
A.HARICHE a.hariche@univ-dbkm.dz

1

MI-GLSD-M1 -UEM213 :

Programming paradigms

Chapter 3: Functional paradigm

Basic concepts

A. HARICHE

University of Djilali Bounaama, Khemis Meliana (UDBKM)

Faculty of sciences & technology

Mathematics & computer sciences department

a.hariche@univ-dbkm.dz

admin
Rectangle

admin
Typewriter
III:

Our first paradigm
l  Functional programming

l  It is one of the simplest paradigms
l  It is the foundation of all the other paradigms
l  It is a form of declarative programming

l  Our approach to functional programming
l  It is our first introduction to programming concepts
l  It is our first introduction to a kernel language
l  We use it to explain invariants and recursion
l  We give examples using integers, lists, and trees
l  We present higher-order programming: the apotheosis
l  We give a formal semantics based on the kernel language

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Declarative programming:
the long-term view

l  Declarative programming is a vision for the future
l  Just say what result you want (give properties of the result)
l  Let the computer figure out how to get there
l  Declarative versus imperative: properties versus commands

l  How do we make this vision real
l  Programming gets more support from the computer
l  With same programming effort, we can do more

l  The whole history of computing is a progression
toward more declarative

l  And faster and cheaper (all three are connected)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Declarative programming:
the short-term view

l  Declarative programming is the use of mathematics
in programming (such as functions and relations)

l  A computation calculates a function or a relation
l  Use the power of mathematics to simplify programming

(such as confluency and referential transparency)

l  Very common in practice
l  Functional languages: LISP, Scheme, ML, Haskell, OCaml, ...
l  Logic languages (relational): SQL, constraint programming, Prolog, ...
l  Combinations: XSL (formatting), XSLT (transforming), …

l  Also called “programming without state”
l  Variables and data structures can’t be updated
l  Testing and verification is much simplified
l  Declarative versus imperative: stateless versus stateful

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Key advantage of
functional programming
l  “A program that works today will work tomorrow”

l  Functions don’t change
l  All changes are in the arguments, not in the functions

l  It is a programming style that should
be encouraged in all languages
l  “Stateless server” for a client/server application
l  “Stateless component” for a service application

l  Learning functional programming helps us
think in this style
l  All programs written in the functional paradigm are ipso facto

declarative: an excellent way to learn to think declaratively

“Cookies” on
the Web

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Now let’s start
programming...
l  This completes the « philosophical »

introduction of the course
l  Now we will start programming in

our first paradigm
l  Functional programming

l  At the same time, we will introduce
the Oz language and the Mozart system
l  Mozart’s emacs interface, which we will

use throughout the course

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

admin
Note
Emacs

Interactive system

l  Select a region in the Emacs buffer
l  Feed the region to the system

l  The text is compiled and executed

l  Interactive system can be used as
a powerful calculator

declare
X = 1234 * 5678
{Browse X}

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Creating variables

l  Declare (create) a variable designated by X
l  Assign to the variable the value 7006652

l  Result of the calculation 1234*5678

l  Call the procedure Browse with the argument
designated by X

l  Opens a window that displays 7006652

declare
X = 1234 * 5678
{Browse X}

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Variable
and identifier

l  There are two concepts hiding in plain view here
l  Identifier X : what you type (character sequence starting with capital)

Var, A, X123, FirstCapitalBank

l  Variable x : what is in memory (used to store the value)
l  Variables are short-cuts for values (= constants)

l  Can only be assigned to one value (like mathematical variables)
l  Multiple assignment is another concept! We will see it later in the course.
l  The type of the variable is only known when it is assigned (dynamic typing)

declare X
X=11*11
{Browse X}

Program text System memory

x

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Environment

l  declare is an interactive instruction
l  Creates a new variable in memory
l  Links the identifier and its corresponding variable

l  Third concept: environment E={X→ x}
l  A function that takes an identifier and returns a variable: E(X) = x
l  Links identifiers and their corresponding variables

(and the values they are bound to)

declare X
X=11*11
{Browse X}

x

Program text System memory

E

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Assignment

l  The assignment instruction X=121 binds
the variable x to the value 121

declare X
X=11*11
{Browse X}

x=121

Program text System memory

E

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Single assignment

l  A variable can only be bound to one value
l  It is called a single-assignment variable
l  Why? Because we are in the functional paradigm!

l  Incompatible assignment: signals an error
 X = 122

l  Compatible assignment: accepted
 X = 121

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

admin
Note
Emacs

Why single
assignment?
l  Why do we restrict variables to be bound to one value?

l  It seems like a big handicap, not being able to assign again

l  We do it because it gives advantages!
l  It’s like following a law. Why is it a good idea to respect traffic

rules? Because (among other things) it reduces the chance of
having an accident.

l  If we could assign more than once, we could break a
correct program
l  But how can we program without multiple assignment? Actually,

it’s easy, as we will see.

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

admin
Note
Emacs

Redeclaring
an identifier

l  An identifier can be redeclared
l  The same identifier refers to a different value
l  There is no conflict with single assignment.

Each occurrence of X corresponds to a different variable.
l  The interactive environment always has the last declaration

l  declare keeps the same correspondance until redeclared (if ever)
l  In this example X will refer to 11

declare
X = 42
declare
X = 11

x=42

System memory

y=11

Program text
E1

E2

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Scope of an
identifier occurrence

l  The instruction
 local X in <stmt> end
declares X between in and end

l  The scope of an identifier occurrence
is that part of the program text for
which the occurrence corresponds to
the same variable declaration

l  The scope can be determined by inspecting
the program text; no execution is needed.
This is called lexical scoping or static scoping.

l  Why is there no conflict between
X=42 and X=11, even though
variables are single assignment?

l  What will the third Browse display?

local
 X
in
 X = 42 {Browse X}
 local
 X
 in
 X = 11 {Browse X}
 end
 {Browse X}
end

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Tips on Oz syntax
l  At this point you can see that Oz syntax is not like most

syntaxes you may have seen before

l  The most popular syntax in mainstream languages (C++, Java)
is « C-like », where identifiers are statically typed (« int i; ») and
can start with lowercase, and code blocks are delimited by
braces

l  Oz syntax is definitely not C-like!

l  Oz syntax is inspired by many languages: Prolog (logic
programming), Scheme and ML (functional programming), C++
and Smalltalk (object-oriented programming), and so forth

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Why is Oz syntax
different?
l  It is different because Oz supports many programming

paradigms
l  The syntax is carefully designed so that the paradigms don’t

interfere with each other
l  It’s possible to program in just one paradigm. It’s also possible to

program in several paradigms that are cleanly separated in the
program text.

l  So it is important for you not to get confused by the
differences between Oz syntax and other syntaxes you
may know

l  Let me explain the main differences so that you will not
be hindered by them

Main differences
in Oz syntax
l  Identifiers in Oz always start with an uppercase letter

l  Examples: X, Y, Z, Min, Max, Sum, IntToFloat.
l  Why? Because lowercase is used for symbolic constants (atoms).

l  Procedure and function calls in Oz are surrounded by braces { ... }
l  Examples: {Max 1 2}, {SumDigits 999}, {Fold L F U}.
l  Why? Because parentheses are used for record data structures.

l  Local identifiers are introduced by local ... end
l  Examples: local X in X=10+20 {Browse X} end.
l  Why? Because all compound instructions in Oz start with a keyword (here

« local ») and terminate with end.

l  Variables in Oz are single assignment
l  Examples: local X Y in X=10 Y=X+20 {Browse Y} end.
l  Why? Because the first paradigm is functional programming. Multiple

assignment is a concept that we will introduce later.

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Oz syntax in the
programming exercises

l  Most programming bugs, at least early on, are due
to syntax errors (such as using a lowercase letter
for an identifier)

l  Please take into account the four main differences.
Once you have assimilated them, reading and
writing Oz will become straightforward.

l  And now let’s do some more programming!

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

admin
Note
Emacs

Functions
l  We would like to execute the same code many times,

each time with different values for some of the identifiers
l  To avoid repeating the same code, we can define a function

l  Functions are shortcuts for program code to execute,
just as variables are shortcuts for values
l  To be precise, functions are just another kind of value in memory,

like numbers (as we will see later)
l  Function Sqr returns the square of its input:

declare
fun {Sqr X} X*X end

l  The fun keyword identifies the function. The identifier Sqr refers
to a variable that is bound to the function.

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Numbers
l  There are two kinds of numbers in Oz

l  Exact numbers: integers
l  Approximate numbers: floating point

l  Integers are exact (arbitrary precision)
l  Floats are approximations of real numbers

(up to 15 digits precision – 64-bit internally)
l  There is never any automatic conversion

from exact to approximate and vice versa
l  To convert, we use functions IntToFloat or FloatToInt
l  Design principle: don’t mix incompatible concepts

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

admin
Note
Emacs

Sum of digits
function
l  Function SumDigits calculates the sum of digits

of a three-digit positive integer:

declare
fun {SumDigits N}
 (N mod 10) + ((N div 10) mod 10) +
 ((N div 100) mod 10)
end

l  mod and div are integer functions
l  / (division) is a float function
l  * (multiplication) is a function on both floats and integers

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

admin
Note
Emacs

SumDigits6
l  Sum of digits of a six-digit positive integer

fun {SumDigits6 N}
 {SumDigits (N div 1000)} +
 {SumDigits (N mod 1000)}
end

l  This is an example of function composition: defining a
function in terms of other functions
l  This is a key ability for building large systems: we can build

them in layers, where each layer is built by a different person
l  This is the first step toward data abstraction

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

admin
Note
Emacs

SumDigitsR
l  Sum of digits of any positive integer (first try)

fun {SumDigitsR N}
 (N mod 10) + {SumDigitsR (N div 10)}
end

l  This function calls itself with a smaller value
l  But it never stops: we need to make it stop!

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

SumDigitsR
l  Sum of digits of any positive integer (correct)

fun {SumDigitsR N}
 if (N==0) then 0
 else
 (N mod 10) + {SumDigitsR (N div 10)}
 end
end

l  This introduces the conditional (if) statement
l  This is an example of function recursion: defining a

function that calls itself
l  This is a key ability for building complex algorithms: we divide

a complex problem into simpler subproblems (divide and conquer)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The functional
paradigm
l  The functional paradigm as we have introduced it now, with the ability

to calculate with numbers, to define functions, to do function
composition and recursion, and to use the conditional statement (if),
is a fully capable programming language

l  We say it is Turing complete, since it can compute the same
functions as a Turing machine
l  Since a Turing machine is the most powerful computer we know how

to build (in terms of the kinds of functions that can be programmed),
this means that we can do anything that any other computer can do

l  We will see how to harness the power of recursion in the next two
lessons (invariant programming and symbolic programming)
l  We will continue to harness the power of functions in the rest of the course

(higher-order programming, data abstraction, concurrent programming)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Recursion
and loops
l  In the previous lesson we saw SumDigitsR:

fun {SumDigitsR N}

 if (N==0) then 0
 else (N mod 10) + {SumDigitsR (N div 10)} end

end

l  The recursive call and the condition together act like a
loop: a calculation that is repeated to achieve a result
l  Each execution of the function body is one iteration of the loop

l  Recursion can be used to make a loop
l  In this lesson we will go to the root of this intuition

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Invariant
programming
l  A loop is a part of a program that is repeated until a

condition is satisfied
l  Loops are an important technique in all paradigms
l  Loops are a special case of recursion, called tail recursion, where

the recursive call is the last operation done in the function body

l  We will give a general technique, invariant programming,
to program correct and efficient loops
l  Loops are often very difficult to get exactly right, and invariant

programming is an excellent way to achieve this
l  This applies to both declarative and imperative paradigms

l  New concepts introduced in this lesson
l  Specification, accumulator, principle of communicating vases

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Principle of
communicating vases
  We invent a formula that splits the work into two parts:

  n! = i! * a
  We start with i=n and a=1
  We decrease i and increase a, keeping the formula true
  When i=0 then a is the result
  Here’s an example when n=4:

  4! = 4! * 1
  4! = 3! * 4
  4! = 2! * 12
  4! = 1! * 24
  4! = 0! * 24

i a

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

admin
Note
Emacs

Sum of digits using
invariant programming
l  Each recursive call handles one digit
l  So we divide the initial number n into its digits:

l  n = (dk-1dk-2···d2d1d0) (where di is a digit)

l  Let’s call the sum of digits function s(n)
l  Then we can split the work in two parts:

l  s(n) = s(dk-1dk-2··· di) + (di-1 + di-2 + ··· + d0)

l  si is the work still to do and a is the work already done
l  To keep the formula true, we set i’ = i+1 and a’ = a+di
l  When i=k then sk=s(0)=0 and therefore a is the answer

a si

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

admin
Note
Emacs

Example execution

l  Example with n=314159:

s(n) = s(dk-1dk-2··· di) + (di-1 + di-2 + ··· + d0)

l  s(314159) = s(314159) + 0
l  s(314159) = s(31415) + 9
l  s(314159) = s(3141) + 14
l  s(314159) = s(314) + 15
l  s(314159) = s(31) + 19
l  s(314159) = s(3) + 20
l  s(314159) = s(0) + 23 = 0 + 23 = 23

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Final program
l  S = (dk-1dk-2··· di)

A = (di-1 + di-2 + ··· + d0)

fun {SumDigits2 S A}

 if S==0 then A
 else
 {SumDigits2 (S div 10) A+(S mod 10)}
 end

end

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

What can we learn
from these examples?
l  We have now seen two examples of recursive functions

l  Factorial
l  Sum of digits

l  For each example we have seen two versions
l  A version based on a simple mathematical definition
l  A version designed with invariant programming

l  The second version has two interesting properties
l  It has two arguments; one of the two is an accumulator
l  The recursive call is the last operation in the function body

(tail recursion)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The importance
of tail recursion
l  Let us now take a closer look at why tail

recursion is important
l  We will do a detailed comparison of the

execution of Fact1 and Fact2
l  (This comparison is a first step toward the semantics

given in lesson 6)
l  We will see why Fact2 (with tail recursion) is

more efficient than Fact1 (no tail recursion)
l  Fact1 is based on a simple mathematical definition
l  Fact2 is designed with invariant programming

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Comparing
Fact1 and Fact2
l  Tail recursion is when the recursive call is the last

operation in the function body
l  N * {Fact1 N-1} % No tail recursion

After Fact1 is done, we must come back for the multiply.
Where is the multiplication stored? On a stack!

l  {Fact2 I-1 I*A} % Tail recursion
The recursive call does not come back!
All calculations are done before Fact2 is called.
No stack is needed (memory usage is constant).

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Stack explosion
in Fact1
l  10 * {Fact1 10-1} ⇒

10 * (9 * {Fact 9-1}) ⇒
10 * (9 * (8 * {Fact 8-1})) ⇒
...
10 * (9 * (8 * (7 * (6 * (5 * (...(1 * {Fact 0})...) ⇒
10 * (9 * (8 * (7 * (6 * (5 * (...(1 * 1)...) ⇒
...
3628800

l  {Fact2 10-1 10*1} ⇒
{Fact2 9-1 9*10} ⇒
{Fact2 8-1 8*90} ⇒
...
{Fact2 1-1 1*3628800}

Each line does one
computation step

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Comparing functional
and imperative loops
l  A while loop in the functional paradigm:

 fun {While S}
 if {IsDone S} then S
 else {While {Transform S}} end /* tail recursion */
 end

l  A while loop in the imperative paradigm:
(in languages with multiple assignment like Java and C++)

 state whileLoop(state s) {
 while (!isDone(s))
 s=transform(s); /* assignment */
 return s;
 }

l  In both cases, invariant programming is an important design tool

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Summary and
a bigger example
l  We summarize this lesson in a few sentences

l  A recursive function is equivalent to a loop if it is tail recursive
l  To write functions in this way, we need to find an accumulator
l  We find the accumulator starting from an invariant using the

principle of communicating vases
l  This is called invariant programming and it is the only reasonable

way to program loops
l  Invariant programming is useful in all programming paradigms

l  Now let’s tackle a bigger example!

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

A bigger example:
calculating XN
l  Let’s use invariant programming to define

a function {Pow X N} that calculates XN (N≥0)
l  Let’s start with a naive definition of xn:

 x0 = 1
 xn = x * xn-1 when n>0

l  This gives a first program for {Pow X N} :
 fun {Pow1 X N}
 if N==0 then 1
 else X*{Pow1 X N-1} end
 end

l  This function is highly inefficient in both time
and space! Why? (there are two reasons)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

admin
Note
Emacs

Using a better
definition of XN
l  Here is another definition of xn:

 x0 = 1
 xn = x * xn-1 when n>0 and n is odd

 xn = y2 when n>0 and n is even and y=xn/2
l  This definition uses many fewer multiplications

than the naive definition
l  And just like with the naive definition, we can use

this definition to write a program
l  Both definitions are also specifications

l  They are purely mathematical (no program code)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

admin
Note
Emacs

Second program
for XN
fun {Pow2 X N}

 if N==0 then 1
 elseif N mod 2 == 1 then
 X*{Pow2 X (N-1)}
 else Y in
 Y={Pow2 X (N div 2)}
 Y*Y
 end

end

This definition is better
than the first, but it is
still not tail recursive!

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Calculating XN with
invariant programming
l  We can do better than Pow2

l  We can write a tail-recursive program: a true loop

l  We need an invariant
l  The invariant is the key to a good program
l  One part of the invariant will accumulate the result

and another part of the invariant will disappear
l  What can we accumulate?

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Reasoning on
the invariant
l  Here is an invariant: (x and n constant; y, i, and a vary)

 xn = yi * a
l  We represent this invariant compactly as a triple:

 (y,i,a)
l  Initially: (y,i,a) = (x,n,1)
l  Let us decrease i while keeping the invariant true
l  There are two ways to decrease i :

l  (y,i,a) ⇒(y*y,i/2,a) (when i is even)
l  (y,i,a) ⇒(y,i-1,y*a) (when i is odd)

l  When i=0 then the answer is a

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

admin
Note
Emacs

Third program
for XN
fun {Pow3 X N}

 fun {PowLoop Y I A}
 if I==0 then A
 elseif I mod 2 == 0 then
 {PowLoop Y*Y (I div 2) A}
 else {PowLoop Y (I-1) Y*A} end
 end

in
 {PowLoop X N 1}

end

This program is a true loop
(it is tail-recursive) and it

uses very few multiplications

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Invariants
and goals
l  Changing one part of the invariant forces the rest to

change as well, because the invariant must remain true
l  The invariant’s truth drives the program forward

l  Programming a loop means finding a good invariant
l  Once a good invariant is found, coding is easy
l  Learn to think in terms of invariants!

l  Using invariants is a form of goal-oriented programming
l  We will see another example of goal-oriented programming

when we program with trees in lesson 5

Many
important ideas

l  Identifiers and environments
l  Functional programming
l  Recursion
l  Invariant programming
l  Lists, trees, and records
l  Symbolic programming
l  Instantiation
l  Genericity
l  Higher-order programming
l  Complexity and Big-O notation
l  Moore’s Law
l  NP and NP-complete problems
l  Kernel languages
l  Abstract machines
l  Mathematical semantics

l  Explicit state
l  Data abstraction
l  Abstract data types and objects
l  Polymorphism
l  Inheritance
l  Multiple inheritance
l  Object-oriented programming
l  Exception handling
l  Concurrency
l  Nondeterminism
l  Scheduling and fairness
l  Dataflow synchronization
l  Deterministic dataflow
l  Agents and streams
l  Multi-agent programming

Louv1.1x Louv1.2x

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

A.HARICHE a.hariche@univ-dbkm.dz

1

MI-GLSD-M1 -UEM213 :

Programming paradigms

Chapter 3: Functional paradigm

Advanced concepts

A. HARICHE

University of Djilali Bounaama, Khemis Meliana (UDBKM)

Faculty of sciences & technology

Mathematics & computer sciences department

a.hariche@univ-dbkm.dz

admin
Rectangle

admin
Typewriter
III:

Definition
of a list
l  A list is a recursive data type: we define it in terms

of itself
l  Recursion is used both for computations and data!
l  We need to know this when we write functions on lists

l  A list is either an empty list or a pair of an element
followed by another list
l  This definition is recursive because it defines lists in terms

of lists. There is no infinite regress because the definition
is used constructively to build larger lists from smaller lists.

l  Let’s introduce a formal notation

admin
Note
Emacs

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Syntax definition
of a list
l  Using an EBNF grammar rule we write:

<List T> ::= nil | T ‘|’ <List T>

l  This defines the textual representation of a list
l  EBNF = Extended Backus-Naur Form

l  Invented by John Backus and Peter Naur
l  <List T> represents a list of elements of type T
l  T represents one element of type T

l  Be careful to distinguish between | and ‘|’ : the first is
part of the grammar notation (it means “or”), and the
second is part of the syntax being defined

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Some examples
of lists
l  According to the definition (if T is integers):

nil
10 | nil
10 | 11 | nil
10 | 11 | 12 | nil

l  What about the bracket notation we saw before?
l  It is not part of the recursive definition of lists; it is an

extra called syntactic sugar

admin
Note
Emacs

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Type notation

l  <Int> represents an integer; more precisely, it is the
set of all syntactic representations of integers

l  <List <Int>> represents the set of all syntactic
representations of lists of integers

l  T represents the set of all syntactic representations
of values of type T; we say that T is a type variable
l  Do not confuse a type variable with an identifier or a

variable in memory! Type variables exist only in grammar
rules.

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Don’t confuse a thing
and its representation

l  This is not a pipe.
It is a digital display of a
photograph of a painting of a
pipe (thanks to Belgian
surrealist René Magritte for
pointing this out!).

l  This is not an integer.

It is a digital display of a
visual representation of an
integer using numeric
symbols in base 10.

1234

René Magritte, La trahison des images, 1928-29, oil,
Los Angeles County Museum of Art, Los Angeles.

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Representations
for lists
l  The EBNF rule gives one textual representation

l  <List <Int>> ⇒
10 | <List <Int>> ⇒
10 | 11 | <List <Int>> ⇒
10 | 11 | 12 | <List <Int>> ⇒
10 | 11 | 12 | nil

l  Oz allows another textual representation
l  Bracket notation: [10 11 12]
l  In memory, [10 11 12] is identical to 10 | 11 | 12 | nil
l  Different textual representations of the same thing are

called syntactic sugar

We repeatedly replace the
left-hand side of the rule
by a possible value, until
no more can be replaced

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Graphical representation
of a list

l  Graphical representations are
very useful for reasoning
l  Humans have very powerful visual

reasoning abilities

l  We start from the leftmost
pair, namely 10 | <List <Int>>
l  We draw three nodes with arrows

between them
l  We then replace the node

<List <Int>> as before

l  This is an example of a more
general structure called a tree

‘|’

10 ‘|’

11 ‘|’

12 nil

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Trees and binary trees

l  A tree is either a leaf node (which is an empty tree) or a
root node with arrows to a set of trees (called subtrees)

l  A binary tree is a tree where all root nodes have exactly
two subtrees (usually called left and right)

r

rL rR

l1 l2 l3 l4

admin
Note
Emacs

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Pattern matching

l  case L of H|T then ... else ... end

‘|’

10 ‘|’

11 ‘|’

12 nil

‘|’

H T

List L Pattern H|T

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Pattern matching

l  case L of H|T then ... else ... end
l  H=10, T=11|12|nil

‘|’

10 ‘|’

11 ‘|’

12 nil

‘|’

H T

List L Pattern H|T

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Functions that
create lists
l  Let us now define a function that outputs a list

l  We will use both pattern matching and recursion,
as before, but this time the output will also be a list

l  We will define the Append function

l  The simple Append function is tail recursive
l  We will see this by translating Append into the

kernel language of the functional paradigm
l  This translation shows that the recursive call is last
l  This works because of single assignment: we create

the output list before doing the recursive call

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The kernel
language
l  As we mentioned in lesson 1, the kernel language is

the simple core language of a programming paradigm
l  We have now seen enough concepts to introduce the

kernel language of the functional paradigm

l  All programs in the functional paradigm can be translated
into the kernel language
l  All intermediate results of calculations are visible with identifiers
l  All functions become procedures with one extra argument
l  Nested function calls are unnested by introducing new identifiers

l  The kernel language is the first part of the formal semantics
of a programming language
l  The second part is the abstract machine seen in lesson 6

Kernel
principle

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Kernel language of the
functional paradigm
l  <s> ::= skip

 | <s>1 <s>2
 | local <x> in <s> end
 | <x>1=<x>2
 | <x>=<v>
 | if <x> then <s>1 else <s>2 end
 | proc {<x> <x>1 … <x>n} <s> end
 | {<x> <y>1 … <y>n}
 | case <x> of <p> then <s>1 else <s>2 end

l  <v> ::= <number> | <list> | ...
l  <number> ::= <int> | <float>
l  <list>, <p> ::= nil | <x> | <x> ‘|’ <list>

Almost complete!

We will see the full kernel
language in lesson 4

admin
Note
Emacs

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Higher-order
programming
and records
l  This lesson gives the final two concepts we need to complete

the functional paradigm and its kernel language
l  Higher-order programming
l  Record data structures

l  Higher-order programming is the ability to use functions
(and procedures) as first-class entities in the language
l  As inputs and outputs of other functions
l  This is an enormously powerful ability that lies at the foundation

of data abstraction (including object-oriented programming)
l  Record data structures are a general compound data type that

allows symbolic indexing
l  This is useful both for symbolic programming and for data abstraction

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Higher-order
programming

l  Higher-order programming is based on
two concepts
l  Contextual environment
l  Procedure value

l  We introduce the contextual environment
by means of a small exercise on static scope
l  This exercise shows naturally the need for the

contextual environment

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

An exercise
on static scope

local P Q in
 proc {P} {Browse 100} end
 proc {Q} {P} end
 local P in
 proc {P} {Browse 200} end
 {Q}
 end
end

What does this program display?

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

What is the
scope of P?

local P Q in
 proc {P} {Browse 100} end
 proc {Q} {P} end
 local P in
 proc {P} {Browse 200} end
 {Q}
 end
end

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

What is the
scope of P?

local P Q in
 proc {P} {Browse 100} end
 proc {Q} {P} end
 local P in
 proc {P} {Browse 200} end
 {Q}
 end
end

Scope of P

The P definition
inside the scope

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Contextual
environment of Q

local P Q in
 proc {P} {Browse 100} end
 proc {Q} {P} end
 local P in
 proc {P} {Browse 200} end
 {Q}
 end
end

Scope of P

All the violet P’s refer
to the same variable

Procedure Q must know the
definition of P ⇒ it stores this
in its contextual environment

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Contextual
environment
l  The contextual environment of a function (or procedure)

contains all the identifiers that are used inside the
function but declared outside of the function

declare
A=1
proc {Inc X Y} Y=X+A end

l  The contextual environment of Inc is Ec = {A→a}
l  Where a is a variable in memory: a=1

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Procedure
value
l  Procedure declarations look like statements:

 proc {Inc X Y} Y=X+A end

l  But this is syntactic sugar! What really happens is that
the identifier Inc refers to a variable that is bound to a
procedure value:

 Inc=proc {$ X Y} Y=X+A end

l  The $ symbol is a placeholder to show that the procedure definition

has no identifier. Instead of just removing the identifier, we replace
it by a new symbol that cannot be confused with an identifier.

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

How procedures
are stored in memory

Program Memory

local A Inc in
 A=1
 proc {Inc X Y}
 Y=X+A
 end
end

Program
(kernel language)

local A in local Inc in
 A=1
 Inc=proc {$ X Y}
 Y=X+A
 end
end end

a=1

inc=(proc {$ X Y} Y=X+A end, {A→a})

E = {A→a,Inc→inc}

EC

procedure value
E

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Procedure
values
l  A procedure value is stored in memory as a pair:

l  The variable inc is bound to the procedure value
l  Terminology: a procedure value is also called a

closure or a lexically scoped closure

inc = (proc {$ X Y} Y=X+A end, {A→a})

Procedure code Contextual environment

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Higher-order
programming
l  Defining a procedure as a procedure value with a

contextual environment is enormously expressive
l  It is arguably the most important invention in programming

languages: it makes possible building large systems based
on data abstraction

l  Since procedures (and functions) are values, we can
pass them as inputs to other functions and return them
as outputs
l  Remember that in our kernel language, we consider functions

and procedures to be the same concept: a function is a
procedure with an extra output argument

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Order of a
function
l  We define the order of a function (or procedure)

l  A function whose inputs and output are not functions
is first order

l  A function is order N+1 if its inputs and output contain
a function of maximum order N

l  Let’s give some examples to show what we can
do with higher-order functions (where the order
is greater than 1)
l  We will give more examples later in the course

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Genericity
l  Genericity is when a function is passed as an input

declare
fun {Map F L}
 case L of nil then nil
 [] H|T then {F H}|{Map F T}
 end
end

{Browse {Map fun {$ X} X*X end [7 8 9]}}

What is the order of Map in this call?

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Instantiation
l  Instantiation is when a function is returned

as an output

declare
fun {MakeAdd A}
 fun {$ X} X+A end
end
Add5={MakeAdd 5}

{Browse {Add5 100}}

What is the order of MakeAdd?

What is the contextual environment
of the function returned by MakeAdd?

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Function
composition
l  We take two functions as input and return

their composition

declare
fun {Compose F G}
 fun {$ X} {F {G X}} end
end
Fnew={Compose fun {$ X} X*X end
 fun {$ X} X+1 end}

l  What does {Fnew 2} return?
l  What does {{Compose Fnew Fnew} 2} return?

What is the contextual environment of
the function returned by Compose?

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Abstracting an
accumulator
l  We can use higher-order programming to do a

computation that hides an accumulator
l  Let’s say we want to sum the elements of a list

L=[a0 a1 a2 … an-1]:
l  S = a0 + a1 + a2 + … + an-1
l  S = (…(((0 + a0) + a1) + a2) + … + an-1)

l  We can write this generically with a function F:
l  S = {F … {F {F {F 0 a0} a1} a2} … an-1}

l  Now we can define the higher-order function FoldL:
l  S = {FoldL [a0 a1 a2 … an-1] F 0}
l  The accumulator is hidden inside FoldL!

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Definition
of FoldL
l  Here is the definition of FoldL:

declare
fun {FoldL L F U}
 case L
 of nil then U
 [] H|T then {FoldL T F {F U H}}
 end
end
S={FoldL [5 6 7] fun {$ X Y} X+Y end 0}

The argument U is an accumulator

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Encapsulation
l  We can hide a value inside a function:

declare
fun {Zero} 0 end
fun {Inc H}
N={H}+1 in
 fun {$} N end
end
Three={Inc {Inc {Inc Zero}}}
{Browse {Three}}

l  This is the foundation of encapsulation as used in data abstraction
l  What is the difference if we write Inc as follows:

 fun {Inc H} fun {$} {H}+1 end end

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Delayed
execution
l  We can define an statement and pass it to a function

which decides whether or not to execute it

proc {IfTrue Cond Stmt}
 if {Cond} then {Stmt} end
end
Stmt = proc {$} {Browse 111*111} end
{IfTrue fun {$} 1<2 end Stmt}

l  This can be used to build control structures from scratch
(if statement, while loop, for loop, etc.)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Summary of
higher-order
l  We have given six examples to illustrate

the expressiveness of higher-order programming:
l  Genericity
l  Instantiation
l  Function composition
l  Abstracting an accumulator
l  Encapsulation
l  Delayed execution

l  We will use these techniques and others when we
introduce the concepts of data abstraction
l  Data abstraction is built on top of higher-order programming!

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Atoms and
records
l  A record is a general compound data type

l  Records are used to build many other compound data types
l  To explain records, we first introduce the atom data type

l  An atom is a symbolic value
l  A sequence of lowercase letters and digits that starts with a letter
l  Also, a sequence of any characters delimited by single quotes
l  Example of a list containing five atoms:

 declare
 L=[john paul george ringo ‘1337 5|*34|<‘]
 {Browse L.1}
 {Browse L.2.1}
 {Browse {Length L}}

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Records
l  A record groups a set of values into a single compound value

l  A record has a fixed number of values that can be accessed directly

l  Each record has a label and a set of pairs of field names and fields
l  The label is an atom, the field names are atoms or integers, and the

fields can be any value
l  The field names and fields are separated by a colon ‘:’
l  The position of a field in the record is not important; the records

point(x:10 y:20) and point(y:20 x:10) are identical
l  All field names must be different; the syntax box(in:deadcat in:livecat)

is illegal while box(in:cat alive:X) is legal
l  Example record with five fields:

declare
R=rectangle(bottom:10 left:20 top:100 right:200 color:red)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Operations
on records
l  We only give the basic operations; many other operations exist

in the Record module
l  The following examples use this record:

R=rectangle(bottom:10 left:20 top:100 right:200)
l  Record fields are accessed through the dot operation

l  {Browse (R.top-R.bottom)*(R.right-R.left)}
l  The label and fields can be extracted directly

l  {Label R} returns rectangle (the value of the label)
l  {Width R} returns 4 (the number of fields)
l  {Arity R} returns [bottom left right top] (list of field names alphabetically)

l  Records can be used in comparisons and pattern matching
l  {Browse R==rectangle(top:100 bottom:10 left:20 right:200)} displays true
l  case R of rectangle(bottom:A top:B left:C right:D) matches with A=10,

B=100, C=20, D=200

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Records are the
only compound type

l  Records are the only compound type in the kernel language
l  An atom is a record whose width is 0
l  A tuple is a record whose field names are successive integers

starting with 1
l  If the numbering condition is not satisfied, the data item is not a tuple

but it is still a record
l  Fields without numbers are automatically numbered starting with 1:

pair(H T) is syntactic sugar for pair(1:H 2:T)
l  A list is a recursive data type built with records nil and H|T

l  Syntactic sugar: H|T same as ‘|’(H T) same as ‘|’(1:H 2:T)

l  This keeps the kernel language simple
l  A single compound data type suffices to understand execution
l  All other types (lists, trees, and so on) are encoded with records

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Some examples
l  Given the following records:

are they tuples or lists?
l  A=a(1:a 2:b 3:c)
l  B=a(1:a 2:b 4:c)
l  C=a(0:a 1:b 2:c)
l  D=a(1:a 2:b 3:c d)
l  E=a(a 2:b 3:c 4:d)
l  F=a(2:b 3:c 4:d a)
l  G=a(1:a 2:b 3:c foo:d)
l  H=‘|’(1:a 2:’|’(1:b 2:nil))
l  I=‘|’(1:a 2:’|’(1:b 3:nil))

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The functional
kernel language
l  Now we have seen all the concepts in the functional

paradigm that we will use
l  We can define its full kernel language

l  We will use this kernel language to understand exactly
what a functional program does
l  We have used it to see why list functions are tail-recursive
l  We will use it as part of the formal semantics (in lesson 6)

l  Each time we introduce a new paradigm in the course
we will define its kernel language
l  Each extends the functional kernel language with a new concept

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The functional kernel
language (in part)
l  <s> ::= skip

 | <s>1 <s>2
 | local <x> in <s> end
 | <x>1=<x>2
 | <x>=<v>
 | if <x> then <s>1 else <s>2 end
 | proc {<x> <x>1 … <x>n} <s> end
 | {<x> <y>1 … <y>n}
 | case <x> of <p> then <s>1 else <s>2 end

l  <v> ::= <number> | <list> | ...
l  <number> ::= <int> | <float>
l  <list>, <p> ::= nil | <x> | <x> ‘|’ <list>

This is what we have seen so far

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The functional kernel
language (in part)
l  <s> ::= skip

 | <s>1 <s>2
 | local <x> in <s> end
 | <x>1=<x>2
 | <x>=<v>
 | if <x> then <s>1 else <s>2 end
 | proc {<x> <x>1 … <x>n} <s> end
 | {<x> <y>1 … <y>n}
 | case <x> of <p> then <s>1 else <s>2 end

l  <v> ::= <number> | <list> | ...
l  <number> ::= <int> | <float>
l  <list>, <p> ::= nil | <x> | <x> ‘|’ <list>

2. Compound types (should be more than lists only)

This is what we have seen so far;
it needs two changes to become

the full kernel language of the
functional paradigm

1. Procedure
declarations

(should be values)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The functional kernel
language (in part)
l  <s> ::= skip

 | <s>1 <s>2
 | local <x> in <s> end
 | <x>1=<x>2
 | <x>=<v>
 | if <x> then <s>1 else <s>2 end
 | proc {<x> <x>1 … <x>n} <s> end
 | {<x> <y>1 … <y>n}
 | case <x> of <p> then <s>1 else <s>2 end

l  <v> ::= <number> | <procedure> | <list> | ...
l  <number> ::= <int> | <float>
l  <procedure> ::= proc {$ <x>1 … <x>n} <s> end
l  <list>, <p> ::= nil | <x> | <x> ‘|’ <list>

1. Procedures are
values in memory

(like numbers and lists)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The functional kernel
language (complete)
l  <s> ::= skip

 | <s>1 <s>2
 | local <x> in <s> end
 | <x>1=<x>2
 | <x>=<v>
 | if <x> then <s>1 else <s>2 end
 | {<x> <y>1 … <y>n}
 | case <x> of <p> then <s>1 else <s>2 end

l  <v> ::= <number> | <procedure> | <list> | <record>
l  <number> ::= <int> | <float>
l  <procedure> ::= proc {$ <x>1 … <x>n} <s> end
l  <record>, <p> ::= <lit> | <lit>(<f>1:<x>1 … <f>n:<x>n)

2. Records subsume lists

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The functional kernel
language (complete)
l  <s> ::= skip

 | <s>1 <s>2
 | local <x> in <s> end
 | <x>1=<x>2
 | <x>=<v>
 | if <x> then <s>1 else <s>2 end
 | {<x> <y>1 … <y>n}
 | case <x> of <p> then <s>1 else <s>2 end

l  <v> ::= <number> | <procedure> | <record>
l  <number> ::= <int> | <float>
l  <procedure> ::= proc {$ <x>1 … <x>n} <s> end
l  <record>, <p> ::= <lit> | <lit>(<f>1:<x>1 … <f>n:<x>n)

Procedure values and records
are important basic types. They
allow, for example, to define all
the concepts of object-oriented
programming.

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Kernel language of the
functional paradigm
l  <s> ::= skip

 | <s>1 <s>2
 | local <x> in <s> end
 | <x>1=<x>2
 | <x>=<v>
 | if <x> then <s>1 else <s>2 end
 | {<x> <y>1 … <y>n}
 | case <x> of <p> then <s>1 else <s>2 end

l  <v> ::= <number> | <procedure> | <record>
l  <number> ::= <int> | <float>
l  <procedure> ::= proc {$ <x>1 … <x>n} <s> end
l  <record>, <p> ::= <lit> | <lit>(<f>1:<x>1 … <f>n:<x>n)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Three ways
to understand
languages

Practical
programming

language

Kernel
language

Foundational
calculus

Virtual
machine

Aid the programmer
in reasoning and

understanding
Mathematical study

of programming
Efficient execution
on a real machine

All the kernel
languages

of this course
λ calculus,
π calculus

Java Virtual
Machine (JVM)

Approach

Motivation

Examples

translation

This course

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Trees
l  Trees are the second most important data structure in

computing, next to lists
l  Trees are extremely useful for efficiently organizing information

and performing many kinds of calculations

l  Trees illustrate well goal-oriented programming
l  Many tree data structures are based on a global property, that

must be maintained during the calculation

l  In this lesson we will define trees and use them to store
and look up information
l  We will define ordered binary trees and algorithms to add

information, look up information, and remove information

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Trees

l  A tree is a recursive structure: it is either an empty
tree (called a leaf) or an element and a set of trees

<tree T> ::= leaf | t(T <tree T> ... <tree T>)

root node

subtrees

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Example tree
l  declare

T=t(100 t(10 leaf leaf leaf) t(20 leaf leaf leaf) leaf)

100

10 20

leaf leaf leaf leaf leaf leaf

leaf

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Trees compared
to lists

l  A tree is a recursive structure: it is either an empty
tree (called a leaf) or an element and a set of trees

<tree T> ::= leaf | t(T <tree T> ... <tree T>)

<list T> ::= nil | ‘|’(T <list T>)

l Notice the
similarity with lists!

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Ordered binary tree
l  <obtree T> ::= leaf

 | tree(key:T value:T left:<obtree T> right:<obtree T>)

l  Binary: each non-leaf tree has two subtrees (named left and right)
l  Ordered: for each tree (including all subtrees):

 all keys in the left subtree < key of the root
 key of the root < all keys in the right subtree

key:3 value:4

key:1 value:9 key:5 value:2

leaf leaf leaf leaf

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Ordered binary tree
l  <obtree T> ::= leaf

 | tree(key:T value:T left:<obtree T> right:<obtree T>)

l  Binary: each non-leaf tree has two subtrees (named left and right)
l  Ordered: for each tree (including all subtrees):

 all keys in the left subtree < key of the root
 key of the root < all keys in the right subtree

key:3 value:4

key:1 value:9 key:5 value:2

leaf leaf leaf leaf

l This tree has two
information fields

at each node:
key and value

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Ordered binary tree

key:horse
value:cheval

key:dog
value:chien

key:mouse
value:souris

key:cat
value:chat

key:elephant
value:éléphant

key:monkey
value:singe

key:tiger
value:tigre

l  This ordered binary tree is a translation dictionary
from English to French

leaf leaf leaf leaf leaf leaf leaf leaf

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Ordered binary tree

key:horse
value:cheval

key:dog
value:chien

key:mouse
value:souris

key:cat
value:chat

key:elephant
value:éléphant

key:monkey
value:singe

key:tiger
value:tigre

l  This ordered binary tree is a translation dictionary
from English to French

leaf leaf leaf leaf leaf leaf leaf leaf

l horse<monkey
monkey<mouse

<
<

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Search tree

l  Search tree: A tree that is used to organize
information, and with which we can perform various
operations such as looking up, inserting, and
deleting information

l  Let’s define these three operations:
l  {Lookup K T}: returns the value V corresponding to key K
l  {Insert K W T}: returns a new tree containing (K,W)
l  {Delete K T}: returns a new tree that does not contain K

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Inserting a new key/value pair

X

T1 T2

left right

X

T1

left right

tree(key:X value:V left:T1 right:T2) tree(key:X value:V left:T1 right:{Insert K W T2})

new right
subtree

unchanged part

Original tree New tree

Assume K > X

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Efficiency
l  How efficient is the Lookup function?

l  If there are n words in the tree, and each node’s subtrees are
approximately equal in size (we say the tree is balanced), then the
average lookup time is proportional to log n

l  Tree lookup is much more efficient than list lookup: if for 1000 words
the average time is 10, then for 1000000 words this will increase to 20
(instead of being multiplied by 1000!)

l  If the tree is not balanced, say all the right subtrees are very small,
then the time will be much larger
l  In the worst case, the tree will look like a list

l  How can we arrange for the tree to be balanced?
l  There exist algorithms for balancing an unbalanced tree, but if we insert

words randomly, then we can show that the tree will be approximately
balanced, good enough to achieve logarithmic time

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Deleting an element from an
ordered binary tree

A

X

A

?

The problem is to repair the tree after X disappears

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Deleting an element when
one subtree is empty

X X

It’s easy when one of the subtrees is empty:
just replace the tree by the other subtree

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Deleting an element when
both subtrees are not empty

X

The idea is to fill the ”hole” that appears after X is
removed. We can put there the smallest element
in the right subtree, namely Y.

Y

Y
remove X move Y

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

We need a new function:
RemoveSmallest

fun {Delete K T}
 case T
 of leaf then leaf
 [] tree(key:X value:V left:T1 right:T2) andthen K==X then

 case {RemoveSmallest T2}
 of none then T1
 [] triple(Tp Yp Vp) then
 tree(key:Yp value:Vp left:T1 right:Tp)
 end

 [] … end
end

Yp

T1

l  RemoveSmallest takes a tree and returns three values:
l  The new subtree Tp without the smallest element
l  The smallest element’s key Yp
l  The smallest element’s value Vp

l  With these three values we can build the new tree where
Yp is the root and Tp is the new right subtree

Tp

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Recursive definition of
RemoveSmallest

l  RemoveSmallest takes a tree T and returns:
l  The atom none when T is empty
l  The record triple(Tp Xp Vp) when T is not empty

fun {RemoveSmallest T}
 case T
 of leaf then none
 [] tree(key:X value:V left:T1 right:T2) then
 case {RemoveSmallest T1}
 of none then triple(T2 X V)
 [] triple(Tp Xp Vp) then
 triple(tree(key:X value:V left:Tp right:T2) Xp Vp)
 end
 end
end

l To understand
this definition,
draw diagrams

with trees!

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Why do we need
semantics?
l  If you do not understand something, then you do not

master it – it masters you!
l  If you know nothing about how a car works, then a car mechanic

can charge you whatever he wants
l  If you do not understand how government works, then you

cannot vote wisely and the government becomes a tyranny

l  The same holds true for programming
l  To write correct programs and to understand other people’s

programs, you have to understand the language deeply
l  All software developers should have this level of understanding
l  The goal of this lesson is to show you how

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

What is the semantics
of a language?
l  The semantics of a programming language, also called formal

semantics or mathematical semantics, is a completely precise
explanation of how programs execute that can be used to reason
about program design and correctness

l  We will give a semantics for all the paradigms of this course
l  We start by giving the semantics of the functional paradigm

l  We have already seen the first part, namely the kernel language
l  In this lesson we will see the second part, namely the abstract machine

l  Before taking the plunge into the abstract machine, let’s take a step
back and talk about semantics in general

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

How can we define
language semantics?
l  Four general approaches have been invented:

l  Operational semantics: Explains a program in terms of its execution on a
rigorously defined abstract machine

l  Axiomatic semantics: Explains a program as an implication: if certain properties
hold before the execution, then some other properties will hold after the execution

l  Denotational semantics: Explains a program as a function over an abstract
domain, which simplifies certain kinds of mathematical analysis of the program

l  Logical semantics: Explains a program as a logical model of a set of logical
axioms, so program execution is deduction: the result of a program is a true
property derived from the axioms

l  The operational semantics works for all paradigms
(since all programs run on computers!)
l  The other approaches are less general; they work best for some paradigms
l  To reason about correctness, we will complement the operational semantics

with ideas taken from the other approaches

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Operational
semantics
l  The operational semantics has two parts

l  Kernel language: first, translate the program into the kernel language
l  Abstract machine: then, execute the program on the abstract machine

l  We will introduce the operational semantics with an example that
uses it to prove correctness of a program
l  After this introduction, we will define the abstract machine and give an

example of how it executes
l  Then we will define the semantic rules for each instruction of the kernel

language
l  Finally, we will take a special look at procedure definition and call, since

they are very important (higher-order programming and data abstraction)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Introduction to semantics
l  Let’s introduce our semantics by means of an example

l  First, let’s decide what the semantics will be used for in our example:
l  To ensure that the program is correct (this is called verification)
l  To make sure the program is well-designed
l  To explain the program to others
l  To calculate time and memory utilisation
l  To understand how the program manages memory

(in particular, how it does garbage collection)

l  Let’s choose the first goal, namely correctness

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

When is a program correct?
l  “A program is correct when it does what we want it to”
l  How can we be sure?

l  There are two starting points:
l  The program’s specification: a mathematical definition of the

result of the program as a function of the input
l  The language semantics: a precise mathematical model of how

a program executes

l  We need to prove that the program satisfies the
specification, when it executes according to the
semantics

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The three pillars

l  The specification:
what we want

l  The program:
what we have

l  The semantics connects
these two: proving that
what we have executes
according to what we
want

Specification
(mathematics)

Program
(programming language)

Semantics

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Example:
correctness of factorial
l  The specification of {Fact N} (mathematics)

 0! = 1
 n! = n × ((n-1)!) when n>0

l  The program (programming language)
 fun {Fact N}

 if N==0 then 1 else N*{Fact N-1} end
 end

l  The semantics connects the two

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Mathematical induction
l  To make this proof for a recursive function we need to use

mathematical induction
l  A recursive function calculates on a recursive data structure,

which has a base case and a general case
l  We first show the correctness for the base case
l  We then show that if the program is correct for a general case, it

is correct for the next case

l  For integers, the base case is usually 0 or 1, and the general
case n-1 leads to the next case n

l  For lists, the base case is usually nil or a small list, and the
general case T leads to the next case H|T

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The inductive proof
l  We must show that {Fact N} calculates n! for all n≥0

l  Base case: n=0
l  The specification says: 0!=1
l  The execution of {Fact 0}, using the semantics, gives {Fact 0}=1

l  It’s correct!

l  General case: (n-1) → n
l  The specification says: n! = n×(n-1)!
l  The execution of {Fact N}, using the semantics, gives {Fact N} = N*{Fact N-1}

l  We assume that {Fact N-1}=(n-1)!
l  We assume that the language correctly implements multiplication
l  Therefore: {Fact N} = N*{Fact N-1} = n×(n-1)! = n!
l  It’s correct!

l  Now we just need to understand the magic words “using the semantics”!

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

How to execute a program
using the semantics
l  We execute the program using the semantics by following two steps

l  First, we translate the program into kernel language
l  The kernel language is a simple language that has all essential concepts
l  All programs in the practical language can be translated into kernel

language
l  ➞ We translate the definition of Fact into kernel language

l  Second, we execute the translated program on the abstract machine
l  The abstract machine is a simplified computer with a precise mathematical

definition
l  ➞ We execute the call {Fact 0 R} on the abstract machine

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Executing Fact
using the semantics
l  We need to execute both {Fact 0} and {Fact N} using the semantics
l  First we translate the definition of Fact into kernel language:

 proc {Fact N R}
 local B in
 B=(N==0)
 if B then R=1
 else local N1 R1 in
 N1=N-1
 {Fact N1 R1}
 R=N*R1

 end
 end
 end

 end

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Execution of {Fact 0} (1)
l  Let’s first look at the function call {Fact 0}
l  We execute the procedure call {Fact N R} where N=0
l  We need a memory σ and an environment E:

σ = {fact=(proc {$ N R} … end,{Fact→fact }), n=0, r}
E = {Fact→fact, N→n, R→r }

l  Here is what we will execute:

{Fact N R}, E, σ

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Execution of {Fact 0} (2)
l  To execute {Fact N R} we replace it by the procedure body

l  The instruction:

 {Fact N R}, {Fact→fact, N→n, R→r }, σ

is replaced by the instruction:

 local B in
 B=(N==0)
 if B then R=1 else … end
 end, {Fact→fact, N→n, R→r }, σ

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Execution of {Fact 0} (3)
l  To execute the local instruction:

 local B in
 B=(N==0)
 if B then R=1 else … end

 end, {Fact→fact, N→n, R→r }, σ
we do two operations:
l  We extend the memory with a new variable b
l  We extend the environment with {B → b}

l  We then replace the instruction by its body:
 B=(N==0)
 if B then R=1 else … end,

 {Fact→fact, N→n, R→r, B → b}, σ∪{b}

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Execution of {Fact 0} (4)
l  We now do the same for:

 B=(N==0)
and:
 if B then R=1 else … end end

l  This will first bind b=true and then bind r=1
l  This completes the execution of {Fact 0}

l  We have executed {Fact 0} with the semantics and
shown that the result is 1

l  To complete the proof, we still have to show that the
result of {Fact N} is the same as N*{Fact N-1}

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

We have proved the
correctness of Fact
l  Let’s recapitulate the approach
l  Start with the specification and program of Fact

l  We want to prove that the program satisfies the specification
l  Since the function is recursive, our proof uses mathematical induction

l  We need to prove the base case and the general case:
l  Prove that {Fact 0} execution gives 1
l  Prove that {Fact N} execution gives N*{Fact N-1}

l  We prove both cases using the semantics and the Fact program
l  To use the semantics, we first translate Fact into kernel language, and

then we execute on the abstract machine
l  This completes the proof

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

How to execute a program
using the semantics
l  We execute the program using the semantics by

following two steps
l  First, we translate the program into kernel language

l  The kernel language is a simple language that has all essential
concepts

l  All programs in the practical language can be translated into
kernel language

l  Second, we execute the translated program on the
abstract machine
l  The abstract machine is a simplified computer with a precise

mathematical definition
➞ Let’s take a closer look at the abstract machine

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Kernel language
of the functional paradigm
l  <s> ::= skip

 | <s>1 <s>2
 | local <x> in <s> end
 | <x>1=<x>2
 | <x>=<v>
 | if <x> then <s>1 else <s>2 end
 | {<x> <y>1 … <y>n}
 | case <x> of <p> then <s>1 else <s>2 end

l  <v> ::= <number> | <procedure> | <record>
l  <number> ::= <int> | <float>
l  <procedure> ::= proc {$ <x>1 … <x>n} <s> end
l  <record>, <p> ::= <lit> | <lit>(<f>1:<x>1 … <f>n:<x>n)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Abstract machine
concepts
l  Single-assignment memory σ = {x1=10,x2,x3=20}

l  Variables and the values they are bound to
l  Environment E = {X → x, Y → y}

l  Link between identifiers and variables in memory
l  Semantic instruction (<s>,E)

l  An instruction with its environment
l  Semantic stack ST = [(<s>1,E1), …, (<s>n,En)]

l  A stack of semantic instructions
l  Execution state (ST,σ)

l  A pair of a semantic stack and the memory
l  Execution (ST1,σ1) → (ST2,σ2) → (ST3,σ3) → …

l  A sequence of execution states

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Abstract machine
execution algorithm
l  procedure execute(<s>)

begin
 ST:=[(<s>,{})]; /* Initial semantic stack: empty environment */
 σ:={}; /* Initial memory: empty (no variables) */
 while (ST≠{}) do
 pop(ST, SI); /* Pop semantic instruction into SI */
 (ST,σ):=rule(SI, (ST,σ)); /* Execute SI */

 end
end

l  While the semantic stack is nonempty, pop the instruction at the top of the
semantic stack, and execute it according to its semantic rule

l  Each instruction of the kernel language has a rule that defines its execution
in the abstract machine

l  (Note: When we introduce concurrency, we will extend this algorithm to run
with more than one semantic stack)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The example instruction
in kernel language

local X in
 local B in
 B=true
 if B then X=1 else skip end
 end
end

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Start of the execution:
the initial execution state
([(local X in
 local B in
 B=true
 if B then X=1 else skip end
 end
 end, {})],
 {})

l  We start with an empty memory
and an empty environment

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The local X in ... end
instruction
([(local B in

 B=true
 if B then X=1 else skip end

 end,
 {X → x})],
 {x})

l  We create a new variable x in memory
l  We put the inner instruction on the stack and

add X→x to its environment

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The local B in ... end
instruction

([((B=true
 if B then X=1 else skip end),

 {B → b, X → x})],
 {b,x})

l  We create a new variable b in memory
l  We put the inner instruction on the stack and

add B→b to its environment

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The sequential composition
instruction

([(B=true,{B → b, X → x}),
 (if B then X=1

 else skip end,{B → b, X → x})],
 {b,x})

l  We split the sequential composition into its two parts
l  We put the two instructions on the stack
l  The environments stay the same

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The B=true instruction

([(if B then X=1
 else skip end,{B → b, X → x})],
 {b=true, x})

l  We bind b to true in memory

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The conditional instruction

([(X=1,{B → b, X → x})],
 {b=true, x})

l  We read the value of B
l  Since B is true, it puts the instruction after then on the stack
l  If B is false, it will put the instruction after else on the stack
l  If B has any other value, then the conditional raises an error

l  (Note: If B is unbound then the execution of the semantic
stack stops until B becomes bound – this can only happen in
another semantic stack, i.e., with concurrency)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

The X=1 instruction

([],

 {b=true, x=1})

l  We bind x to 1 in memory
l  Execution stops because the stack is empty

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Semantic rules
we have seen

l  This example has shown us the execution of
four instructions:
l  local <x> in <s> end (variable creation)
l  <s>1 <s>2 (sequential composition)
l  if <x> then <s>1 else <s>2 end (conditional)
l  <x>=<v> (assignment)

l  In the next unit we will see the semantic rules
corresponding to these instructions

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Semantic rules for kernel
language instructions
l  For each instruction in the kernel language, we will

define its rule in the abstract machine
l  Each instruction takes one execution state as input

and returns one execution state
l  Execution state = semantic stack + memory

l  Let’s look at three instructions in detail:
l  skip
l  <s>1 <s>2 (sequential composition)
l  local <x> in <s> end

l  We will see the others in less detail. You can learn
about them in the exercises and in the book.

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

skip

l  The simplest instruction
l  It does nothing at all!
l  Input state: ([(skip,E), S2, …, Sn], σ)
l  Output state: ([S2, …, Sn], σ)
l  That’s all

l S2

l Sn

l S2

l Sn

l (skip,E)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

<s>1 <s>2
(sequential composition)

l S2

l Sn

l S2

l Sn

Sa Sb

l  Almost as simple as skip
l  The instruction removes the top of the

stack and adds two new elements
l  Input state: ([(Sa Sb), S2, …, Sn], σ)
l  Output state: ([Sa, Sb, S2, …, Sn], σ)

l Sb

l Sa

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

local <x> in <s> end

l  Create a fresh new variable x in memory σ
l  Add the link {X → x} to the environment E

(using adjunction)

l S2

l Sn

l S2

l Sn

(local <x> in <s> end, E) (<s>,E+{<x> → x})
σ σ ∪ {x}

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Some comments on
the other instructions
l  <x>=<v> (value creation + assignment)

l  Note: when <v> is a procedure, you have to create the
contextual environment

l  if <x> then <s>1 else <s>2 end (conditional)
l  Note: if <x> is unbound, the instruction will wait (“block”)

until <x> is bound to a value
l  The activation condition: “<x> is bound to a value”

l  case <x> of <p> then <s>1 else <s>2 end
l  Note: case statements with more patterns are built by

combining several kernel instructions
l  {<x> <y>1 ... <y>n}

l  Note: since procedure definition and procedure call are the
foundation of data abstraction, we will take a special look!

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Procedure definition
and procedure call

l  Procedure definition and call are very
important instructions, since they are the
foundation of data abstraction
l  Higher-order programming
l  Layered program organization
l  Encapsulation
l  Object-oriented programming
l  Abstract data types

l  This is why we will look at them separately

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Procedure semantics
l  Procedure definition

l  Create the contextual environment
l  Store the procedure value, which contains both

procedure code and contextual environment

l  Procedure call
l  Create a new environment by combining two parts:

§  The procedure’s contextual environment
§  The formal arguments (identifiers in the procedure definition),

which are made to reference the actual argument values
l  Execute the procedure body with this new environment

l  We first give an example execution to show what the
semantic rules have to do

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Procedure example (1)
local Z in
 Z=1
 proc {P X Y} Y=X+Z end
end

l  The free identifiers of the procedure (here, just Z) are
the ones declared outside the procedure

l  When executing P, the identifier Z must be known
l  Z is part of the procedure’s contextual environment,

which must be part of the procedure’s definition

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Procedure example (2)
local P in

 local Z in
 Z=1
 proc {P X Y} Y=X+Z end % CEP = {Z→z}
 end
 local B A in
 A=10
 {P A B} % P’s body Y=X+Z must do b=a+z
 {Browse B} % Therefore: EP = {Y→b, X→a, Z→z}
 end

end

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Semantic rule for
procedure definition
l  Semantic instruction:

(<x>=proc {$ <x>1 … <x>n} <s> end, E)
l  Formal arguments:

 <x>1, …, <x>n
l  Free identifiers in <s>:

 <z>1, …, <z>k
l  Contextual environment:

 CE=E|<z>1, …, <z>k (restriction of E)

l  Create the following binding in memory:
 x=(proc {$ <x>1 … <x>n} <s> end, CE)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Semantic rule for
procedure call (1)
l  Semantic instruction:

 ({〈x〉 〈y〉1 … 〈y〉n}, E)

•  If the activation condition is false (E(〈x〉) unbound)
•  Suspension (wait, do not execute)

•  If E(〈x〉) is not a procedure
•  Raise an error condition

•  If E(〈x〉) is a procedure with the wrong number of
arguments (≠ n)

•  Raise an error condition

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Semantic rule for
procedure call (2)
l  Semantic instruction on stack:

 ({〈x〉 〈y〉1 … 〈y〉n}, E)
 with procedure definition in memory:
 E(〈x〉) = (proc {$ 〈z〉1…〈z〉n} 〈s〉 end, CE)

•  Put the following instruction on the stack:

(〈s〉, CE + {〈z〉1 → E(〈y〉1), …, 〈z〉n → E(〈y〉n)})

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Bringing it
all together
l  Defining the semantics brings many concepts together

l  Concepts we have seen before: identifier, variable, environment,
instruction, procedure value, kernel language

l  New concepts: semantic instruction, semantic stack, memory,
execution state, execution, abstract machine

l  We gave semantic rules for the kernel language
instructions, to show how they execute in the abstract
machine

l  We used the semantics to prove program correctness,
by using it as bridge between specification and program

Specification Program
Semantics

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Discrete
mathematics
l  The abstract machine is built with discrete mathematics
l  For our students at UCL, it is the first time they see a complicated

system built with discrete mathematics!
l  Even engineering students, who are quite used to integrals,

differential equations, and complex analysis, which are all
continuous mathematics

l  Discrete mathematics is important because that’s how computing
systems work (both software and hardware)
l  Surprising behavior and bugs become less surprising if you understand

the discrete mathematics of computing systems
l  Too often, continuous models are used for computing systems
l  All this applies to the real world as well (beyond computing systems)

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Why semantics
is important
l  Semantics is part of programming

l  As a programmer, you are extending the system’s semantics: you are
writing specifications, designing and implementing abstractions (which
we will see soon), and reasoning about your work

l  The design of any complicated system with parts that interact in
interesting ways (like programming languages and programs)
should be done hand in hand with designing a semantics
l  Designing a simple semantics is the only way to avoid unpleasant

surprises and to guarantee a simple mental model
l  You don’t need to understand the semantics to take advantage of it:

its mere existence is enough
l  So users of your system will also reap the benefits of a simple semantics

l  « Semantics is the ultimate programming language »
l  Invariants as the ultimate loop construct
l  Data abstractions as new kernel language instructions

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Using
semantics
l  Semantics has many uses:

l  For design (ensuring the design is simple and predictable)
l  For understanding (the nooks and crannies of programs)
l  For verification (correctness)
l  For debugging (a bug is only a bug with respect to a correct execution)
l  For visualization (a visual representation must be correct)
l  For education (pedagogical uses of semantics)
l  For program analysis and compiler design

l  We don’t need to bring in details of the processor architecture or
compiler in order to understand many things about programs
l  For example, our semantics can be used to understand garbage

collection (explained in the textbook)
l  We will use the semantics when needed in the rest of the course

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Conclusions
for Louv1.1x

l  This is the last lesson of Louv1.1x
l  Only the final exam is left: be careful,

you only have two tries for each question!
l  We have covered a lot of ground!

l  It is worthwhile revisiting some videos in the
previous lessons: you will understand more

l  We have seen these concepts in terms of
functional programming, but they remain valid
for all paradigms

l  Let’s briefly recapitulate what we have seen

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Road map
of Louv1.1x

Basic concepts
Identifier, variable,

environment, scope

Invariant programming
Tail recursion, loops,
communicating vases

Lists
Recursive data, grammar
rules, pattern matching

Higher-order prog.
Contextual environment,

procedure values

Records
Compound data,

atoms, tuples, lists

Full kernel language
 Instructions and values,
procedures and records

Trees
 Ordered binary trees,

search trees, goals

Performance
 Computational complexity,
Moore’s Law, NP problems

Formal semantics
 Kernel language, abstract
machine, semantic rules

1

2 3

4

4

5

6

4

5

Louv1.2x

Operations Data

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Toward Louv1.2x

l  Higher-order programming
l  The foundation of data abstraction and object-

oriented programming
l  Single assignment

l  The foundation of deterministic dataflow
concurrency

l  Kernel language approach
l  The basis of all the paradigms we will see: they

are extensions of the functional kernel language

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

admin
Typewriter
Next Paradigms

Final words

l  We hope you enjoyed this course
l  Despite, or perhaps because of, the

unconventional approach and language
l  We don’t like to follow fashions in programming,

we try to understand things as they are
l  Louv1.2x sees many more concepts and is

every bit as rich and challenging as Louv1.1x
l  We hope you will take the plunge and continue

with Louv1.2x

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

Many
important ideas

l  Identifiers and environments
l  Functional programming
l  Recursion
l  Invariant programming
l  Lists, trees, and records
l  Symbolic programming
l  Instantiation
l  Genericity
l  Higher-order programming
l  Complexity and Big-O notation
l  Moore’s Law
l  NP and NP-complete problems
l  Kernel languages
l  Abstract machines
l  Mathematical semantics

l  Explicit state
l  Data abstraction
l  Abstract data types and objects
l  Polymorphism
l  Inheritance
l  Multiple inheritance
l  Object-oriented programming
l  Exception handling
l  Concurrency
l  Nondeterminism
l  Scheduling and fairness
l  Dataflow synchronization
l  Deterministic dataflow
l  Agents and streams
l  Multi-agent programming

Louv1.1x Louv1.2x

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

admin
Typewriter

PLP_Drive space

A.HARICHE a.hariche@univ-dbkm.dz
49

https://drive.google.com/drive/folders/1YBCIZzAldeiT19DIfDiREQwP-NAQ1qMN

admin
Rectangle

https://drive.google.com/drive/folders/1YBCIZzAldeiT19DIfDiREQwP-NAQ1qMN

