Localisation des mesures Géoréferencement Projections

« Techniques d'observation et méthodes d'analyse pour la gestion de l'eau dans les bassins versants agricoles méditerranéens » École d'hiver du 2 au 6 mars 2015, INAT (& Univ. Carthage, IRESA), Tunis, Tunisie

Vincent Simonneaux – CESBIO, Toulouse

Notions de base sur les projections cartographiques

Intégration de pointe GPS

Localisation d'observations de lerrain

« Techniques d'observation et méthodes d'analyse pour la gestion de l'eau dans les bassins versants agricoles méditerranéens »

École d'hiver du 2 au 6 mars 2015 - INAT (& Univ. Carthage, IRESA), Tunis, Tunisie

Objectif

La terre est ronde ... mais les cartes sont plates !

1ere étape

Définir la forme de la terre => Notion de système géodésique (3D)

2eme étape

Passer à une représentation plane (2D) => Notion de projection

Modèle de terre

Modèle de localisation

19

Système géodésique + Ellipsoïde = DATUM (« modèle de terre »)

DATUM + Origine + Unités = **Système de coordonnées géographiques** (Geographic Coordinate System (« <u>GCS</u> »))

Exemples

Equatorial

0- 10- 20- 30- 40- 50- 6

Projections Lambert conique

- DATUM MERCHICH (Ellipsoide Clarke 1880)
- Longitude de référence (Central méridien)

 $= -5^{\circ} 24'$ (-5.4 degrés décimaux ou -6 grades)

20

10.

- Latitude de référence
 - $= 33^{\circ} 18^{\circ}$ (33.3 degrés décimaux ou 37 grades)
- Parallèles standard 1 = 31.72787°
- Parallèle standard 2 = 34.87173°
- X0 (false easting) = 500000
- Y0 (false northing) = 300000

Lambert Nord Tunisie

• DATUM CARTHAGE (Ellipsoïde Clarke 1880)

Cône projeté sur le plan

- Longitude de référence (Central méridien) = 9.9°
- Latitude de référence = 36°
- Parallèles standard 1 = 34°25'23" (34.42306)
- Parallèles standard 2 = 37°33'58" (37.56611)
- X0 (false easting) = 500000
- Y0 (false northing) = 300000

Tunisie

UTM Fuseau 32N Meridien de référence (central) = $+9^{\circ}$ (Est) Latitude de référence = 0 DATUM WGS84 / Carthage Facteur d'échelle (scale factor) = 0.9996 Xo (false easting) = 500000 Yo (false northing) = 0

Maroc

UTM Fuseau 29N Meridien de référence (central) = -9° (Ouest) Latitude de référence = 0 DATUM WGS84 / Merchich Facteur d'échelle (scale factor) = 0.9996 Xo (false easting) = 500000 Yo (false northing) = 0

Différence entre Altitude "vraie" et altitude GPS

N = h - H

N = quelques dizaines de mètres (max 100m)

ELLIPSOIDS shift

=> Attention au DATUM de votre GPS

Gestion des projections dans ARCGIS

• Chaque couche d'info (Layer) doit avoir sa projection définie (fichier .prj).

 On choisit la projection commune d'affichage dans un frame (cf. properties), les couches présentes peuvent avoir des projections différentes, ARCGIS gère les transformations "à la volée".

 \Rightarrow l'utilisateur doit seulement :

- définir les projections des couches
- gérer les différences de systèmes géodésiques

Gestion des projections dans ENVI

- Chaque image doit avoir sa projection définie (dans le .hdr)
- Lorsqu'on superpose un shapefile à une image, si il ne reconnait pas la projection il demande de la spécifier.

Projections – exemple ARCGIS

1- Contrôler la projection d'un layer dans ARCGIS

Clic droit (CD) sur Layer / properties / onglet source

L	ayer Prop	erties						
	General S	Source	Selection	n Dis	play 9	Symbology	Fields	Defir
	Extent-		1	op:	19553	1,850933		
	Left: 85	5851,502	2189			Right:	410119	,11183
			E	ottom:	48654	4,582233		
	- Data So Data T Shape Geome Coordii (Unde	ource file: D:\S etry Type nate Sys fined>	apefile Fe Simonnea 2: Point 2: tem:	ature ux\Ec	Class rits_per:	so\formation	1_AV\RA	.K_no\

⇒Passez dans ARCcatalog pour définir la projection

 \Rightarrow vous devez connaitre (deviner ?) cette information, sinon il faut tester

2- Définir la projection du layer avec ARCcatalog

2- Définir la projection du layer avec ARCcatalog

Option Select	
	Browse for Coordinate Systems Image: Coordinate Systems Image: Coordinate Systems Image: Coordinate Systems Image: Coordinate Systems Folder Name Image: Coordinate Systems Folder Projected Coordinate Systems Folder
	Name: Add Show of type: Coordinate Systems Coordinate Systems

Geographic coordinate system

layer non projeté (degrés) => choix de DATUM seulement **Projected Coordinate Systems**

Projection + DATUM

Projections – exemple ARCGIS

2- Définir la projection du layer avec ARCcatalog

Geographic coordinate system

Browse for Coordinate System			Browse for Coordinate System	1	×
Look (n: 🗀 Africa		88	Lookin: 🔄 World	• 🕒 🔹 🚒 🎬	註 Ⅲ 問
Name	Туре	^	Name	Туре	<u>^</u>
Beduaram.prj	Coordinate System		ITRF 1996.prj	Coordinate System	
Bissau.prj	Coordinate System		ITRF 1997.prj	Coordinate System	
🕲 Camacupa.prj	Coordinate System		ITRF 2000.prj	Coordinate System	
B Cape.prj	Coordinate System		ITRF 2005.prj	Coordinate System	
🕲 Carthage.prj	Coordinate System		🕲 NSWC 9Z-2.prj	Coordinate System	
Carthage (degrees).prj	Coordinate System		🕲 WGS 1966.prj	Coordinate System	
(Paris).prj	Coordinate System		🕲 WGS 1972.prj	Coordinate System	
🕲 Conakry 1905.prj	Coordinate System		WGS 1972 TBE.prj	Coordinate System	
🕲 Cote d'Ivoire.prj	Coordinate System		🛞 WGS 1984.prj	Coordinate System	
🕼 Dabola.prj	Coordinate System	~			~
Name: Carthage (degrees).prj	Ad	ы	Name: WGS 1984.prj		Add
Show of type: Coordinate Systems	✓ Can	icel	Show of type: Coordinate Systems	•	Cancel
,					

Choisir toujours la version "degrees" (sinon ce sont des grades !)

	Name: GCS_Carthage_Degree
	Details:
Résultat :	Angular Unit: Degree (0.017453292519943295) Prime Meridian: Greenwich (0.0000000000000000000) Datum: D_Carthage Spheroid: Clarke_1880_IGN Semimajor Axis: 6378249.200000000200000000 Semiminor Axis: 6356514.999904193900000000 Inverse Flattening: 293.46602000000010000

Name: GCS_WG5_1984
Details:
Angular Unit: Degree (0.017453292519943295) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_WG5_1984 Spheroid: WG5_1984 Semimajor Axis: 6378137.0000000000000000000000
Semiminor Axis: 6356752.314245179300000000 Inverse Flattening: 298.257223563000030000

Projections – exemple ARCGIS

2- Définir la projection du layer avec ARCcatalog

Projected Coordinate Systems

Browse for Coordinate System		Browse for Coordinate System	
Look in: 📄 National Grids 💽 🛌 🟐 🎬	######################################	Look in: 🗀 WGS 1984 💽 📤 🗃 🎬 🏢	88
Name Type	<u> </u>	Name Type	<u>^</u>
Nord Algerie (degrees), orj Coordinate System		WGS 1984 UTM Zone 295.prj Coordinate System	
Nord Algerie Ancienne.pr) Coordinate System Nord Algerie Ancienne (degrees).pr) Coordinate System		WGS 1984 UTM Zone 2N.prj Coordinate System	
Word Maroc.prj Coordinate System		WGS 1984 UTM Zone 30N.prj Coordinate System WGS 1984 UTM Zone 30S.prj Coordinate System	
Nord Sahara 1959 Voirol Unifie Nor Coordinate System	-	WGS 1984 UTM Zone 31N.prj Coordinate System	
Nord Tunisie.prj Coordinate System		WGS 984 UTM Zone 32N.prj Coordinate System	
Name: Operatione Meteorologico 1965 Coordinate System		Name: WGS 1984 UTM Zone 3/N pri	-
Show of type: Coordinate Sustems	Cancel	Show of type: Coordinate Sustems Can	
Name: Nord_Tunisie	_	Name: WG5_1984_UTM_Zone_32N	-
, Details:		, Details:	
Projection: Lambert_Conformal_Conic False Easting: 500000.000000	<u>^</u>	Projection: Transverse_Mercator False_Easting: 500000.000000	-
False_Northing: 300000.000000 Central_Meridian: 11.000000		False_Northing: 0.000000 Central_Meridian: 9.000000	
Standard_Parallel_1: 40.000000 Scale_Factor: 0.999626		Latitude_Of_Origin: 0.0000000	
Linear Unit: Meter (1.000000)		Geographic Coordinate System: GCS_WGS_1984	
Geographic Coordinate System: GCS_Carthage Angular Unit: Grad (0.015707963267948967)		Angular Unit: Degree (0.017453292519943295) Prime Meridian: Greenwich (0.0000000000000000)	
Datum: D_Carthage Spheroid: Clarke_1880_IGN	~	Spheroid: WG5_1984 Semimajor Axis: 6378137.000000000000000000000000000000000000	~

ом <u>н</u>еір - ARCGIS - Définir la ٢ :25 255 -2 🔕 🖸 ? X projection du frame et les Geographic Coordinate System Transformations 日 🗏 🖉 🐴 👷 🚣 💈 transformations de DATUM Convert from: 15 110 115 120 125 GCS Carthage OK. GCS WGS 1984 a 😝 Layers - M TOULES, UM Mine 84 Cancel ? **Data Frame Properties** 🖃 🗹 PPI N Annotation Groups Size and Position Extent Rectangles Frame Into: 🖃 🗹 BV Me Coordinate System General Data Frame Illumination Grids Map Cache GCS WGS 1984 -Current coordinate system: - 🗸 SP_15 WG5_1984_UTM_Zone_32N Clear Using: 1 R¢ Projection: Transverse Mercator Problème ! New.... Re <None> False Easting: 500000.000000 Gr False Northing: 0.000000 Blu Central Meridian: 9.000000 Method: 🖃 🗹 SP_14 Scale Factor: 0.999600 Latitude Of Origin: 0.000000 R¢ Linear Unit: Meter Re ? × New Geographic Transformation Gr GCS WGS 1984 Blu Datum: D_WGS_1984 New Geographic Transformation Name: 🖃 🛄 SP_12 Transformations... < > R Re GCS_Carthage Select a coordinate system: Source GCS: Gr Favorites Modify.... Blu + Predefined Target GCS: GCS WGS 1984 -🛨 🧰 Layers Import... 🗄 🔄 <esstom> Method WGS 1984 UTM Zone 32N Geocentric Translation New -Name: Add To Favorites Parameters: Name Value X Axis Translation (meters) 0 Y Axis Translation (meters) 0 Z Axis Translation (meters) 0 OK Cancel 0K Annuler Appliquer

Projections – exemple ARCGIS

Localisation d'observations de terrain

Intégration de points GPS

Notions de base sur les projections

cartographiques

« Techniques d'observation et méthodes d'analyse pour la gestion de l'eau dans les bassins versants agricoles méditerranéens »

École d'hiver du 2 au 6 mars 2015 - INAT (& Univ. Carthage, IRESA), Tunis, Tunisie

Vincent Simonneaux - CESBIO, Toulouse

Localisation d'informations terrain Méthodes

1- Points GPS depuis route / piste

=> peu pratique car saisie direction précise nécessaire

2- Si l'on a que le GPS alors il faut entrer dans la parcelle

 \Rightarrow Contraignant

 \implies Nécessaire pour mesures ponctuelles (H sol, LAI, etc.)

Méthodes

3- "à l'ancienne"

Impression papier (A3-A0) + crayon !

+ GPS avec image en fond d'écran

(pour GARMIN : créer kmz, par exemple avec G-Raster (internet))

 4- Idem 3 sur tablette / ordi portable + GPS
 => saisie peu pratique en voiture sauf appli spécifique (ok aujourd'hui ?)

5- Cas particulier de parcelles prédéfinies (= déjà saisies, ex shapefile)

=> GPS / tablette / ordi avec image fond d'écran

+ surcharge parcelles + code

=> saisie selon le code des parcelles sur ordi ou papier

Choix des sites

- Si les données doivent ensuite être comparée à une image satellitaire, choisir avant des zones homogènes sur l'image, que l'on repère ensuite facilement sur le terrain
 - ⇒ Aller sur le terrain avec un exemplaire de l'image (papier, portable)

Localisation d'informations terrain Points GPS – quelques conseils

- Attention à la precision du GPS : +/-10m + erreur du support à superposer ensuite (image satellite)
 - => eviter les sites trop petits (selon résolution image satellite)
- Attention à bien noter le DATUM dans lequel est configuré le GPS
- Récupérer les points en connectant le GPS à l'ordinateur, sinon erreurs probables... Vérifier le DATUM (*Waypoint+* permet de redéfinir le DATUM, *Fugawi* exporte toujours du WGS84...)
- Si recopie manuelle (possible pour qlq points), toujours noter minimum 5 décimales (équivalent à la précision métrique)

Saisie SIG

NON

- Pixels mixtes en bordure
- Pb images légèrement décalées

=> Mauvais échantillonage de la classe

Saisir le polygone à quelques pixels du bord de la parcelle

Saisie des attributs

 Attributes of	f ter130419_os

Polygon Polygon

Shape	CODE_TER	05	NOTES	INTERRANG	INTRARANG	HAUT_M	DIAM_M	FCOVER
Polygon	27	Céréale hiver		0	0	0	0	1
Polygon	29	Olivier		0	0	0	0	0
Polygon	30	Pêcher		0	0	0	0	0
Polygon	31	Pêcher		0	0	0	0	0
Polygon	32	Olivier + Pêcher		0	0	0	0	0
Polygon	33	Prunier	- trous	0	0	3	0	0.9
Polygon	34	Olivier	1/2 anciens taillés, 1/2 jeunes (1m)	0	0	0	0	0
Polygon	35	Olivier		10	10	4	4	0
Polygon	36	Olivier + Grenadier	1 rang Olivier (10m), 3 rangs Grenadier	0	0	0	0	0
Polygon	37	Olivier + Agrume	Olivier 15m*15m,H5,D6, jeunes agrumes i	0	0	0	0	0
Polygon	38	Pêcher	taillés	0	0	0	0	0
Polygon	39	Prunier		0	0	0	0	0
Polygon	40	Agrume		0	0	0	0	0
Polygon	41	Abricotier		6	6	3	3	0
Polygon	42	Fourrage	céréale coupée + adventice	0	0	0	0	0
Polygon	43	Serre		0	0	0	0	0
Polygon	44	Fourrage	gramminée	0	0	0	0	0
Polygon	45	Pastèque		0.5	0.7	0	0	0.35
Polygon	45b	Pastèque		0.5	0.7	0	0	0.35
Polygon	46	Pastèque		0.5	0.75	0	0	0.375
Polygon	28	Olivier	GàG	8	8	1.5	0.5	0
Polygon	47	Pomme de terre		0.5	0.8	0.4	0	0.4
Polygon	48	Céréale hiver		0	0	0	0	1
Polygon	50	Agrume		5	5	3	3	0
Polygon	52	Agrume		5	5	4	4	0

 $\frac{5}{5}$ Solution 1 – Saisie directe dans table attributaire ARCGIS

Solution 2 – Saisie dans excel et jointure table attributaire sur code unique parcelle

Localisation d'informations terrain – Exemple ARCGIS

Saisie des attributs

Localisation d'informations terrain – Exemple ARCGIS

Saisie des attributs

Localisation d'informations terrain – Exemple ARCGIS

Saisie des attributs

				~	Inintu	ro 🛛				>		
🗆 🗲 La	yers			67463	UUIIIU		1250	1 50 0				
- 🗸	Météo_sil	tes	Join Data				di la		~			
	ec_sites	_DD	Join lets you appen for example, symbo	d additional data to this lize the layer's features	layer's attribute table so using this data.) you can,	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	* *			
- M	ter12120	6_os	What do you want	to join to this layer?				Jan Star				
- 🗹	ter13041	9 os	Join attributes from	n a table		-	0	in 1			6	
- 🗹	ter13091		1. Choose the f	field in this layer that the	e join will be based on:						L intervence	
	Ler13112	Doluge	CODE TER			-	-01	notes		ablatte		nau 🗠
		Polygi	[CODE_TER			-	<n.< th=""><th>ull></th><th></th><th><nuii></nuii></th><th><nuii></nuii></th><th>SNUIR</th></n.<>	ull>		<nuii></nuii>	<nuii></nuii>	SNUIR
	ter14041	Polyge	2. Choose the t	able to join to this layer	, or load the table from	disk:	iue	ta lavá		-singles	-since	aNolis E
		Polya					<n< th=""><th>lull></th><th></th><th><null></null></th><th><null></null></th><th><nulla< th=""></nulla<></th></n<>	lull>		<null></null>	<null></null>	<nulla< th=""></nulla<>
- 🗸	ter14061	Polya	E Feuil1\$				< <u>N</u>	ull>		<null></null>	<null></null>	<null></null>
	DDI Marc	Polyge	🔽 Show the	e attribute tables of laye	ers in this list	Add						X
		Polyge	3. Choose the f	ield in the table to base	the join on:	Look in:	🖻 ter12120	6_attributs.xls	-	소 🕄		
	BV_Merg	Polyge	parcelle									
	CD 1211	Polygo	- Jain Options						ype 			
	DCB	Polyge	Juin Options					E	xcel ladie			
	RGD Ded:	Polygi	Keep all r	records				E	xcel ladie			
	Greet	Polyge	All record	is in the target table are	shown in the resulting t			E)	xcel l'able			
	Blue:	Polyg	Unmatch	ed records will contain n d into the target table fr	uii values for all fields be rom the join table	1						
Ξ 🗆	L5_191-0	Polya	appoindo									
	RGB	Polyge	C Keep opl	v matching records								
	Red:	Polyge	TE a vesso	y matering records								
	📃 Greer	Polyge	table, th	at record is removed fro	m the resulting target ta							
	📕 Blue:	Polygo										
		Polyge				-						
		Polygo				Name:	Feuil1\$					Add
		Polyge				01 ()						
		L Doluge Ré	About Joining Dat	a	ОК	Show of typ	oe: Tables a	and feature classes			<u> </u>	Cancel

Intégration de points GPS

cartographiques

Notions de base sur les projections

Localisation d'observations de lerrain

« Techniques d'observation et méthodes d'analyse pour la gestion de l'eau dans les bassins versants agricoles méditerranéens »

École d'hiver du 2 au 6 mars 2015 - INAT (& Univ. Carthage, IRESA), Tunis, Tunisie

Vincent Simonneaux - CESBIO, Toulouse

Intégration de points GPS – Exemple ARCGIS

1- A partir des données GPS, créer un fichier excel avec des champs X(longitude) et Y(latitude) en degrés décimaux.

Exemple : GPS_150122.xls

	J13	- (*	f _{sc}			
	А	В	С	D	E	
1	Y_lat	X_long	altitude	numero	heure	
2	35.64804	10.013388	70.233818	630	2012-12-11T08:25:36Z	
3	35.620436	9.937629	118.380119	631	2012-12-11T10:10:43Z	
4	35.620908	9.93795	118.812111	632	2012-12-11T10:13:35Z	
5	35.621096	9.937859	118.942528	633	2012-12-11T10:14:14Z	
6	35.621035	9.937644	119.632347	634	2012-12-11T10:14:45Z	
7	35.620871	9.93776	119.835518	635	2012-12-11T10:15:20Z	
8	35.585886	9.908223	136.42778	636	2012-12-11T10:47:21Z	
q	25 58/16	9 90575/	138 0128/18	627	2012-12-11T10-/19-257	

Editer dans excel le fichier issus du GPS (cable)

- Acces direct memoire du GPS (format gpx ?) ou utilisation d'un logiciel adapté.
- Avec GPS GARMIN les coordonnées stockées / exportées sont toujours du WGS84 (seul l'affichage peut être dans un autre DATUM).
- La recopie des coordonnées à l'écran du GPS n'est pas une bonne méthode (erreurs). Si on doit le faire (qlq points) il faut bien noter le DATUM utilisé à l'affichage.

Intégration de points GPS – Exemple ARCGIS

Intégration de points GPS – Exemple ARCGIS

4 - Créer un shapefile

Clic droit GPS_150122 / data export....

Choisir un nom adapté !

(ex : OS_150122_GPS)

Compléments

cartograging eles

« Techniques d'observation et méthodes d'analyse pour la gestion de l'eau dans les bassins versants agricoles méditerranéens »

École d'hiver du 2 au 6 mars 2015 - INAT (& Univ. Carthage, IRESA), Tunis, Tunisie

Vincent Simonneaux - CESBIO, Toulouse

Notions de base sur les projections

Localisation d'observations de letrain

Integration de points GPS

Le format shapefile

Structure sur disque : Un thème « toto » est constitué d'au minimum trois fichiers indispensables et indissociables.

toto.shp(information spatiale)toto.dbf(information attributaire : ATTENTION NE PAS EDITER
SOUS EXCEL)toto.shx(indexation spatiale)toto.prj(définition de la projection de la couche d'information)

Pour copier un thème (sur une disquette par exemple), il faut et il suffit de copier uniquement ces 4 fichiers.

Edition

toto.dbf

ATTENTION NE PAS EDITER SOUS EXCEL

Sous peine de detruire le shapefile associé

On ne peut plus l'éditer par erreur dans ARCGIS qui distingue automatiquement les dbf associés à des shapefiles, mais on peut toujours l'éditer sous excel, ce qui va casser le lien entre cette table et les fichiers .shp et .shx, et rendre du même coup le thème X définitivement inutilisable.

Stockage des attributs Exemple d'organisation **non optimale**

Carte pédologique

		Tat	ole attributa	Rép tire	oétitions
Polyg ne	go surfac e	Code sol	Texture surface	Matière organique	profondeur
1	345	Brun_v	Limono- argileux	1.5	80
2	653	Squel_calc	Limono sableux	1	20
3	823	Brun_v	Limono- argileux	1.5	80
4	1098	Brun_v	Limono- argileux	1.5	80
5	265	Squel_calc	Limono sableux	1	20
6	205	vertisol	Argileux	2.1	150
		••••			

Stockage des attributs Exemple d'organisation optimale

Carte pédologique

Jointure

Table de description des sols

sol	profondeur	Texture surface	% Matière organique	
Brun_v	80	Limono- argileux	1.5	
Squeletique	20	Limono sableux	1	
vertisol	150	Argileux	2.1	