Université Djilali BOUNAÂMA-Khemis Miliana Faculté des Sciences et de la Technologie Département de Mathématiques et Informatique Niveau : 1ème année LMD Année : 2021 – 2022 Matière : Algèbre 2

Série 2: Applications linéaires

Exercice 1.

Soit l'application $f: \mathbb{R}^4 \to \mathbb{R}^3$ définie pour tout $u = (x, y, z, t) \in \mathbb{R}^4$ par :

$$f(x, y, z, t) = (x + y, z + t, x + y + z + t)$$

- 1. Montrer que f est une application linéaire.
- 2. Déterminer une base de ker(f).
- 3. Déterminer une base de Im(f).

Exercice 2.

Soit $u: \mathbb{R}^3 \to \mathbb{R}^3$ l'application définie par:

$$u(x_1, x_2, x_3) = (-2x_1 + 4x_2 + 4x_3, -x_1 + x_3, -2x_1 + 4x_2 + 4x_3)$$

- 1. Montrer que u est linéaire.
- 2. Déterminer une base de ker(u) et une base de Im(u).
- 3. A-t-on $ker(u) \oplus Im(u) = \mathbb{R}^3$?

Exercice 3.

Soit $\beta = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3

Soit u un endomorphisme de \mathbb{R}^3 défini par :

$$u(e_1) = 2e_1 + e_2 + 3e_3;$$
 $u(e_2) = e_2 - 3e_3;$ $u(e_3) = -2e_2 + 2e_3$

1. Soit $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ un vecteur.

Déterminer l'image par u du vecteur x. (Calculer u(x)).

2. Soient $E = \{x \in \mathbb{R}^3, u(x) = 2x\}$ et $F = \{x \in \mathbb{R}^3, u(x) = -x\}$

Montrer que E et F sont des sous-espaces vectoriels de \mathbb{R}^3 .

- 3. Déterminer une base de E et une base de F.
- 4. Y a-t-il $E \oplus F = \mathbb{R}^3$?

Exercice 4.

Soit (e_1, e_2, e_3) la base canonique de \mathbb{R}^3

Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire telle que :

$$f(e_1) = -\frac{1}{3}e_1 + \frac{2}{3}e_2 + \frac{2}{3}e_3 = \frac{1}{3}(-e_1 + 2e_2 + 2e_3),$$

$$f(e_2) = \frac{2}{3}e_1 - \frac{1}{3}e_2 + \frac{2}{3}e_3 = \frac{1}{3}(2e_1 - e_2 + 2e_3) \text{ et}$$

$$f(e_3) = \frac{2}{3}e_1 + \frac{2}{3}e_2 - \frac{1}{3}e_3 = \frac{1}{3}(2e_1 + 2e_2 - e_3)$$

Soient
$$E_{-1} = \{ u \in \mathbb{R}^3 \mid f(u) = -u \}$$
 et $E_1 = \{ u \in \mathbb{R}^3 \mid f(u) = u \}$.

- 1. Montrer que E_{-1} et E_1 sont des sous-espaces vectoriels de \mathbb{R}^3 .
- 2. Montrer que $e_1 e_2$ et $e_1 e_3$ appartiennent à E_{-1} et que $e_1 + e_2 + e_3$ appartient à E_1 .
- 3. Que peut-on en déduire sur les dimensions de E_{-1} et de E_1 ?
- 4. Déterminer $E_{-1} \cap E_1$.
- 5. A-t-on $E_{-1} \oplus E_1 = \mathbb{R}^3$?
- 6. Calculer $f^2 = f \circ f$ et en déduire que f est bijective et déterminer f^{-1} .

Exercice 5.

Soit $\beta = (e_1, e_2)$ la base canonique de \mathbb{R}^2 . Soit u un endomorphisme de \mathbb{R}^2 tel que $u(e_1) = e_1 + e_2$ et tel que dim(ker(u)) = 1

- 1. Déterminer $u(e_2)$ en fonction d'un paramètre $a \in \mathbb{R}$.
- 2. Déterminer l'image d'un vecteur $x = (x_1, x_2) \in \mathbb{R}$ en fonction de a.
- 3. Déterminer une base du noyau de ker(u).

Exercice 6.

Soit $f: \mathbb{R}^4 \to \mathbb{R}$ l'application définie pour tout $x = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ par

$$f(x) = x_1 + x_2 + x_3 + x_4$$

On appelle $\beta = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4 .

- 1. Calculer les images des vecteurs de la base canonique par f. En déduire la dimension de Im(f).
 - 2. Déterminer la dimension de ker(f) et en donner une base.

Exercice 7.

Soit $f: E \to F$ une application linéaire

Montrer que:

$$ker(f) \cap im(f) = f(ker(f^2)).$$

Exercice 8.

Soit u un endomorphisme de E un espace vectoriel.

- 1. Montrer que $ker(u) \subset ker(u^2)$.
- 2. Montrer que $Im(u^2) \subset Im(u)$.

Exercice 9.

Soit u un endomorphisme de E, un espace vectoriel.

Montrer que les assertions suivantes sont équivalentes

- (i) $ker(u) \cap im(u) = \{0_E\}$.
- (ii) $ker(u) = ker(u \circ u)$.