
A.HARICHE a.hariche@univ-dbkm.dz

1

MI-GLSD-M1 -UEM213 :

Programming languages paradigms

Chapter II: imperatif paradigm

A. HARICHE

University of Djilali Bounaama, Khemis Meliana (UDBKM)

Faculty of Sciences & Technology

Mathematics & Computer Science Department

a.hariche@univ-dbkm.dz

Reminder of the last lecture

A.HARICHE a.hariche@univ-dbkm.dz
2

H u n d r e d s of programming
languages are in use...

A.HARICHE a.hariche@univ-dbkm.dz
3

A.HARICHE a.hariche@univ-dbkm.dz
4

Timeline of programming
languages

A.HARICHE a.hariche@univ-dbkm.dz
5

Timeline of programming
languages

It’s the most useful paradigm

why?

A.HARICHE a.hariche@univ-dbkm.dz
6

Advantages flaws

Quite simple to read
Code becomes very large and loses

clarity very quickly

The easiest to learn
Higher risk of errors when editing

codes

Easy-to-understand in term of thought

model for beginners (resolution by

steps)

Re-coding operations block the

development of applications, because

the programming is closely linked to

the system

Allows for the characteristics of

special application cases

More difficulty for optimizations and

extensions

Historical moment

A.HARICHE a.hariche@univ-dbkm.dz
7

• Definable functions with lambda-calculus. (functional

programming)

= Recusive function (functional programming)

= Turing machine (imperative programming)

• Effective calculus idea, formalization of computability

• Turing machine=realistic computer model.

• No Computer is yet build since !!

• Presence of non-computable functions.

Notions you may know

A.HARICHE a.hariche@univ-dbkm.dz
8

• Program

• Variable, type, declaring

• Conditional instruction
- If (…){……} else {…}

• Iterations
- While (…){…}

- Do {…} while(…)

- For (…;….;…){…}

• Sub-program (procedure & function), calls of sub-program .

Data processing

A.HARICHE a.hariche@univ-dbkm.dz
9

Data
receiving

Processing
Transmission

of Result

Generally an application in computing sense means:

Example :

N Values as
numerical

inputs

Sum of N values
and division by

N

Transmission of
the arithmetic

mean

What is a program?

A.HARICHE a.hariche@univ-dbkm.dz
10

• Every processing launched by user for a machine and it is

done by a sequence of operations called instructions i.e. a

sequence of instructions create a program.

Written by a comprehensible programming language (directly

or indirectly) by a computer.

Remember

• A program is a sequence of instructions that makes a computational
system to run a specific task

Data PROGRAM Results

An imperative program

A.HARICHE a.hariche@univ-dbkm.dz
11

Definition (Reminder)

An imperative program is a sequence of
instructions that step-by-step specify actions
to do aiming to get outputs from a set of
inputs.

The foundations

⚫⚫ Imperative languages all have these basic instructions:

⚫⚫ Assigning (or assignment) : is used to store in

memory (in a variable) the result of an operation.

⚫⚫ Condition : executes a block of instructions if a
predetermined condition is met.
⚫⚫ Loop : allows a block of instructions to be repeated a

predefined number of times or until a condition is met.

⚫⚫ Branching: Allows the execution sequence to be

transferred elsewhere in the program (goto).

⚫⚫ Sequence of instructions: refers to the fact of

executing, in sequence, several of the instructions under a

given name (subroutines).

A.HARICHE a.hariche@univ-dbkm.dz
12

An imperative program

Example

A.HARICHE a.hariche@univ-dbkm.dz
13

• Variables are modified by instructions.

• Variables are space memories with lablels.

• Instructions are sequencially organized.

• Machine is programmed by a side effects

(= updating of general state machine (memory; video,…)

Unsigned long int fact(unsigned int n){

Unsigned long int r=1UL;

For(;n>0u;--n)

r*=n;

return r;

}

A space memory

A.HARICHE a.hariche@univ-dbkm.dz
14

• Variables are modified by instructions.

• Variables are space memories with lablels.

• Instructions are sequencially organized.

• Machine is programmed by a side effects

(= updating of general state machine (memory; video,…)

Unsigned long int fact(unsigned int n){

Unsigned long int r=1UL;

For(;n>0u;--n)

r*=n;

return r;

}

A space memory

Another

An imperative program

Example

A.HARICHE a.hariche@univ-dbkm.dz
15

• Variables are modified by instructions.

• Variables are space memories with lablels.

• Instructions are sequencially organized.

• Machine is programmed by a side effects

(= updating of general state machine (memory; video,…)

Unsigned long int fact(unsigned int n){

Unsigned long int r=1UL;

For(;n>0u;--n)

r*=n;

return r;

}

A space memory

Another

r space is sequencially
modified by a loop

An imperative program

Example

A.HARICHE a.hariche@univ-dbkm.dz
16

• A program is composed of instructions working on

data

• Imperative programming data are saved inside

variables.

• Hundred programming languages (C/C++/java…)

insiste of declaring variables

Declarations

An imperative program

Data & instructions

A.HARICHE a.hariche@univ-dbkm.dz
17

Keep in mind

A machine is composed of 4 essential elements:

▪ Memory for saving data .

▪ Calculus unit (logic, arithmetic…)

▪ Command unit that manage all the work

▪ Communication units (keyboard, screen, net-
interfaces,….)

An imperative program

Machine structure

A.HARICHE a.hariche@univ-dbkm.dz
18

An imperative program

The memory

Keep in mind

The capacitors are in-grouped by (typically 8, 16, 32 or 64) called words. a
word can be located in memory thanks to a number called address.

The main memory of a computer is composed of :

▪ Tremendous number of capacitors (1010-1011) could be

powered or unpowered with (0 or 1)

▪ a gigantic network of wires and switches

The operator & returns the address of a variable:

This will show something like :

A.HARICHE a.hariche@univ-dbkm.dz
19

An imperative program

The variable

▪ Goal : save data in central memory during the execution of

a program

▪ Avoid managing directly addresses and manage variables

instead.

▪ Programmer gives variables names with his own choice (

identifiers)

Variables links one or multiple memory cells containing a

sequence of 0 and 1.

Definition -Variable

A variable is a space memory where a program can memorise data.

A.HARICHE a.hariche@univ-dbkm.dz
20

An imperative program

The variable

1.Name

• Identify and refer into a variable

• Make link between the problem and the programming language

2.Location

• Locate by an address inside an entity

• Address created at the moment of variable is created

3.Value

• The content of a cell memory linked into a variable

• The type help to extract and interpret the content

4.Scope

• The extension of program where the variable is known

• Set of locations referring into an existing variable

• A visible variable in its scope is invisible in other-else.

5.Life-time

• Time period where a memory location of a variable still available

6.Type

• An abstraction defines the set of values and all possible operations for a such a variable

A.HARICHE a.hariche@univ-dbkm.dz
21

An imperative program

The variable

Data types

Elementary

Char

Integer

Float

Boolean

Compound

Tables

Record

Set (list)

⚫⚫ A variable can be linked into a physical location during:

- compilation (rarely),

- uploading (static allocation),

- execution (dynamic allocation);

⚫⚫ In implementational view point, the declaration of a

variable is used to determine the amount of memory space
required by the program ;

A.HARICHE a.hariche@univ-dbkm.dz
22

PASCAl: var name : type;

C: Type name;

An imperative program

Declaring a variable

⚫⚫ variable and its value are linked by an assignment:

Example : V:= E:

«assign the name V to the value of the expression E until
the name V is reassigned to another value»

A.HARICHE a.hariche@univ-dbkm.dz
23

PASCAL: V:=E
C: V= E;

⚫⚫ Assignment is not a constant definition:

X:=3;
X:=X+1;

An imperative program

Assignment

A.HARICHE a.hariche@univ-dbkm.dz
24

An imperative program

Conditional

Instructions before;

If(condition){

instructions block;

}

Instructions after;

Remark: Braces are not used

if there’s only one instruction

inside the block; choose the

most readable way to code.

A.HARICHE a.hariche@univ-dbkm.dz
25

before;

If(condition){

if block;

}else{

else block;

}

after;

An imperative program

Conditional

A.HARICHE a.hariche@univ-dbkm.dz
26

Instructions before;

while(condition){

instructions block;

}

Instructions after;

Remark: if condition is false from

the beginning the block will

never be executed.

An imperative program

Iteration(WHILE-Loop)

A.HARICHE a.hariche@univ-dbkm.dz
27

Instructions before;

Do{

instructions block;

}while(condition){

}

Instructions after;

Remark: the block can always

be running once at least.

An imperative program

Iteration(Do-WHILE-Loop)

A.HARICHE a.hariche@univ-dbkm.dz
28

An imperative program

Iteration(For-Loop)

Syntax

For (initialization; condition; incrementation){

Instruction;

}

initialization;

while(condition){

instruction;

incrementation;

}

It’s the most readable version of a while loop:

A.HARICHE a.hariche@univ-dbkm.dz
29

An imperative program

Sub-program

Syntax

Declaring (functional mode):

return_type name(type1 param1,type2 param2 ….)

Defintion:

return_type name(type1 param1,type2 param2 ….){

Declaring locale variables;

Instructions;

…

return return_value;

}

Call (uses-case inside an expression):

… name(type1 param1,type2 param2 ….)…

A.HARICHE a.hariche@univ-dbkm.dz
30

An imperative program

Sub-program –example-

Syntax

A.HARICHE a.hariche@univ-dbkm.dz
31

Keep in mind

Two roles:

▪ Quit the current function;

▪ return a value into the calling program.

An imperative programSub-

program –return command-

▪ In a void only the first one (the return value is null) is used.

▪ The return is implicitly existing always inside a void.

A.HARICHE a.hariche@univ-dbkm.dz
32

Keep in mind

Two roles:

▪ Quit the current function;

▪ return a value into the calling program.

An imperative programSub-

program –return command-

▪ In a void only the first one (the return value is null) is used.

▪ The return is implicitly existing always inside a void.

A.HARICHE a.hariche@univ-dbkm.dz
33

⚫⚫ Exercise: Write using a sub-program 𝑛!

An imperative program

Sub-program –Recursion-

A.HARICHE a.hariche@univ-dbkm.dz
34

⚫⚫ Exercise: Write using a sub-program 𝑛!

An imperative program

Sub-program –Recursion-

⚫⚫ Solution:

⚫⚫ The GOTO command is the most powerful, and the

most critical mainly for two reasons :

⚫⚫ except in specific cases, it is possible to perform the

same action more clearly using control structures

⚫⚫ Using this statement can cause your code to be harder

to read and, in the worst cases, it makes spaghetti code

(problem case on software system of Toyota camry 2005

in 2007).

A.HARICHE a.hariche@univ-dbkm.dz
35

An imperative program

Branching

https://www.usna.edu/AcResearch/_files/documents/NASEC/2016/CYBER%20-%20Toyota%20Unintended%20Acceleration.pdf

⚫⚫ The GOTO command is the most powerful, and the

most critical mainly for two reasons :

⚫⚫ except in specific cases, it is possible to perform the

same action more clearly using control structures

⚫⚫ Using this statement can cause your code to be harder

to read and, in the worst cases, it makes spaghetti code

(problem case on software system of Toyota camry 2005

in 2007).

A.HARICHE a.hariche@univ-dbkm.dz
36

An imperative program

Branching

https://www.usna.edu/AcResearch/_files/documents/NASEC/2016/CYBER%20-%20Toyota%20Unintended%20Acceleration.pdf

⚫⚫ The GOTO command is the most powerful, and the

most critical mainly for two reasons :

⚫⚫ except in specific cases, it is possible to perform the

same action more clearly using control structures

⚫⚫ Using this statement can cause your code to be harder

to read and, in the worst cases, it makes spaghetti code

(problem case on software system of Toyota camry 2005

in 2007).

In fact, it is not recommended to use it.

A.HARICHE a.hariche@univ-dbkm.dz
37

An imperative program

Branching

https://www.usna.edu/AcResearch/_files/documents/NASEC/2016/CYBER%20-%20Toyota%20Unintended%20Acceleration.pdf

⚫⚫ Exercise : Here is a spaghetti code problem

Get a solution using iterations .

A.HARICHE a.hariche@univ-dbkm.dz
38

i = 0;
twenty: i ++;

If (i != 11) { GOTO eighty;}
if(i = 11) { GOTO sixty;}
GOTO twenty;
eighty: printf(" %d”,i ," au carré = %d\n“, i * i);

GOTO twenty;
sixty:printf(" Programme terminé.“);

An imperative program

Branching

⚫⚫ Solution : a for loop can solve the problem.

A.HARICHE a.hariche@univ-dbkm.dz
39

for (i = 1; i <= 10; i++) printf(" %d”,i ," au carré = %d\n“, i * i);
printf(" Programme terminé.“);

An imperative program

Branching

⚫⚫ Some axioms are valid only if the language does not

include synonymy and side effects;

⚫⚫ Language theory works attempt to explain Programming

languages in terms of well-defined constructs;

⚫⚫ This complexity of reasoning was a strong motivation

to provide solutions like functional and logical paradigms.

A.HARICHE a.hariche@univ-dbkm.dz
40

Imperative Paradigm

Difficult reasoning

⚫⚫ It is a command that terminates the execution of a

textually enclosing construct:

A.HARICHE a.hariche@univ-dbkm.dz
41

Imperative Paradigm

Escapement

⚫⚫ Return Exp,
is used in C to exit a function call and return the value

calculated by the function.

⚫⚫ Exit en ADA/ Break en C,
allows program control to be transferred from where the

exit command is located to the first command after the

innermost loop following the exit

⚫⚫ Continue en C,
transfers control to the beginning of the enclosing loop.

⚫⚫ This is an "abnormal" event that occurs during execution

A.HARICHE a.hariche@univ-dbkm.dz
42

Imperative paradigm

Exceptions

Exercise: how to make a program calculating the function 𝑥 in

C to solve the following exception of the function pow() :

The call is equivalent to requesting the result of the

expression−1
1

2, in other words, from this expression:

−1​, which is impossible in the set of reals.

A.HARICHE a.hariche@univ-dbkm.dz
43

Imperative paradigm

Exceptions

Solution: by usingerrno library:

#include <errno.h>
#include <math.h>
#include <stdio.h>

int main(void)
{

errno = 0;
double x = pow(-1, 0.5);

if (errno == 0)
printf("x = %f\n", x);

return 0;
}

Where errno can have the values:

EDOM (for the case where the result of a

mathematical function is impossible),

ERANGE (in case of overflow, we will come

back to this later)

EILSEQ (for conversion errors, we'll talk about

that later as well).

-These two constants are defined in the header

<errno.h>.

⚫⚫ Is used to enable communication between program units

in a way that:

A.HARICHE a.hariche@univ-dbkm.dz
44

Imperative paradigm

Side effects

⚫⚫ The function do an I/O updating (1)

⚫⚫ The global variable is updated (2)

⚫⚫ The local permanent variable is modified (3)

⚫⚫ A pass-by-reference parameter is modified (4)

⚫⚫ A change is made to non-local/static variables via pointers

(5)

⚫⚫ Any called function also satisfies one of these conditions

(6)

Exercise: Investigate the side effects of this program that

contain f1, f2, f3:

A.HARICHE a.hariche@univ-dbkm.dz
45

program demo;
var b : integer;
function f3 : integer;
var x : integer;
begin
x := f1 (x);
x := f2
end;
function f2 : integer;
var x : integer;
begin
x : = 20;
f2 := x
end;

function f1 (var a : integer) : integer;
begin
read (a);
a := f2;
a := f3
end;
begin
write (f1(b));
end.

Imperative paradigm

Side effects

A.HARICHE a.hariche@univ-dbkm.dz
46

Solution: f1 has a side effects since the conditions 1 & 4

are checked.

Imperative paradigm

Side effects

⚫⚫ Two names are aliases if they denote (share) the same

data object during a unit launch.

⚫⚫ Synonymy is another feature of the imperative

programming language that makes programs harder to

understand.

A.HARICHE a.hariche@univ-dbkm.dz
47

Imperative paradigm

Synonymie (Aliasing)

Example 1
procedure confuse (var m, n : Integer);
begin
n := 1; n := m + n
end;
...
i := 5;
confuse(i,i)

m & n are bound to the same variable i, initialized to 5;

after the call the value of i is 2 and not 6.

Example 2

Imperative Paradigm

Briefly

⚫⚫ Imperative programming is based on the Von Neumann machine

model.

⚫⚫ In the imperative paradigm is characterized by programming with

state and commands that modify the state.

⚫⚫ The difficulties associated with imperative paradigms can be

summarized as follows:

⚫⚫ Side effects

⚫⚫ Synonymies (aliasing)

⚫⚫ Exceptions

⚫⚫ The complexity of reasoning stemming from the difficulties of

imperative programming has been a strong motivation to provide

solutions such as functional and logical paradigms.

A.HARICHE a.hariche@univ-dbkm.dz
48

PLP_Drive space

A.HARICHE a.hariche@univ-dbkm.dz
49

https://drive.google.com/drive/folders/1YBCIZzAldeiT19DIfDiREQwP-NAQ1qMN

https://drive.google.com/drive/folders/1YBCIZzAldeiT19DIfDiREQwP-NAQ1qMN

Many
important ideas

l  Identifiers and environments
l  Functional programming
l  Recursion
l  Invariant programming
l  Lists, trees, and records
l  Symbolic programming
l  Instantiation
l  Genericity
l  Higher-order programming
l  Complexity and Big-O notation
l  Moore’s Law
l  NP and NP-complete problems
l  Kernel languages
l  Abstract machines
l  Mathematical semantics

l  Explicit state
l  Data abstraction
l  Abstract data types and objects
l  Polymorphism
l  Inheritance
l  Multiple inheritance
l  Object-oriented programming
l  Exception handling
l  Concurrency
l  Nondeterminism
l  Scheduling and fairness
l  Dataflow synchronization
l  Deterministic dataflow
l  Agents and streams
l  Multi-agent programming

Louv1.1x Louv1.2x

admin
Typewriter
HARICHE A. a.hariche@univ-dbkm.dz

