2  
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Semantics 
of exceptions 
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An execution context 
l  An execution context is the part of the 

semantic stack that starts with a marker 
and continues to the stack top: 
 
   try ... % Context 1 
      try ... % Context 2 
         try ... % Context 3 
         catch <x> then <s>3 end 
         ... 
      catch <x> then <s>2 end 
      ... 
   catch <x> then <s>1 end 

Semantic���
stack	
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Exceptions in Java 
l  An exception is an object that inherits from the class 

Exception (which is a subclass of Throwable) 
l  There are two kinds of exceptions 

l  Checked exceptions: The compiler verifies that all methods 
only throw the exceptions declared for the class 

l  Unchecked exceptions: Some exceptions can arrive 
without the compiler being able to verify them.  They inherit 
from RuntimeException and Error. 

l  For exceptions that the program itself defines, you 
should always use checked exceptions, since they are 
declared and therefore part of the program’s interface 
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Java exception syntax 
throw new NoSuchAttributeException(name); 
 
try { 
   <stmt> 
} catch (exctype1 id1) { 
   <stmt> 
} catch (exctype2 id2) { 
   … 
} finally { 
   <stmt> 
} 
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Good style 

l  We read a file and perform an action 
for each item in the file: 
 
try 
   while (!stream.eof()) 
      process(stream.nextToken()); 
finally 
   stream.close(); 
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Bad style 
l  We can use the exception handler to change 

the execution order during normal execution: 
 
try { 
   for (;;)  
      process (stream.next()); 
} catch (StreamEndException e) { 
   stream.close(); 
} 
 

l  Reaching the end of a stream is completely normal, 
it is not an error.  What happens if a real error 
happens and is mixed in with the normal operation?  
You don’t want to handle this.  Normal operation 
should be kept separate from errors! 
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Final remarks 
l  This completes the part of the course related to 

data abstraction 
l  Explicit state and object-oriented programming 
l  Java, multiple inheritance, and exceptions 

l  We have covered three of the four themes 
l  Functional programming (including recursion, invariant 

programming, and higher-order programming) 
l  Language semantics (a complete operational semantics) 
l  Data abstraction (including explicit state and object-oriented 

programming) 

l  We end this theme with a reflection on language 
design and an introduction to concurrent programming 
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Java, Scala, and 
language design 
l  We have discussed some of the principles that 

were used to design Java (1990s) 
l  True data abstraction (encapsulation, GC) 
l  Almost all entities are objects 
l  Support for object-oriented design 

l  Scala has added two principles to this (2000s) 
l  Strict separation between mutable/immutable 
l  Everything is an object (including functions) 

l  These principles considerably increase Scala’s 
expressive power compared to Java 
l  We consider that Scala is a worthy successor to Java 
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Final theme: 
concurrency 
l  The final theme of the course will be concurrency 

l  Multiple activities that evolve independently and collaborate 
l  There are three fundamental forms of concurrent programming: 

deterministic dataflow, message passing, and shared state  
l  All three were invented (or discovered?) in the early 1970s! 

l  We will present deterministic dataflow in depth 
l  It is an extremely powerful yet easy to use model that deserves 

to be more widely known 
l  All the techniques of functional programming generalize for 

deterministic dataflow 
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Many 
important ideas 

l  Identifiers and environments 
l  Functional programming 
l  Recursion 
l  Invariant programming 
l  Lists, trees, and records 
l  Symbolic programming 
l  Instantiation 
l  Genericity 
l  Higher-order programming 
l  Complexity and Big-O notation 
l  Moore’s Law 
l  NP and NP-complete problems 
l  Kernel languages 
l  Abstract machines 
l  Mathematical semantics 

l  Explicit state 
l  Data abstraction 
l  Abstract data types and objects 
l  Polymorphism 
l  Inheritance 
l  Multiple inheritance 
l  Object-oriented programming 
l  Exception handling 
l  Concurrency 
l  Nondeterminism 
l  Scheduling and fairness 
l  Dataflow synchronization 
l  Deterministic dataflow 
l  Agents and streams 
l  Multi-agent programming 

Louv1.1x Louv1.2x 
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