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Our first paradigm 
l  Functional programming 

l  It is one of the simplest paradigms 
l  It is the foundation of all the other paradigms 
l  It is a form of declarative programming 

l  Our approach to functional programming 
l  It is our first introduction to programming concepts 
l  It is our first introduction to a kernel language 
l  We use it to explain invariants and recursion 
l  We give examples using integers, lists, and trees 
l  We present higher-order programming: the apotheosis 
l  We give a formal semantics based on the kernel language 
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Declarative programming: 
the long-term view 

l  Declarative programming is a vision for the future 
l  Just say what result you want (give properties of the result) 
l  Let the computer figure out how to get there 
l  Declarative versus imperative: properties versus commands 

l  How do we make this vision real 
l  Programming gets more support from the computer 
l  With same programming effort, we can do more 

l  The whole history of computing is a progression 
toward more declarative 

l  And faster and cheaper (all three are connected) 
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Declarative programming: 
the short-term view 

l  Declarative programming is the use of mathematics 
in programming (such as functions and relations)  

l  A computation calculates a function or a relation 
l  Use the power of mathematics to simplify programming 

(such as confluency and referential transparency) 

l  Very common in practice 
l  Functional languages: LISP, Scheme, ML, Haskell, OCaml, ... 
l  Logic languages (relational): SQL, constraint programming, Prolog, ... 
l  Combinations: XSL (formatting), XSLT (transforming), … 

l  Also called “programming without state” 
l  Variables and data structures can’t be updated 
l  Testing and verification is much simplified 
l  Declarative versus imperative: stateless versus stateful 
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Key advantage of 
functional programming 
l  “A program that works today will work tomorrow” 

l  Functions don’t change 
l  All changes are in the arguments, not in the functions 

l  It is a programming style that should  
be encouraged in all languages 
l  “Stateless server” for a client/server application 
l  “Stateless component” for a service application 

l  Learning functional programming helps us 
think in this style 
l  All programs written in the functional paradigm are ipso facto 

declarative: an excellent way to learn to think declaratively 

“Cookies” on 
the Web 
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Now let’s start 
programming... 
l  This completes the « philosophical » 

introduction of the course 
l  Now we will start programming in 

our first paradigm 
l  Functional programming 

l  At the same time, we will introduce 
the Oz language and the Mozart system 
l  Mozart’s emacs interface, which we will 

use throughout the course 
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Interactive system 

l  Select a region in the Emacs buffer 
l  Feed the region to the system 

l  The text is compiled and executed 

l  Interactive system can be used as 
a powerful calculator 

declare 
X = 1234 * 5678 
{Browse X} 
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Creating variables 

l  Declare (create) a variable designated by X 
l  Assign to the variable the value 7006652 

l  Result of the calculation 1234*5678 

l  Call the procedure Browse with the argument 
designated by X 

l  Opens a window that displays 7006652 

declare 
X = 1234 * 5678 
{Browse X} 
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Variable 
and identifier 

l  There are two concepts hiding in plain view here 
l  Identifier X : what you type (character sequence starting with capital) 

Var, A, X123, FirstCapitalBank 

l  Variable x : what is in memory (used to store the value) 
l  Variables are short-cuts for values (= constants) 

l  Can only be assigned to one value (like mathematical variables) 
l  Multiple assignment is another concept!  We will see it later in the course. 
l  The type of the variable is only known when it is assigned (dynamic typing) 

declare X 
X=11*11 
{Browse X} 

Program text System memory 

x 
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Environment 

l  declare is an interactive instruction 
l  Creates a new variable in memory 
l  Links the identifier and its corresponding variable 

l  Third concept: environment E={X→ x} 
l  A function that takes an identifier and returns a variable: E(X) = x 
l  Links identifiers and their corresponding variables 

(and the values they are bound to) 

declare X 
X=11*11 
{Browse X} 

x 

Program text System memory 

E 
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Assignment 

l  The assignment instruction X=121 binds 
the variable x to the value 121 

declare X 
X=11*11 
{Browse X} 

x=121 

Program text System memory 

E 

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz



Single assignment 

l  A variable can only be bound to one value 
l  It is called a single-assignment variable 
l  Why?  Because we are in the functional paradigm! 

l  Incompatible assignment:   signals an error 
  X = 122 

l  Compatible assignment:   accepted 
  X = 121 
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Why single 
assignment? 
l  Why do we restrict variables to be bound to one value? 

l  It seems like a big handicap, not being able to assign again 

l  We do it because it gives advantages! 
l  It’s like following a law.  Why is it a good idea to respect traffic 

rules?  Because (among other things) it reduces the chance of 
having an accident. 

l  If we could assign more than once, we could break a 
correct program 
l  But how can we program without multiple assignment?  Actually, 

it’s easy, as we will see. 
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Redeclaring 
an identifier 

l  An identifier can be redeclared 
l  The same identifier refers to a different value 
l  There is no conflict with single assignment. 

Each occurrence of X corresponds to a different variable. 
l  The interactive environment always has the last declaration 

l  declare keeps the same correspondance until redeclared (if ever) 
l  In this example X will refer to 11 

declare 
X = 42 
declare 
X = 11 
 

x=42 

System memory 

y=11 

Program text 
E1 

E2 
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Scope of an 
identifier occurrence 

l  The instruction 
    local X in <stmt> end 
declares X between in and end 

l  The scope of an identifier occurrence 
is that part of the program text for 
which the occurrence corresponds to 
the same variable declaration  

l  The scope can be determined by inspecting 
the program text; no execution is needed.  
This is called lexical scoping or static scoping. 

l  Why is there no conflict between 
X=42 and X=11, even though 
variables are single assignment? 

l  What will the third Browse display? 

local  
     X 
in 
     X = 42  {Browse X} 
     local  
          X 
     in 
          X = 11  {Browse X} 
     end 
     {Browse X} 
end 
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Tips on Oz syntax 
l  At this point you can see that Oz syntax is not like most 

syntaxes you may have seen before 

l  The most popular syntax in mainstream languages (C++, Java) 
is « C-like », where identifiers are statically typed (« int i; ») and 
can start with lowercase, and code blocks are delimited by 
braces 

l  Oz syntax is definitely not C-like! 

l  Oz syntax is inspired by many languages: Prolog (logic 
programming), Scheme and ML (functional programming), C++ 
and Smalltalk (object-oriented programming), and so forth 
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Why is Oz syntax 
different? 
l  It is different because Oz supports many programming 

paradigms 
l  The syntax is carefully designed so that the paradigms don’t 

interfere with each other 
l  It’s possible to program in just one paradigm.  It’s also possible to 

program in several paradigms that are cleanly separated in the 
program text. 

l  So it is important for you not to get confused by the 
differences between Oz syntax and other syntaxes you 
may know 

l  Let me explain the main differences so that you will not 
be hindered by them 



Main differences 
in Oz syntax 
l  Identifiers in Oz always start with an uppercase letter 

l  Examples: X, Y, Z, Min, Max, Sum, IntToFloat. 
l  Why?  Because lowercase is used for symbolic constants (atoms). 

l  Procedure and function calls in Oz are surrounded by braces { ... } 
l  Examples: {Max 1 2}, {SumDigits 999}, {Fold L F U}. 
l  Why?  Because parentheses are used for record data structures. 

l  Local identifiers are introduced by local ... end 
l  Examples: local X in X=10+20 {Browse X} end. 
l  Why?  Because all compound instructions in Oz start with a keyword (here 

« local ») and terminate with end. 

l  Variables in Oz are single assignment 
l  Examples: local X Y in X=10 Y=X+20 {Browse Y} end. 
l  Why?  Because the first paradigm is functional programming.  Multiple 

assignment is a concept that we will introduce later. 
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Oz syntax in the 
programming exercises 

l  Most programming bugs, at least early on, are due 
to syntax errors (such as using a lowercase letter 
for an identifier) 

l  Please take into account the four main differences.  
Once you have assimilated them, reading and 
writing Oz will become straightforward. 

l  And now let’s do some more programming! 

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

admin
Note
Emacs



Functions 
l  We would like to execute the same code many times, 

each time with different values for some of the identifiers 
l  To avoid repeating the same code, we can define a function 

l  Functions are shortcuts for program code to execute, 
just as variables are shortcuts for values 
l  To be precise, functions are just another kind of value in memory, 

like numbers (as we will see later) 
l  Function Sqr returns the square of its input: 

 
declare 
fun {Sqr X} X*X end 
 

l  The fun keyword identifies the function.  The identifier Sqr refers 
to a variable that is bound to the function. 
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Numbers 
l  There are two kinds of numbers in Oz 

l  Exact numbers: integers 
l  Approximate numbers: floating point 

l  Integers are exact (arbitrary precision) 
l  Floats are approximations of real numbers 

(up to 15 digits precision – 64-bit internally) 
l  There is never any automatic conversion 

from exact to approximate and vice versa 
l  To convert, we use functions IntToFloat or FloatToInt 
l  Design principle: don’t mix incompatible concepts 
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Sum of digits 
function 
l  Function SumDigits calculates the sum of digits 

of a three-digit positive integer: 
 
declare 
fun {SumDigits N} 
   (N mod 10) + ((N div 10) mod 10) + 
   ((N div 100) mod 10) 
end 
 

l  mod and div are integer functions 
l  / (division) is a float function 
l  * (multiplication) is a function on both floats and integers 
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SumDigits6 
l  Sum of digits of a six-digit positive integer 

 
fun {SumDigits6 N} 
   {SumDigits (N div 1000)} + 
   {SumDigits (N mod 1000)} 
end 
 

l  This is an example of function composition: defining a 
function in terms of other functions 
l  This is a key ability for building large systems: we can build 

them in layers, where each layer is built by a different person 
l  This is the first step toward data abstraction 
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SumDigitsR 
l  Sum of digits of any positive integer (first try) 

 
fun {SumDigitsR N} 
   (N mod 10) + {SumDigitsR (N div 10)} 
end 
 

l  This function calls itself with a smaller value 
l  But it never stops: we need to make it stop! 
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SumDigitsR 
l  Sum of digits of any positive integer (correct) 

 
fun {SumDigitsR N} 
   if (N==0) then 0 
   else  
      (N mod 10) + {SumDigitsR (N div 10)} 
   end 
end 
 

l  This introduces the conditional (if) statement 
l  This is an example of function recursion: defining a 

function that calls itself 
l  This is a key ability for building complex algorithms: we divide 

a complex problem into simpler subproblems (divide and conquer) 
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The functional 
paradigm 
l  The functional paradigm as we have introduced it now, with the ability 

to calculate with numbers, to define functions, to do function 
composition and recursion, and to use the conditional statement (if), 
is a fully capable programming language 

l  We say it is Turing complete, since it can compute the same 
functions as a Turing machine 
l  Since a Turing machine is the most powerful computer we know how 

to build (in terms of the kinds of functions that can be programmed), 
this means that we can do anything that any other computer can do 

l  We will see how to harness the power of recursion in the next two 
lessons (invariant programming and symbolic programming) 
l  We will continue to harness the power of functions in the rest of the course 

(higher-order programming, data abstraction, concurrent programming) 
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Recursion 
and loops 
l  In the previous lesson we saw SumDigitsR: 

 
fun {SumDigitsR N} 

 if (N==0) then 0 
 else (N mod 10) + {SumDigitsR (N div 10)} end 

end 
 

l  The recursive call and the condition together act like a 
loop: a calculation that is repeated to achieve a result 
l  Each execution of the function body is one iteration of the loop 

l  Recursion can be used to make a loop 
l  In this lesson we will go to the root of this intuition 
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Invariant 
programming 
l  A loop is a part of a program that is repeated until a 

condition is satisfied 
l  Loops are an important technique in all paradigms 
l  Loops are a special case of recursion, called tail recursion, where 

the recursive call is the last operation done in the function body 

l  We will give a general technique, invariant programming, 
to program correct and efficient loops 
l  Loops are often very difficult to get exactly right, and invariant 

programming is an excellent way to achieve this 
l  This applies to both declarative and imperative paradigms 

l  New concepts introduced in this lesson 
l  Specification, accumulator, principle of communicating vases 
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Principle of 
communicating vases 
  We invent a formula that splits the work into two parts: 

  n! = i! * a 
  We start with i=n and a=1 
  We decrease i and increase a, keeping the formula true 
  When i=0 then a is the result 
  Here’s an example when n=4: 

  4! = 4! * 1 
  4! = 3! * 4 
  4! = 2! * 12 
  4! = 1! * 24 
  4! = 0! * 24 

i a 
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Sum of digits using 
invariant programming 
l  Each recursive call handles one digit 
l  So we divide the initial number n into its digits: 

l  n = (dk-1dk-2···d2d1d0 ) (where di is a digit) 

l  Let’s call the sum of digits function s(n) 
l  Then we can split the work in two parts: 

l  s(n) = s(dk-1dk-2··· di ) + (di-1 + di-2 + ··· + d0 ) 
 

l  si is the work still to do and a is the work already done 
l  To keep the formula true, we set i’ = i+1 and a’ = a+di 
l  When i=k then sk=s(0)=0 and therefore a is the answer 
 

a si 
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Example execution 

l  Example with n=314159: 
 
s(n) = s(dk-1dk-2··· di ) + (di-1 + di-2 + ··· + d0 ) 
 
l  s(314159) = s(314159) + 0 
l  s(314159) = s(31415) + 9 
l  s(314159) = s(3141) + 14 
l  s(314159) = s(314) + 15 
l  s(314159) = s(31) + 19 
l  s(314159) = s(3) + 20 
l  s(314159) = s(0) + 23 = 0 + 23 = 23 
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Final program 
l  S = (dk-1dk-2··· di ) 

A = (di-1 + di-2 + ··· + d0 ) 
 
fun {SumDigits2 S A} 

 if S==0 then A 
 else 
      {SumDigits2 (S div 10) A+(S mod 10)}  
 end 

end 
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What can we learn 
from these examples? 
l  We have now seen two examples of recursive functions 

l  Factorial 
l  Sum of digits 

l  For each example we have seen two versions 
l  A version based on a simple mathematical definition 
l  A version designed with invariant programming 

l  The second version has two interesting properties 
l  It has two arguments; one of the two is an accumulator 
l  The recursive call is the last operation in the function body 

(tail recursion) 
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The importance 
of tail recursion 
l  Let us now take a closer look at why tail 

recursion is important 
l  We will do a detailed comparison of the 

execution of Fact1 and Fact2 
l  (This comparison is a first step toward the semantics 

given in lesson 6) 
l  We will see why Fact2 (with tail recursion) is 

more efficient than Fact1 (no tail recursion) 
l  Fact1 is based on a simple mathematical definition 
l  Fact2 is designed with invariant programming 
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Comparing 
Fact1 and Fact2 
l  Tail recursion is when the recursive call is the last 

operation in the function body 
l  N * {Fact1 N-1}   % No tail recursion 

 
After Fact1 is done, we must come back for the multiply. 
Where is the multiplication stored?  On a stack! 
 

l  {Fact2 I-1 I*A}   % Tail recursion 
The recursive call does not come back! 
All calculations are done before Fact2 is called. 
No stack is needed (memory usage is constant). 
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Stack explosion 
in Fact1 
l  10 * {Fact1 10-1} ⇒ 

10 * (9 * {Fact 9-1} ) ⇒ 
10 * (9 * (8 * {Fact 8-1})) ⇒ 
... 
10 * (9 * (8 * (7 * (6 * (5 * (...(1 * {Fact 0})...) ⇒ 
10 * (9 * (8 * (7 * (6 * (5 * (...(1 * 1)...) ⇒ 
... 
3628800 
 

l  {Fact2 10-1 10*1} ⇒ 
{Fact2 9-1 9*10} ⇒ 
{Fact2 8-1 8*90} ⇒ 
... 
{Fact2 1-1 1*3628800} 

Each line does one  
computation step 
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Comparing functional 
and imperative loops 
l  A while loop in the functional paradigm: 

 
 fun {While S} 
      if {IsDone S} then S 
      else {While {Transform S}} end /* tail recursion */ 
 end 

l  A while loop in the imperative paradigm: 
(in languages with multiple assignment like Java and C++) 
 

 state whileLoop(state s) { 
      while (!isDone(s)) 
           s=transform(s); /* assignment */ 
      return s; 
 } 

l  In both cases, invariant programming is an important design tool 
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Summary and 
a bigger example 
l  We summarize this lesson in a few sentences 

l  A recursive function is equivalent to a loop if it is tail recursive 
l  To write functions in this way, we need to find an accumulator 
l  We find the accumulator starting from an invariant using the 

principle of communicating vases 
l  This is called invariant programming and it is the only reasonable 

way to program loops 
l  Invariant programming is useful in all programming paradigms 

l  Now let’s tackle a bigger example! 
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A bigger example: 
calculating XN 
l  Let’s use invariant programming to define 

a function {Pow X N} that calculates XN (N≥0) 
l  Let’s start with a naive definition of xn: 

 x0 = 1 
 xn = x * xn-1 when n>0 

l  This gives a first program for {Pow X N} : 
 fun {Pow1 X N} 
       if N==0 then 1 
       else X*{Pow1 X N-1} end 
 end 

l  This function is highly inefficient in both time 
and space!  Why? (there are two reasons) 
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Using a better 
definition of XN 
l  Here is another definition of xn: 

  x0  =  1 
  xn  =  x * xn-1 when n>0 and n is odd 

  xn  =  y2 when n>0 and n is even and y=xn/2  
l  This definition uses many fewer multiplications 

than the naive definition 
l  And just like with the naive definition, we can use 

this definition to write a program 
l  Both definitions are also specifications 

l  They are purely mathematical (no program code) 
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Second program 
for XN 
fun {Pow2 X N} 

 if N==0 then 1 
 elseif N mod 2 == 1 then 
  X*{Pow2 X (N-1)} 
 else Y in 
  Y={Pow2 X (N div 2)} 
  Y*Y 
 end 

end 
 

This definition is better 
than the first, but it is 
still not tail recursive! 
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Calculating XN with 
invariant programming 
l  We can do better than Pow2 

l  We can write a tail-recursive program: a true loop 

l  We need an invariant 
l  The invariant is the key to a good program 
l  One part of the invariant will accumulate the result 

and another part of the invariant will disappear 
l  What can we accumulate? 
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Reasoning on 
the invariant 
l  Here is an invariant: (x and n constant; y, i, and a vary) 

 xn = yi * a 
l  We represent this invariant compactly as a triple: 

 (y,i,a) 
l  Initially: (y,i,a) = (x,n,1) 
l  Let us decrease i while keeping the invariant true 
l  There are two ways to decrease i : 

l  (y,i,a) ⇒(y*y,i/2,a) (when i is even) 
l  (y,i,a) ⇒(y,i-1,y*a) (when i is odd) 

l  When i=0 then the answer is a 
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Third program 
for XN 
fun {Pow3 X N} 

 fun {PowLoop Y I A} 
  if I==0 then A 
  elseif I mod 2 == 0 then 
   {PowLoop Y*Y (I div 2) A} 
  else  {PowLoop Y (I-1) Y*A} end 
 end 

in 
 {PowLoop X N 1} 

end 

This program is a true loop 
(it is tail-recursive) and it 

uses very few multiplications 
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Invariants 
and goals 
l  Changing one part of the invariant forces the rest to 

change as well, because the invariant must remain true 
l  The invariant’s truth drives the program forward 

l  Programming a loop means finding a good invariant 
l  Once a good invariant is found, coding is easy 
l  Learn to think in terms of invariants! 

l  Using invariants is a form of goal-oriented programming 
l  We will see another example of goal-oriented programming 

when we program with trees in lesson 5 



Many 
important ideas 

l  Identifiers and environments 
l  Functional programming 
l  Recursion 
l  Invariant programming 
l  Lists, trees, and records 
l  Symbolic programming 
l  Instantiation 
l  Genericity 
l  Higher-order programming 
l  Complexity and Big-O notation 
l  Moore’s Law 
l  NP and NP-complete problems 
l  Kernel languages 
l  Abstract machines 
l  Mathematical semantics 

l  Explicit state 
l  Data abstraction 
l  Abstract data types and objects 
l  Polymorphism 
l  Inheritance 
l  Multiple inheritance 
l  Object-oriented programming 
l  Exception handling 
l  Concurrency 
l  Nondeterminism 
l  Scheduling and fairness 
l  Dataflow synchronization 
l  Deterministic dataflow 
l  Agents and streams 
l  Multi-agent programming 

Louv1.1x Louv1.2x 
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Definition 
of a list 
l  A list is a recursive data type: we define it in terms 

of itself 
l  Recursion is used both for computations and data! 
l  We need to know this when we write functions on lists 

l  A list is either an empty list or a pair of an element 
followed by another list 
l  This definition is recursive because it defines lists in terms 

of lists.  There is no infinite regress because the definition 
is used constructively to build larger lists from smaller lists. 

l  Let’s introduce a formal notation 
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Syntax definition 
of a list 
l  Using an EBNF grammar rule we write: 

 
<List T>   ::=   nil   |   T ‘|’ <List T> 
 

l  This defines the textual representation of a list 
l  EBNF = Extended Backus-Naur Form 

l  Invented by John Backus and Peter Naur 
l  <List T> represents a list of elements of type T 
l  T represents one element of type T 

l  Be careful to distinguish between | and ‘|’ : the first is 
part of the grammar notation (it means “or”), and the 
second is part of the syntax being defined 
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Some examples 
of lists 
l  According to the definition (if T is integers): 

 
nil 
10 | nil 
10 | 11 | nil 
10 | 11 | 12 | nil 
 

l  What about the bracket notation we saw before? 
l  It is not part of the recursive definition of lists; it is an 

extra called syntactic sugar  
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Type notation 

l  <Int> represents an integer; more precisely, it is the 
set of all syntactic representations of integers 

l  <List <Int>> represents the set of all syntactic 
representations of lists of integers 

l  T represents the set of all syntactic representations 
of values of type T; we say that T is a type variable 
l  Do not confuse a type variable with an identifier or a 

variable in memory!  Type variables exist only in grammar 
rules. 
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Don’t confuse a thing 
and its representation 

l  This is not a pipe. 
It is a digital display of a 
photograph of a painting of a 
pipe (thanks to Belgian 
surrealist René Magritte for 
pointing this out!). 

 
 

 
l  This is not an integer. 

It is a digital display of a 
visual representation of an 
integer using numeric 
symbols in base 10. 

1234 

René Magritte, La trahison des images, 1928-29, oil, 
Los Angeles County Museum of Art, Los Angeles.  
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Representations 
for lists 
l  The EBNF rule gives one textual representation 

l  <List <Int>> ⇒ 
10 | <List <Int>> ⇒ 
10 | 11 | <List <Int>> ⇒ 
10 | 11 | 12 | <List <Int>> ⇒ 
10 | 11 | 12 | nil 

l  Oz allows another textual representation 
l  Bracket notation: [10 11 12] 
l  In memory, [10 11 12] is identical to 10 | 11 | 12 | nil 
l  Different textual representations of the same thing are 

called syntactic sugar 

We repeatedly replace the 
left-hand side of the rule 
by a possible value, until 
no more can be replaced 
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Graphical representation 
of a list 

l  Graphical representations are 
very useful for reasoning 
l  Humans have very powerful visual 

reasoning abilities 

l  We start from the leftmost 
pair, namely 10 | <List <Int>> 
l  We draw three nodes with arrows 

between them 
l  We then replace the node 

<List <Int>> as before 

l  This is an example of a more 
general structure called a tree 

‘|’ 

10 ‘|’ 

11 ‘|’ 

12 nil 
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Trees and binary trees 

l  A tree is either a leaf node (which is an empty tree) or a 
root node with arrows to a set of trees (called subtrees) 

l  A binary tree is a tree where all root nodes have exactly 
two subtrees (usually called left and right) 

r 

rL rR 

l1 l2 l3 l4 
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Pattern matching 

l  case L of H|T then ... else ... end 

‘|’ 

10 ‘|’ 

11 ‘|’ 

12 nil 

‘|’ 

H T 

List L Pattern H|T 
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Pattern matching 

l  case L of H|T then ... else ... end 
l  H=10, T=11|12|nil 

‘|’ 

10 ‘|’ 

11 ‘|’ 

12 nil 

‘|’ 

H T 

List L Pattern H|T 
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Functions that 
create lists 
l  Let us now define a function that outputs a list 

l  We will use both pattern matching and recursion, 
as before, but this time the output will also be a list 

l  We will define the Append function 

l     The simple Append function is tail recursive 
l  We will see this by translating Append into the 

kernel language of the functional paradigm 
l  This translation shows that the recursive call is last 
l  This works because of single assignment: we create 

the output list before doing the recursive call 
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The kernel 
language 
l  As we mentioned in lesson 1, the kernel language is 

the simple core language of a programming paradigm 
l  We have now seen enough concepts to introduce the 

kernel language of the functional paradigm 

l  All programs in the functional paradigm can be translated 
into the kernel language 
l  All intermediate results of calculations are visible with identifiers 
l  All functions become procedures with one extra argument 
l  Nested function calls are unnested by introducing new identifiers 

l  The kernel language is the first part of the formal semantics 
of a programming language 
l  The second part is the abstract machine seen in lesson 6 

Kernel 
principle 
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Kernel language of the 
functional paradigm 
l  <s> ::=   skip 

      | <s>1 <s>2 
      | local <x> in <s> end 
      | <x>1=<x>2 
      | <x>=<v> 
      | if <x> then <s>1 else <s>2 end 
      | proc {<x> <x>1 … <x>n} <s> end 
      | {<x> <y>1 … <y>n} 
      | case <x> of <p> then <s>1 else <s>2 end 

l  <v> ::= <number> | <list> | ... 
l  <number> ::= <int> | <float> 
l  <list>, <p> ::= nil | <x> | <x> ‘|’ <list> 

Almost complete! 

We will see the full kernel 
language in lesson 4 
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Higher-order 
programming 
and records 
l  This lesson gives the final two concepts we need to complete 

the functional paradigm and its kernel language 
l  Higher-order programming 
l  Record data structures 

l  Higher-order programming is the ability to use functions 
(and procedures) as first-class entities in the language 
l  As inputs and outputs of other functions 
l  This is an enormously powerful ability that lies at the foundation 

of data abstraction (including object-oriented programming) 
l  Record data structures are a general compound data type that 

allows symbolic indexing 
l  This is useful both for symbolic programming and for data abstraction  
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Higher-order 
programming 

l  Higher-order programming is based on 
two concepts 
l  Contextual environment 
l  Procedure value 

l  We introduce the contextual environment 
by means of a small exercise on static scope 
l  This exercise shows naturally the need for the 

contextual environment 
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An exercise 
on static scope  

local P Q in 
    proc {P} {Browse 100} end 
    proc {Q} {P} end 
    local P in 
        proc {P} {Browse 200} end 
        {Q} 
    end 
end 

What does this program display? 
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What is the 
scope of P? 

local P Q in 
    proc {P} {Browse 100} end 
    proc {Q} {P} end 
    local P in 
        proc {P} {Browse 200} end 
        {Q} 
    end 
end 
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What is the 
scope of P? 

local P Q in 
    proc {P} {Browse 100} end 
    proc {Q} {P} end 
    local P in 
        proc {P} {Browse 200} end 
        {Q} 
    end 
end 

Scope of P 

The P definition 
inside the scope 
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Contextual 
environment of Q 

local P Q in 
    proc {P} {Browse 100} end 
    proc {Q} {P} end 
    local P in 
        proc {P} {Browse 200} end 
        {Q} 
    end 
end 

Scope of P 

All the violet P’s refer 
to the same variable 

Procedure Q must know the 
definition of P ⇒ it stores this 
in its contextual environment 
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Contextual 
environment 
l  The contextual environment of a function (or procedure) 

contains all the identifiers that are used inside the 
function but declared outside of the function 
 
declare 
A=1 
proc {Inc X Y} Y=X+A end 
 

l  The contextual environment of Inc is Ec = {A→a} 
l  Where a is a variable in memory: a=1 
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Procedure 
value 
l  Procedure declarations look like statements: 

 
 proc {Inc X Y} Y=X+A end 

l  But this is syntactic sugar!  What really happens is that 
the identifier Inc refers to a variable that is bound to a 
procedure value: 
 

 Inc=proc {$ X Y} Y=X+A end 
 
l  The $ symbol is a placeholder to show that the procedure definition 

has no identifier.  Instead of just removing the identifier, we replace 
it by a new symbol that cannot be confused with an identifier. 
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How procedures  
are stored in memory 

Program Memory 

local A Inc in 
    A=1 
    proc {Inc X Y} 
        Y=X+A 
    end 
end 

Program 
(kernel language) 

local A in local Inc in 
    A=1 
    Inc=proc {$ X Y} 
        Y=X+A 
    end 
end end 

a=1 

inc=(proc {$ X Y} Y=X+A end, {A→a}) 

E = {A→a,Inc→inc} 

EC 

procedure value 
E 

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz



Procedure 
values 
l  A procedure value is stored in memory as a pair: 

l  The variable inc is bound to the procedure value 
l  Terminology: a procedure value is also called a 

closure or a lexically scoped closure 

inc = (proc {$ X Y} Y=X+A end, {A→a}) 

Procedure code Contextual environment 
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Higher-order 
programming 
l  Defining a procedure as a procedure value with a 

contextual environment is enormously expressive 
l  It is arguably the most important invention in programming 

languages: it makes possible building large systems based 
on data abstraction 

l  Since procedures (and functions) are values, we can 
pass them as inputs to other functions and return them 
as outputs 
l  Remember that in our kernel language, we consider functions 

and procedures to be the same concept: a function is a 
procedure with an extra output argument  
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Order of a 
function 
l  We define the order of a function (or procedure) 

l  A function whose inputs and output are not functions 
is first order 

l  A function is order N+1 if its inputs and output contain 
a function of maximum order N 

l  Let’s give some examples to show what we can 
do with higher-order functions (where the order 
is greater than 1) 
l  We will give more examples later in the course 
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Genericity 
l  Genericity is when a function is passed as an input 

 
declare 
fun {Map F L} 
  case L of nil then nil 
  [] H|T then {F H}|{Map F T} 
  end 
end 
 
{Browse {Map fun {$ X} X*X end [7 8 9]}} 

What is the order of Map in this call? 
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Instantiation 
l  Instantiation is when a function is returned 

as an output 
 
declare 
fun {MakeAdd A} 
  fun {$ X} X+A end 
end 
Add5={MakeAdd 5} 
 
{Browse {Add5 100}} 

What is the order of MakeAdd? 

What is the contextual environment 
of the function returned by MakeAdd? 
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Function 
composition 
l  We take two functions as input and return 

their composition 
 
declare 
fun {Compose F G} 
  fun {$ X} {F {G X}} end 
end 
Fnew={Compose fun {$ X} X*X end 
    fun {$ X} X+1 end}  
 

l  What does {Fnew 2} return? 
l  What does {{Compose Fnew Fnew} 2} return? 

What is the contextual environment of 
the function returned by Compose? 

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz



Abstracting an 
accumulator 
l  We can use higher-order programming to do a 

computation that hides an accumulator 
l  Let’s say we want to sum the elements of a list 

L=[a0 a1 a2 … an-1]: 
l  S = a0 + a1 + a2 + … + an-1 
l  S = (…(((0 + a0) + a1) + a2) + … + an-1) 

l  We can write this generically with a function F: 
l  S = {F … {F {F {F 0 a0} a1} a2} … an-1} 

l  Now we can define the higher-order function FoldL: 
l  S = {FoldL [a0 a1 a2 … an-1] F 0} 
l  The accumulator is hidden inside FoldL! 
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Definition 
of FoldL 
l  Here is the definition of FoldL: 

 
declare 
fun {FoldL L F U} 
  case L 
  of nil then U 
  [] H|T then {FoldL T F {F U H}} 
  end 
end 
S={FoldL [5 6 7] fun {$ X Y} X+Y end 0} 

The argument U is an accumulator 
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Encapsulation 
l  We can hide a value inside a function: 

 
declare 
fun {Zero} 0 end 
fun {Inc H} 
N={H}+1 in 
  fun {$} N end 
end 
Three={Inc {Inc {Inc Zero}}} 
{Browse {Three}} 
 

l  This is the foundation of encapsulation as used in data abstraction 
l  What is the difference if we write Inc as follows: 

  fun {Inc H} fun {$} {H}+1 end end 
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Delayed 
execution 
l  We can define an statement and pass it to a function 

which decides whether or not to execute it 
 
proc {IfTrue Cond Stmt} 
  if {Cond} then {Stmt} end 
end 
Stmt = proc {$} {Browse 111*111} end 
{IfTrue fun {$} 1<2 end Stmt} 
 

l  This can be used to build control structures from scratch 
(if statement, while loop, for loop, etc.) 
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Summary of 
higher-order 
l  We have given six examples to illustrate 

the expressiveness of higher-order programming: 
l  Genericity 
l  Instantiation 
l  Function composition 
l  Abstracting an accumulator 
l  Encapsulation 
l  Delayed execution 

l  We will use these techniques and others when we 
introduce the concepts of data abstraction 
l  Data abstraction is built on top of higher-order programming! 
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Atoms and 
records 
l  A record is a general compound data type 

l  Records are used to build many other compound data types 
l  To explain records, we first introduce the atom data type 

l  An atom is a symbolic value 
l  A sequence of lowercase letters and digits that starts with a letter 
l  Also, a sequence of any characters delimited by single quotes 
l  Example of a list containing five atoms: 
 

 declare 
 L=[john paul george ringo ‘1337 5|*34|<‘] 
 {Browse L.1} 
 {Browse L.2.1} 
 {Browse {Length L}} 
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Records 
l  A record groups a set of values into a single compound value 

l  A record has a fixed number of values that can be accessed directly 

l  Each record has a label and a set of pairs of field names and fields 
l  The label is an atom, the field names are atoms or integers, and the 

fields can be any value 
l  The field names and fields are separated by a colon ‘:’ 
l  The position of a field in the record is not important; the records 

point(x:10 y:20) and point(y:20 x:10) are identical 
l  All field names must be different; the syntax box(in:deadcat in:livecat) 

is illegal while box(in:cat alive:X) is legal 
l  Example record with five fields: 

 
declare 
R=rectangle(bottom:10 left:20 top:100 right:200 color:red) 
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Operations 
on records 
l  We only give the basic operations; many other operations exist 

in the Record module 
l  The following examples use this record: 

R=rectangle(bottom:10 left:20 top:100 right:200) 
l  Record fields are accessed through the dot operation 

l  {Browse (R.top-R.bottom)*(R.right-R.left)} 
l  The label and fields can be extracted directly 

l  {Label R} returns rectangle (the value of the label) 
l  {Width R} returns 4 (the number of fields) 
l  {Arity R} returns [bottom left right top] (list of field names alphabetically) 

l  Records can be used in comparisons and pattern matching 
l  {Browse R==rectangle(top:100 bottom:10 left:20 right:200)} displays true 
l  case R of rectangle(bottom:A top:B left:C right:D) matches with A=10, 

B=100, C=20, D=200  
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Records are the 
only compound type 

l  Records are the only compound type in the kernel language 
l  An atom is a record whose width is 0 
l  A tuple is a record whose field names are successive integers 

starting with 1 
l  If the numbering condition is not satisfied, the data item is not a tuple 

but it is still a record 
l  Fields without numbers are automatically numbered starting with 1: 

pair(H T) is syntactic sugar for pair(1:H 2:T) 
l  A list is a recursive data type built with records nil and H|T 

l  Syntactic sugar: H|T same as ‘|’(H T) same as ‘|’(1:H 2:T) 

l  This keeps the kernel language simple 
l  A single compound data type suffices to understand execution 
l  All other types (lists, trees, and so on) are encoded with records 
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Some examples 
l  Given the following records: 

are they tuples or lists? 
l  A=a(1:a 2:b 3:c) 
l  B=a(1:a 2:b 4:c) 
l  C=a(0:a 1:b 2:c) 
l  D=a(1:a 2:b 3:c d) 
l  E=a(a 2:b 3:c 4:d) 
l  F=a(2:b 3:c 4:d a) 
l  G=a(1:a 2:b 3:c foo:d) 
l  H=‘|’(1:a 2:’|’(1:b 2:nil)) 
l  I=‘|’(1:a 2:’|’(1:b 3:nil)) 
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The functional 
kernel language 
l  Now we have seen all the concepts in the functional 

paradigm that we will use 
l  We can define its full kernel language 

l  We will use this kernel language to understand exactly 
what a functional program does 
l  We have used it to see why list functions are tail-recursive 
l  We will use it as part of the formal semantics (in lesson 6) 

l  Each time we introduce a new paradigm in the course 
we will define its kernel language 
l  Each extends the functional kernel language with a new concept 
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The functional kernel 
language (in part) 
l  <s> ::=   skip 

      | <s>1 <s>2 
      | local <x> in <s> end 
      | <x>1=<x>2 
      | <x>=<v> 
      | if <x> then <s>1 else <s>2 end 
      | proc {<x> <x>1 … <x>n} <s> end 
      | {<x> <y>1 … <y>n} 
      | case <x> of <p> then <s>1 else <s>2 end 

l  <v> ::= <number> | <list> | ... 
l  <number> ::= <int> | <float> 
l  <list>, <p> ::= nil | <x> | <x> ‘|’ <list> 

This is what we have seen so far 
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The functional kernel 
language (in part) 
l  <s> ::=   skip 

      | <s>1 <s>2 
      | local <x> in <s> end 
      | <x>1=<x>2 
      | <x>=<v> 
      | if <x> then <s>1 else <s>2 end 
      | proc {<x> <x>1 … <x>n} <s> end 
      | {<x> <y>1 … <y>n} 
      | case <x> of <p> then <s>1 else <s>2 end 

l  <v> ::= <number> | <list> | ... 
l  <number> ::= <int> | <float> 
l  <list>, <p> ::= nil | <x> | <x> ‘|’ <list> 

2. Compound types (should be more than lists only) 

This is what we have seen so far; 
it needs two changes to become 

the full kernel language of the 
functional paradigm 

1. Procedure 
declarations 

(should be values) 
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The functional kernel 
language (in part) 
l  <s> ::=   skip 

      | <s>1 <s>2 
      | local <x> in <s> end 
      | <x>1=<x>2 
      | <x>=<v> 
      | if <x> then <s>1 else <s>2 end 
      | proc {<x> <x>1 … <x>n} <s> end 
      | {<x> <y>1 … <y>n} 
      | case <x> of <p> then <s>1 else <s>2 end 

l  <v> ::= <number> | <procedure> | <list> | ... 
l  <number> ::= <int> | <float> 
l  <procedure> ::= proc {$ <x>1 … <x>n} <s> end 
l  <list>, <p> ::= nil | <x> | <x> ‘|’ <list> 

1. Procedures are 
values in memory 

(like numbers and lists) 
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The functional kernel 
language (complete) 
l  <s> ::=   skip 

      | <s>1 <s>2 
      | local <x> in <s> end 
      | <x>1=<x>2 
      | <x>=<v> 
      | if <x> then <s>1 else <s>2 end 
      | {<x> <y>1 … <y>n} 
      | case <x> of <p> then <s>1 else <s>2 end 

l  <v> ::= <number> | <procedure> | <list> | <record> 
l  <number> ::= <int> | <float> 
l  <procedure> ::= proc {$ <x>1 … <x>n} <s> end 
l  <record>, <p> ::= <lit> | <lit>(<f>1:<x>1 … <f>n:<x>n) 

2. Records subsume lists 
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The functional kernel 
language (complete) 
l  <s> ::=   skip 

      | <s>1 <s>2 
      | local <x> in <s> end 
      | <x>1=<x>2 
      | <x>=<v> 
      | if <x> then <s>1 else <s>2 end 
      | {<x> <y>1 … <y>n} 
      | case <x> of <p> then <s>1 else <s>2 end 

l  <v> ::= <number> | <procedure> | <record> 
l  <number> ::= <int> | <float> 
l  <procedure> ::= proc {$ <x>1 … <x>n} <s> end 
l  <record>, <p> ::= <lit> | <lit>(<f>1:<x>1 … <f>n:<x>n) 

Procedure values and records 
are important basic types. They 
allow, for example, to define all 
the concepts of object-oriented 
programming. 
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Kernel language of the 
functional paradigm 
l  <s> ::=   skip 

      | <s>1 <s>2 
      | local <x> in <s> end 
      | <x>1=<x>2 
      | <x>=<v> 
      | if <x> then <s>1 else <s>2 end 
      | {<x> <y>1 … <y>n} 
      | case <x> of <p> then <s>1 else <s>2 end 

l  <v> ::= <number> | <procedure> | <record> 
l  <number> ::= <int> | <float> 
l  <procedure> ::= proc {$ <x>1 … <x>n} <s> end 
l  <record>, <p> ::= <lit> | <lit>(<f>1:<x>1 … <f>n:<x>n) 
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Three ways 
to understand 
languages 

Practical 
programming 

language 

Kernel 
language 

Foundational 
calculus 

Virtual 
machine 

Aid the programmer 
in reasoning and 

understanding 
Mathematical study 

of programming 
Efficient execution 
on a real machine 

All the kernel 
languages 

of this course 
λ calculus, 
π calculus 

Java Virtual 
Machine (JVM) 

Approach 

Motivation 

Examples 

translation 

This course 
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Trees 
l  Trees are the second most important data structure in 

computing, next to lists 
l  Trees are extremely useful for efficiently organizing information 

and performing many kinds of calculations 

l  Trees illustrate well goal-oriented programming 
l  Many tree data structures are based on a global property, that 

must be maintained during the calculation 

l  In this lesson we will define trees and use them to store 
and look up information 
l  We will define ordered binary trees and algorithms to add 

information, look up information, and remove information 
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Trees 

l  A tree is a recursive structure: it is either an empty 
tree (called a leaf) or an element and a set of trees 
 
 
 
<tree T> ::= leaf | t(T <tree T> ... <tree T>) 
 

root node 

subtrees 
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Example tree 
l  declare 

T=t(100 t(10 leaf leaf leaf) t(20 leaf leaf leaf) leaf)  

100 

10 20 

leaf leaf leaf leaf leaf leaf 

leaf 
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Trees compared 
to lists 

l  A tree is a recursive structure: it is either an empty 
tree (called a leaf) or an element and a set of trees 
 
<tree T> ::= leaf | t(T <tree T> ... <tree T>) 
 
<list T> ::= nil | ‘|’(T <list T>) 
 

l Notice the 
similarity with lists! 
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Ordered binary tree 
l  <obtree T> ::=  leaf 

                |  tree(key:T value:T left:<obtree T> right:<obtree T>) 
 

l  Binary: each non-leaf tree has two subtrees (named left and right) 
l  Ordered: for each tree (including all subtrees): 

 all keys in the left subtree < key of the root 
 key of the root < all keys in the right subtree 

key:3 value:4 

key:1 value:9 key:5 value:2 

leaf leaf leaf leaf 
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Ordered binary tree 
l  <obtree T> ::=  leaf 

                |  tree(key:T value:T left:<obtree T> right:<obtree T>) 
 

l  Binary: each non-leaf tree has two subtrees (named left and right) 
l  Ordered: for each tree (including all subtrees): 

 all keys in the left subtree < key of the root 
 key of the root < all keys in the right subtree 

key:3 value:4 

key:1 value:9 key:5 value:2 

leaf leaf leaf leaf 

l This tree has two 
information fields 

at each node: 
key and value 
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Ordered binary tree 

key:horse 
value:cheval 

key:dog 
value:chien 

key:mouse 
value:souris 

key:cat 
value:chat 

key:elephant 
value:éléphant 

key:monkey 
value:singe 

key:tiger 
value:tigre 

l  This ordered binary tree is a translation dictionary 
from English to French 

leaf leaf leaf leaf leaf leaf leaf leaf 
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Ordered binary tree 

key:horse 
value:cheval 

key:dog 
value:chien 

key:mouse 
value:souris 

key:cat 
value:chat 

key:elephant 
value:éléphant 

key:monkey 
value:singe 

key:tiger 
value:tigre 

l  This ordered binary tree is a translation dictionary 
from English to French 

leaf leaf leaf leaf leaf leaf leaf leaf 

l horse<monkey 
monkey<mouse 

< 
< 
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Search tree 

l  Search tree: A tree that is used to organize 
information, and with which we can perform various 
operations such as looking up, inserting, and 
deleting information 
 

l  Let’s define these three operations: 
l  {Lookup K T}: returns the value V corresponding to key K 
l  {Insert K W T}: returns a new tree containing (K,W) 
l  {Delete K T}: returns a new tree that does not contain K 

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz



Inserting a new key/value pair 

X 

T1 T2 

left right 

X 

T1 

left right 

tree(key:X value:V left:T1 right:T2) tree(key:X value:V left:T1 right:{Insert K W T2}) 

new right 
subtree 

unchanged part 

Original tree New tree 

Assume K > X 
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Efficiency 
l  How efficient is the Lookup function? 

l  If there are n words in the tree, and each node’s subtrees are 
approximately equal in size (we say the tree is balanced), then the 
average lookup time is proportional to log n 

l  Tree lookup is much more efficient than list lookup: if for 1000 words 
the average time is 10, then for 1000000 words this will increase to 20 
(instead of being multiplied by 1000!) 

l  If the tree is not balanced, say all the right subtrees are very small, 
then the time will be much larger 
l  In the worst case, the tree will look like a list 

l  How can we arrange for the tree to be balanced? 
l  There exist algorithms for balancing an unbalanced tree, but if we insert 

words randomly, then we can show that the tree will be approximately 
balanced, good enough to achieve logarithmic time 
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Deleting an element from an 
ordered binary tree 

A 

X 

A 

? 

The problem is to repair the tree after X disappears 
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Deleting an element when 
one subtree is empty 

X X 

It’s easy when one of the subtrees is empty: 
just replace the tree by the other subtree 
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Deleting an element when 
both subtrees are not empty 

X 

The idea is to fill the ”hole” that appears after X is 
removed.  We can put there the smallest element 
in the right subtree, namely Y. 

Y 

Y 
remove X move Y 
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We need a new function: 
RemoveSmallest 

fun {Delete K T} 
    case T 
    of leaf then leaf 
    [] tree(key:X value:V left:T1 right:T2) andthen K==X then 

 case {RemoveSmallest T2} 
 of none then T1 
 [] triple(Tp Yp Vp) then  
        tree(key:Yp value:Vp left:T1 right:Tp) 
 end 

    [] … end 
end 

Yp 

T1 

l  RemoveSmallest takes a tree and returns three values: 
l  The new subtree Tp without the smallest element 
l  The smallest element’s key Yp 
l  The smallest element’s value Vp 

l  With these three values we can build the new tree where 
Yp is the root and Tp is the new right subtree 

Tp 
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Recursive definition of 
RemoveSmallest 

l  RemoveSmallest takes a tree T and returns: 
l  The atom none when T is empty 
l  The record triple(Tp Xp Vp) when T is not empty 

fun {RemoveSmallest T} 
    case T 
    of leaf then none 
    [] tree(key:X value:V left:T1 right:T2) then 
         case {RemoveSmallest T1} 
         of none then triple(T2 X V) 
         [] triple(Tp Xp Vp) then 
            triple(tree(key:X value:V left:Tp right:T2) Xp Vp) 
         end 
    end 
end 

l To understand 
this definition, 
draw diagrams 

with trees! 
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Why do we need 
semantics? 
l  If you do not understand something, then you do not 

master it – it masters you! 
l  If you know nothing about how a car works, then a car mechanic 

can charge you whatever he wants 
l  If you do not understand how government works, then you 

cannot vote wisely and the government becomes a tyranny 

l  The same holds true for programming 
l  To write correct programs and to understand other people’s 

programs, you have to understand the language deeply 
l  All software developers should have this level of understanding 
l  The goal of this lesson is to show you how 
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What is the semantics 
of a language? 
l  The semantics of a programming language, also called formal 

semantics or mathematical semantics, is a completely precise 
explanation of how programs execute that can be used to reason 
about program design and correctness 

l  We will give a semantics for all the paradigms of this course 
l  We start by giving the semantics of the functional paradigm 

l  We have already seen the first part, namely the kernel language 
l  In this lesson we will see the second part, namely the abstract machine 

l  Before taking the plunge into the abstract machine, let’s take a step 
back and talk about semantics in general 
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How can we define 
language semantics? 
l  Four general approaches have been invented: 

l  Operational semantics: Explains a program in terms of its execution on a 
rigorously defined abstract machine 

l  Axiomatic semantics: Explains a program as an implication: if certain properties 
hold before the execution, then some other properties will hold after the execution 

l  Denotational semantics: Explains a program as a function over an abstract 
domain, which simplifies certain kinds of mathematical analysis of the program 

l  Logical semantics: Explains a program as a logical model of a set of logical 
axioms, so program execution is deduction: the result of a program is a true 
property derived from the axioms 

l  The operational semantics works for all paradigms 
(since all programs run on computers!) 
l  The other approaches are less general; they work best for some paradigms 
l  To reason about correctness, we will complement the operational semantics 

with ideas taken from the other approaches 
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Operational 
semantics 
l  The operational semantics has two parts 

l  Kernel language: first, translate the program into the kernel language 
l  Abstract machine: then, execute the program on the abstract machine 

l  We will introduce the operational semantics with an example that 
uses it to prove correctness of a program 
l  After this introduction, we will define the abstract machine and give an 

example of how it executes 
l  Then we will define the semantic rules for each instruction of the kernel 

language 
l  Finally, we will take a special look at procedure definition and call, since 

they are very important (higher-order programming and data abstraction) 
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Introduction to semantics 
l  Let’s introduce our semantics by means of an example 

l  First, let’s decide what the semantics will be used for in our example: 
l  To ensure that the program is correct (this is called verification) 
l  To make sure the program is well-designed 
l  To explain the program to others 
l  To calculate time and memory utilisation 
l  To understand how the program manages memory 

(in particular, how it does garbage collection) 

l  Let’s choose the first goal, namely correctness 
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When is a program correct? 
l  “A program is correct when it does what we want it to” 
l  How can we be sure? 

l  There are two starting points: 
l  The program’s specification: a mathematical definition of the 

result of the program as a function of the input 
l  The language semantics: a precise mathematical model of how 

a program executes 

l  We need to prove that the program satisfies the 
specification, when it executes according to the 
semantics 
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The three pillars 

l  The specification: 
what we want 

l  The program: 
what we have 

l  The semantics connects 
these two: proving that 
what we have executes 
according to what we 
want 

Specification 
(mathematics) 

Program 
(programming language) 

Semantics 
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Example: 
correctness of factorial 
l  The specification of {Fact N}          (mathematics) 

  0!  =  1 
  n!  =  n × ((n-1)!)  when  n>0 

 

l  The program     (programming language) 
 fun {Fact N} 

     if N==0 then 1 else N*{Fact N-1} end 
 end 

 
l  The semantics connects the two 
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Mathematical induction 
l  To make this proof for a recursive function we need to use 

mathematical induction 
l  A recursive function calculates on a recursive data structure, 

which has a base case and a general case 
l  We first show the correctness for the base case 
l  We then show that if the program is correct for a general case, it 

is correct for the next case 

l  For integers, the base case is usually 0 or 1, and the general 
case n-1 leads to the next case n 

l  For lists, the base case is usually nil or a small list, and the 
general case T leads to the next case H|T 
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The inductive proof 
l  We must show that {Fact N} calculates n! for all n≥0 

l  Base case: n=0 
l  The specification says: 0!=1 
l  The execution of {Fact 0}, using the semantics, gives {Fact 0}=1 

l  It’s correct! 

l  General case: (n-1) → n 
l  The specification says: n! = n×(n-1)!   
l  The execution of {Fact N}, using the semantics, gives {Fact N} = N*{Fact N-1} 

l  We assume that {Fact N-1}=(n-1)! 
l  We assume that the language correctly implements multiplication 
l  Therefore: {Fact N} = N*{Fact N-1} = n×(n-1)! = n! 
l  It’s correct! 

l  Now we just need to understand the magic words “using the semantics”! 
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How to execute a program 
using the semantics 
l  We execute the program using the semantics by following two steps 

l  First, we translate the program into kernel language 
l  The kernel language is a simple language that has all essential concepts 
l  All programs in the practical language can be translated into kernel 

language 
l  ➞ We translate the definition of Fact into kernel language 

l  Second, we execute the translated program on the abstract machine 
l  The abstract machine is a simplified computer with a precise mathematical 

definition 
l  ➞ We execute the call {Fact 0 R} on the abstract machine 
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Executing Fact 
using the semantics 
l  We need to execute both {Fact 0} and {Fact N} using the semantics 
l  First we translate the definition of Fact into kernel language: 

 proc {Fact N R} 
 local B in 
  B=(N==0) 
  if B then R=1 
  else local N1 R1 in 
   N1=N-1 
   {Fact N1 R1} 
   R=N*R1 

              end 
  end 
 end 

 end 
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Execution of {Fact 0}  (1) 
l  Let’s first look at the function call {Fact 0} 
l  We execute the procedure call {Fact N R} where N=0 
l  We need a memory σ and an environment E: 

 
σ = {fact=(proc {$ N R} … end,{Fact→fact }), n=0, r}     
E = {Fact→fact, N→n, R→r } 

l  Here is what we will execute: 
 

{Fact N R}, E, σ 
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Execution of {Fact 0}  (2) 
l  To execute {Fact N R} we replace it by the procedure body 

l  The instruction: 
 
     {Fact N R}, {Fact→fact, N→n, R→r }, σ 
 
is replaced by the instruction: 
 
     local B in 
      B=(N==0) 
      if B then R=1 else … end 
     end, {Fact→fact, N→n, R→r }, σ 
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Execution of {Fact 0}  (3) 
l  To execute the local instruction: 

 local B in 
       B=(N==0) 
       if B then R=1 else … end 

 end, {Fact→fact, N→n, R→r }, σ 
we do two operations: 
l  We extend the memory with a new variable b 
l  We extend the environment with {B → b} 

 

l  We then replace the instruction by its body:  
  B=(N==0) 
  if B then R=1 else … end, 

 {Fact→fact, N→n, R→r, B → b}, σ∪{b} 
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Execution of {Fact 0}  (4) 
l  We now do the same for: 

     B=(N==0) 
and: 
     if B then R=1 else … end end 
 

l  This will first bind b=true and then bind r=1 
l  This completes the execution of {Fact 0} 

l  We have executed {Fact 0} with the semantics and 
shown that the result is 1 

l  To complete the proof, we still have to show that the 
result of {Fact N} is the same as N*{Fact N-1}    
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We have proved the 
correctness of Fact 
l  Let’s recapitulate the approach 
l  Start with the specification and program of Fact 

l  We want to prove that the program satisfies the specification 
l  Since the function is recursive, our proof uses mathematical induction 

l  We need to prove the base case and the general case: 
l  Prove that {Fact 0} execution gives 1 
l  Prove that {Fact N} execution gives N*{Fact N-1} 

l  We prove both cases using the semantics and the Fact program 
l  To use the semantics, we first translate Fact into kernel language, and 

then we execute on the abstract machine 
l  This completes the proof 
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How to execute a program 
using the semantics 
l  We execute the program using the semantics by 

following two steps 
l  First, we translate the program into kernel language 

l  The kernel language is a simple language that has all essential 
concepts 

l  All programs in the practical language can be translated into 
kernel language 

l  Second, we execute the translated program on the 
abstract machine 
l  The abstract machine is a simplified computer with a precise 

mathematical definition 
➞ Let’s take a closer look at the abstract machine 
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Kernel language 
of the functional paradigm 
l  <s> ::=   skip 

      | <s>1 <s>2 
      | local <x> in <s> end 
      | <x>1=<x>2 
      | <x>=<v> 
      | if <x> then <s>1 else <s>2 end 
      | {<x> <y>1 … <y>n} 
      | case <x> of <p> then <s>1 else <s>2 end 

l  <v> ::= <number> | <procedure> | <record> 
l  <number> ::= <int> | <float> 
l  <procedure> ::= proc {$ <x>1 … <x>n} <s> end 
l  <record>, <p> ::= <lit> | <lit>(<f>1:<x>1 … <f>n:<x>n) 
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Abstract machine 
concepts 
l  Single-assignment memory σ = {x1=10,x2,x3=20} 

l  Variables and the values they are bound to 
l  Environment E = {X → x, Y → y} 

l  Link between identifiers and variables in memory 
l  Semantic instruction (<s>,E) 

l  An instruction with its environment 
l  Semantic stack ST = [(<s>1,E1), …, (<s>n,En)] 

l  A stack of semantic instructions 
l  Execution state (ST,σ)  

l  A pair of a semantic stack and the memory 
l  Execution (ST1,σ1) → (ST2,σ2) → (ST3,σ3) → … 

l  A sequence of execution states 
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Abstract machine 
execution algorithm 
l  procedure execute(<s>) 

begin 
 ST:=[(<s>,{})];  /* Initial semantic stack: empty environment */ 
 σ:={};   /* Initial memory: empty (no variables) */ 
 while (ST≠{}) do 
         pop(ST, SI);  /* Pop semantic instruction into SI */ 
         (ST,σ):=rule(SI, (ST,σ)); /* Execute SI */ 

  end 
end 

l  While the semantic stack is nonempty, pop the instruction at the top of the 
semantic stack, and execute it according to its semantic rule 

l  Each instruction of the kernel language has a rule that defines its execution 
in the abstract machine 

l  (Note: When we introduce concurrency, we will extend this algorithm to run 
with more than one semantic stack) 
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The example instruction 
in kernel language 

local X in  
   local B in  
      B=true  
      if B then X=1 else skip end 
   end 
end  
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Start of the execution: 
the initial execution state 
([(local X in  
      local B in  
         B=true  
         if B then X=1 else skip end  
      end 
   end, {})], 
 {})   

l  We start with an empty memory 
and an empty environment 
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The local X in ... end 
instruction 
([(local B in 

 B=true 
 if B then X=1 else skip end  

       end,  
   {X → x})], 
 {x})   

l  We create a new variable x in memory 
l  We put the inner instruction on the stack and 

add X→x to its environment 
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The local B in ... end 
instruction 

([( (B=true 
    if B then X=1 else skip end),  

    {B → b, X → x})], 
 {b,x})   

l  We create a new variable b in memory 
l  We put the inner instruction on the stack and 

add B→b to its environment 

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz



The sequential composition 
instruction 

([(B=true,{B → b, X → x}),  
  (if B then X=1 

   else skip end,{B → b, X → x})], 
 {b,x})   

l  We split the sequential composition into its two parts 
l  We put the two instructions on the stack 
l  The environments stay the same 
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The B=true instruction 

([(if B then X=1  
       else skip end,{B → b, X → x})], 
 {b=true, x})   

l  We bind b to true in memory 
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The conditional instruction 

([(X=1,{B → b, X → x})], 
 {b=true, x})   

l  We read the value of B 
l  Since B is true, it puts the instruction after then on the stack 
l  If B is false, it will  put the instruction after else on the stack 
l  If B has any other value, then the conditional raises an error 

l  (Note: If B is unbound then the execution of the semantic 
stack stops until B becomes bound – this can only happen in 
another semantic stack, i.e., with concurrency) 
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The X=1 instruction 

([],  

 {b=true, x=1})   

l  We bind x to 1 in memory 
l  Execution stops because the stack is empty 
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Semantic rules 
we have seen 

l  This example has shown us the execution of 
four instructions: 
l  local <x> in <s> end (variable creation) 
l  <s>1 <s>2 (sequential composition) 
l  if <x> then <s>1 else <s>2 end (conditional) 
l  <x>=<v> (assignment) 

l  In the next unit we will see the semantic rules 
corresponding to these instructions 
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Semantic rules for kernel 
language instructions 
l  For each instruction in the kernel language, we will 

define its rule in the abstract machine 
l  Each instruction takes one execution state as input 

and returns one execution state 
l  Execution state = semantic stack + memory 

l  Let’s look at three instructions in detail: 
l  skip 
l  <s>1 <s>2 (sequential composition) 
l  local <x> in <s> end 

l  We will see the others in less detail.  You can learn 
about them in the exercises and in the book. 
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skip 

l  The simplest instruction 
l  It does nothing at all! 
l  Input state: ([(skip,E), S2, …, Sn], σ) 
l  Output state: ([S2, …, Sn], σ) 
l  That’s all 

l S2 

l Sn 

l S2 

l Sn 

l (skip,E) 
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<s>1 <s>2  
(sequential composition) 

l S2 

l Sn 

l S2 

l Sn 

Sa Sb 

l  Almost as simple as skip 
l  The instruction removes the top of the 

stack and adds two new elements 
l  Input state: ([(Sa Sb), S2, …, Sn], σ) 
l  Output state: ([Sa, Sb, S2, …, Sn], σ) 

l Sb 

l Sa 
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local <x> in <s> end 

l  Create a fresh new variable x in memory σ 
l  Add the link {X → x} to the environment E 

(using adjunction) 

l S2 

l Sn 

l S2 

l Sn 

(local <x> in <s> end, E) (<s>,E+{<x> → x}) 
σ σ ∪ {x} 
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Some comments on 
the other instructions 
l  <x>=<v> (value creation + assignment) 

l  Note: when <v> is a procedure, you have to create the 
contextual environment 

l  if <x> then <s>1 else <s>2 end (conditional) 
l  Note: if <x> is unbound, the instruction will wait (“block”) 

until <x> is bound to a value 
l  The activation condition: “<x> is bound to a value” 

l  case <x> of <p> then <s>1 else <s>2 end 
l  Note: case statements with more patterns are built by 

combining several kernel instructions 
l  {<x> <y>1 ... <y>n} 

l  Note: since procedure definition and procedure call are the 
foundation of data abstraction, we will take a special look! 
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Procedure definition 
and procedure call 

l  Procedure definition and call are very 
important instructions, since they are the 
foundation of data abstraction 
l  Higher-order programming 
l  Layered program organization 
l  Encapsulation 
l  Object-oriented programming 
l  Abstract data types 

l  This is why we will look at them separately 
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Procedure semantics 
l  Procedure definition 

l  Create the contextual environment 
l  Store the procedure value, which contains both 

procedure code and contextual environment   

l  Procedure call 
l  Create a new environment by combining two parts: 

§  The procedure’s contextual environment 
§  The formal arguments (identifiers in the procedure definition), 

which are made to reference the actual argument values 
l  Execute the procedure body with this new environment 

l  We first give an example execution to show what the 
semantic rules have to do 
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Procedure example (1) 
local Z in 
   Z=1 
   proc {P X Y} Y=X+Z end 
end 

l  The free identifiers of the procedure (here, just Z) are 
the ones declared outside the procedure 

l  When executing P, the identifier Z must be known 
l  Z is part of the procedure’s contextual environment, 

which must be part of the procedure’s definition 
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Procedure example (2) 
local P in 

 local Z in 
    Z=1 
    proc {P X Y} Y=X+Z end  % CEP = {Z→z} 
 end 
 local B A in 
   A=10 
   {P A B}    % P’s body Y=X+Z must do b=a+z 
   {Browse B}  % Therefore: EP = {Y→b, X→a, Z→z} 
 end 

end 
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Semantic rule for 
procedure definition 
l  Semantic instruction: 

(<x>=proc {$ <x>1 … <x>n} <s> end, E) 
l  Formal arguments: 

 <x>1, …, <x>n 
l  Free identifiers in <s>: 

 <z>1, …, <z>k 
l  Contextual environment: 

 CE=E|<z>1, …, <z>k (restriction of E) 

l  Create the following binding in memory: 
 x=(proc {$ <x>1 … <x>n} <s> end, CE) 
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Semantic rule for 
procedure call (1) 
l  Semantic instruction: 

   ({〈x〉 〈y〉1 … 〈y〉n}, E) 

•  If the activation condition is false (E(〈x〉) unbound) 
•  Suspension (wait, do not execute) 

•  If E(〈x〉) is not a procedure 
•  Raise an error condition 

•  If E(〈x〉) is a procedure with the wrong number of 
arguments (≠ n) 

•  Raise an error condition 
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Semantic rule for 
procedure call (2) 
l  Semantic instruction on stack: 

   ({〈x〉 〈y〉1 … 〈y〉n}, E) 
 with procedure definition in memory: 
  E(〈x〉) = (proc {$ 〈z〉1…〈z〉n} 〈s〉 end, CE) 

 
•  Put the following instruction on the stack: 

 
(〈s〉, CE + {〈z〉1 → E(〈y〉1), …, 〈z〉n → E(〈y〉n)}) 
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Bringing it 
all together 
l  Defining the semantics brings many concepts together 

l  Concepts we have seen before: identifier, variable, environment, 
instruction, procedure value, kernel language 

l  New concepts: semantic instruction, semantic stack, memory, 
execution state, execution, abstract machine 

l  We gave semantic rules for the kernel language 
instructions, to show how they execute in the abstract 
machine 

l  We used the semantics to prove program correctness, 
by using it as bridge between specification and program 

Specification Program 
Semantics 
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Discrete 
mathematics 
l  The abstract machine is built with discrete mathematics 
l  For our students at UCL, it is the first time they see a complicated 

system built with discrete mathematics! 
l  Even engineering students, who are quite used to integrals, 

differential equations, and complex analysis, which are all 
continuous mathematics 

l  Discrete mathematics is important because that’s how computing 
systems work (both software and hardware) 
l  Surprising behavior and bugs become less surprising if you understand 

the discrete mathematics of computing systems 
l  Too often, continuous models are used for computing systems 
l  All this applies to the real world as well (beyond computing systems) 
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Why semantics 
is important 
l  Semantics is part of programming 

l  As a programmer, you are extending the system’s semantics: you are 
writing specifications, designing and implementing abstractions (which 
we will see soon), and reasoning about your work 

l  The design of any complicated system with parts that interact in 
interesting ways (like programming languages and programs) 
should be done hand in hand with designing a semantics 
l  Designing a simple semantics is the only way to avoid unpleasant 

surprises and to guarantee a simple mental model 
l  You don’t need to understand the semantics to take advantage of it: 

its mere existence is enough 
l  So users of your system will also reap the benefits of a simple semantics 

l  « Semantics is the ultimate programming language » 
l  Invariants as the ultimate loop construct 
l  Data abstractions as new kernel language instructions 
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Using 
semantics 
l  Semantics has many uses: 

l  For design (ensuring the design is simple and predictable) 
l  For understanding (the nooks and crannies of programs) 
l  For verification (correctness) 
l  For debugging (a bug is only a bug with respect to a correct execution) 
l  For visualization (a visual representation must be correct) 
l  For education (pedagogical uses of semantics) 
l  For program analysis and compiler design 

l  We don’t need to bring in details of the processor architecture or 
compiler in order to understand many things about programs 
l  For example, our semantics can be used to understand garbage 

collection (explained in the textbook) 
l  We will use the semantics when needed in the rest of the course 
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Conclusions 
for Louv1.1x 

l  This is the last lesson of Louv1.1x 
l  Only the final exam is left: be careful, 

you only have two tries for each question! 
l  We have covered a lot of ground! 

l  It is worthwhile revisiting some videos in the 
previous lessons: you will understand more 

l  We have seen these concepts in terms of 
functional programming, but they remain valid 
for all paradigms 

l  Let’s briefly recapitulate what we have seen 
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Road map 
of Louv1.1x 

Basic concepts 
Identifier, variable, 

environment, scope 

Invariant programming 
Tail recursion, loops, 
communicating vases 

Lists 
Recursive data, grammar 
rules, pattern matching 

Higher-order prog. 
Contextual environment, 

procedure values 

Records 
Compound data, 

atoms, tuples, lists 

Full kernel language 
 Instructions and values, 
procedures and records 

Trees 
 Ordered binary trees, 

search trees, goals 

Performance 
 Computational complexity, 
Moore’s Law, NP problems 

Formal semantics 
 Kernel language, abstract 
machine, semantic rules 

1 

2 3 

4 

4 

5 

6 

4 

5 

Louv1.2x 

Operations Data 
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Toward Louv1.2x 

l  Higher-order programming 
l  The foundation of data abstraction and object-

oriented programming 
l  Single assignment 

l  The foundation of deterministic dataflow 
concurrency 

l  Kernel language approach 
l  The basis of all the paradigms we will see: they 

are extensions of the functional kernel language 
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Final words 

l  We hope you enjoyed this course 
l  Despite, or perhaps because of, the 

unconventional approach and language 
l  We don’t like to follow fashions in programming, 

we try to understand things as they are 
l  Louv1.2x sees many more concepts and is 

every bit as rich and challenging as Louv1.1x 
l  We hope you will take the plunge and continue 

with Louv1.2x 
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Many 
important ideas 

l  Identifiers and environments 
l  Functional programming 
l  Recursion 
l  Invariant programming 
l  Lists, trees, and records 
l  Symbolic programming 
l  Instantiation 
l  Genericity 
l  Higher-order programming 
l  Complexity and Big-O notation 
l  Moore’s Law 
l  NP and NP-complete problems 
l  Kernel languages 
l  Abstract machines 
l  Mathematical semantics 

l  Explicit state 
l  Data abstraction 
l  Abstract data types and objects 
l  Polymorphism 
l  Inheritance 
l  Multiple inheritance 
l  Object-oriented programming 
l  Exception handling 
l  Concurrency 
l  Nondeterminism 
l  Scheduling and fairness 
l  Dataflow synchronization 
l  Deterministic dataflow 
l  Agents and streams 
l  Multi-agent programming 

Louv1.1x Louv1.2x 
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