الفصل الأول: التحليل التوافقي

كلية العلوم الاقتصادية والتجارية وعلوم السنة الأولى جذع مشترك

الأستاذة: غيدة فوزية

قائمة المحتويات

5	و <i>حد</i> ة
7	مقدمة
9	I -التحليل التوافقي
9	آ. المبدأ الأساسي في العد
9 11	1. قاعدة الضرب:
12	ب. طرق التحليل التوافقي 1. التبديلات :
18 20	2. الترتيبات:
23	II-نشاط التعلم
23	آ. تمرین
25	حا . التمارين

في نهاية الفصل يكون الطالب قادر على: التعرف على طرق التحليل التوافقي (التبديلات-الترتيبات-التوفيقات). التمييز بين طرق التحليل التوافقي وذلك في حالتين بالتكرار وبدون تكرار . توظيف طرق التحليل التوافقي في حل مشكل ما.

يهتم التحليل التوافقي بإعطاء عدد الطرق الممكنة للمجموعات ضمن شروط معينة من خلال بعض القواعد الرياضية التي تسهل هذا التكوين من جهة و يمكننا من دراسة المجموعات المنتهية من خلال تبسيط العد بها و استنباط طرق اكثر فعالية لحساب عدد الحالات الممكنة و عدد الحالات المواتية (الملائمة) المرتبطة بذلك الحادث، و بالتالي يصبح حساب الاحتمال من أهم التطبيقات العملية في التحليل التوافقي، و من بين هذه الطرق: التبديلات، الترتيبات و التوفيقات.

و لكن قبل هذا لا بد الإشارة إلى نقطة أساسية تشكل المرتكز الحقيقي للتحليل التوافقي و هو المبدأ الأساسي في العد.

المبدأ الأساسي في العد 9 طرق التحليل التوافقي 12

آ. المبدأ الأساسي في العد

1. قاعدة الضرب:

هي القاعدة الأساسية في التحليل التوافقي. مضمونها ما يلي: إذا كانت لدينا تجربة أولى تحدث أو تنجز بـ n طريقة و كانت تجربة ثانية تختلف عن الأولى و تحدث بـ m طريقة فان العملية الأولى و الثانية تتم بـــــ n*m

مثللد

لنفرض أننا نود تصنيف مجتمع ما وفق الجنس (ذكر M و انثى F) و الحالة العائلية (متزوج M، اعزب C، مطلق D، أرمل V)، فعدد الحالات المختلقة و فق الصفتين (الجنس و الحالة العائلية) هي: 8 حالات و ذلك بالاستعمال قاعدة الضرب مباشرة كما يلي:

- n_1 = 2 اختيار حسب الجنس يوجد حالتين أي •
- $n_2=8$ اختيار حسب الحالة العائلية يوجد 4 حالات أي \bullet
 - و منه عدد الحالات المختلفة هي :
 - $n_1*n_2 = 2*4 = 8$

لساسب: حالة عامة

لاً كان لدينا التجارب التالية : $E_k, \ldots, E_3, E_2, E_1$ تنجز بــــ $n_k, \ldots, n_3, n_2, n_1$ طريقة على التوالي فان n_k تجربة تحدث مع بعض بـــــ $n_k * \dots * n_3 * n_2 * n_1$ طريقة.

2. قاعدة الجمع:

مضمون هذه القاعدة هو ما يلي: إذا كانت لدينا تجربة أولى تحدث بـــ n طريقة و تجربة ثانية تحدث بـــ m طريقة فان عدد الطرق التي تتم بها التجربة الأولى أو الثانية هي : n+m .

مثللد

نفرض انه لدينا مجموعة من الطلبة عددها 3 (A, B, C) و مجموعة من الطالبات عددها 2 (E, F)، فاختيار طالب يكون ب (E, F) فبكم طريقة يمكن للعملية طالب يكون ب (E, F) فبكم طريقة يمكن للعملية 1 أو العملية 2 أن تتم؟

بهذه الحالة نستعمل قاعدة الجمع لإيجاد عدد الطرق المختلقة كما يلي: $n_1+n_2=3+2=5$

ب. طرق التحليل التوافقي

1. التبديلات:

تبديلات تدرس في حالتين هما:

1) تبدیلات بدون تکرار:

هي مجموعة من العناصر المختلفة لمجموعة E={A,B,C}، حيث أنE={A,B,C} قد نهتم بعدد الطرق التي يمكن أن ترتب بها عناصر هذه المجموعة ، و بغرض الوصول إلى ذلك يوجد عدة طرق :

طريقة_

الطريقة الأولى : مفادها ترتيب الحروف الثلاثة بطرق مختلفة أي بتغيير كل مرة موضع الحرف و بدون تكراره لأننا في حالة تبديلة بدون تكرار. و بالتالي الطرق المختلفة هي:

ABC, ACB, BAC, BCA, CAB, CBA

و منه عدد الطرق التي يمكن أن ترتب بها 3 عناصر المجموعة هو 6 طرق مختلفة.

طريقة_

الطريقة الثانية: كل متبادلة من التبديلات الست تتكون من ثلاث عناصر. كل تبديلة تشغل ثلاث أمكنة كما للي:

ع 1	ع 2	ع 3
3	2	1

جدول1 *→*

و لتشكيل أي متبادلة علينا أن نقوم بملء المكان الأول باختيار العنصر الأول، بملء المكان الثاني باختيار العنصر الثاني و بملء المكان الثالث باختيار العنصر الثالث (من اليسار إلى اليمين)

تشكيل أي متبادلة هو تحقق ثلاث عمليات مع بعض و في آن واحد حيث:

- العملية الأولى (ع 1): تتم بثلاث طرق
 - العملية الثانية (ع 2): تتم بطريقتين
- العملية الثالثة (ع 3): تتم بطريقة واحدة.

إذا العمليات الثلاث تتم مع بعض 1*2*3=6=3!، و بذلك نخلص إلى القاعدة الرياضية التي تسمح بإيجاد عدد الطرق التي يمكن أن ترتب بها عناصر مجموعة ما.

طريقة_

الطريقة الثالثة: عندما يكون عدد عناصر المجموعة كبير، ففي هذه الحالة يتعذر علينا ذكر جميع الترتيبات الممكنة كما في الطريقة السابقة ثم عدها. فالعلاقة الرياضية التالية تساعدنا على ذلك و هي كما يلي:

$$n! = n*(n-1)*(n-2)*....*(n-k+1)$$

أساسي: بصفة عامة

عدد الطرق التي يمكن أن يرتب n عنصر من مجموعة E هو ! nو الذي يرمز له: P(n) حيث:

$$P(n)=n!=n(n-1)(n-2).....(n-k+1)$$

تنبيه : حالة خاصة في التباديل الدائرية

إذا كنا بصدد ترتيب عناصر المجموعة ما بوضعية دائرية، فإن عدد الطرق المختلفة و القابلة لذلك هو:

$$P(n')=(n-1)!$$
 فرنسية

و هذه التباديل هي خاصة تسمى بالتباديل الدائرية ل n عنصر.

إضلفة: صيغة ستيرلنج لــــ n!

عندما تكون n كبيرة فان حساب قيمة n مباشرة يكون غير عملي، ففي مثل هذه الحالة يمكن الاستفادة بصيغة ستيرلينج التقريبية و تكتب على الشكل التالي:

$$n! = (n/e)^n \sqrt{2\pi n}$$
 فرنسية

مع: e=2,71828

2) تبدیلات مع تکرار:

يطلب في بعض الأحيان معرفة عدد التبديلات لمجموعة من العناصر يكون بعضها متماثلا (متكررا) مثل: أسماء البلدان، أسماء الأشخاصأو تكرار الأعداد. فالإيجاد عدد التبديلات يلخص باستعمال العلاقة الرياضية التالية:

$$P(n) = \frac{n!}{r!}$$
فرنسية

حيث: n : عدد عناصر المجموعة

r : عدد عناصر المجموعة المتشابهة

مثللا

لدينا مجموعة E={A,A,B,A}

نلاحظ أن المجوعة E ليست عناصرها مختلفة و إنما هي متشابهة أي هناك عنصر يتكرر أكثر من مرة. المطلوب: ماهو عدد المتبادلات يمكن تشكيلها من المجموعة E. لدينا عدد عناصر المجموعة هو 4 أي (n=4) و عدد العناصر المتشابهة هو 3 أي (r=3)، و منه لإيجاد عدد التبديلات ممكن تشكيلها في هذه الحالة نستعمل العلاقة الرياضية التالية:

$$P(n) = \frac{n!}{r!} = \frac{4!}{3!} = \frac{4*3*2*1}{3*2*1} = 4$$

و منه عدد التبديلات هو 4

أساسي: بصفة عامة

 r_n إذا كانت لدينا مجموعة تتكون من n عنصر و تحتوي على r_1 عنصر متشابه r_2 , عنصر متشابه عنصر متشابه ، فان عدد التبديلات يساوي في هذه الحالة :

$$P(\grave{n}) = \frac{n!}{r1! * r2! * \dots * rk!}$$

$$\stackrel{\dot{e}_{i}}{e_{i} \cdot \dots \cdot e_{i}}$$

مثالد

. statistiques كم كلمة

لدينا 12 حرف في الكلمة أي n=12 متكون من:

- r_1 =3 يتكرر 3 مرات أي s
- r_2 =3 الحرف t يتكرر 3 مرات أي t
- الحرف i يتكرر مرتين أي 2
 - الحرف a يتكرر مرة أي 1=1
 - $r_5=1$ الحرف u يتكرر مرة أي $v_5=1$
 - الحرف e يتكرر مرة أي r₆=1
 - $r_7=1$ يتكرر مرة أي q الحرف و

باستعمال القانون التالي في حالة تبديلات بتكرار:

$$P(12) = \frac{n!}{r1! * r2! * r3! * r4! * r5! * r6! * r7!} = \frac{12!}{3! * 3! * 2! * 1! * 1! * 1!} = 6652800$$

أي يمكن تشكيل 6652800 كلمة

2. الترتيبات:

في بعض الأحيان قد نهتم بعدد الطرق التي يمكن أن نختار بها مجموعة جزئية من العناصر انطلاقا من مجموعة كلية. هنا نميز بين حالتين بتكرار و بدون تكرار:

1) الترتيبات بدون تكرار:

في هذه الحالة يمكن إيجاد عدد الطرق المختلفة (بدون تكرار العنصر) التي يمكن أن نختار بها مجموعة جزئية (r) من العناصر انطلاقا من مجموعة كلية (n) مع (r<n) تتم باستعمال القانون التالي:

$$A_n^r = \frac{n!}{(n-r)!}$$

$$a_n = \frac{n!}{(n-r)!}$$

- تكرار غير مسموح.
 - الترتيب مهم.

لدينا مجموعة E تتكون من 4 عناصر هي A,B,C,D و نريد إيجاد عدد الطرق المختلفة التي يمكن أن نختار بها عنصرين من المجموعة E. ففي هذه الحالة نستعمل قانون ترتيبات بدون تكرار كما يلي:

$$A_4^2 = \frac{4!}{(4-2)!} = \frac{4*3*2*1}{2*1} = 12$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

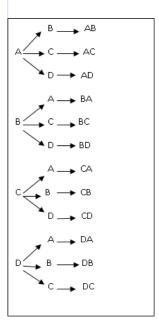
$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

أي يوجد 12 طريقة مختلفة في اختيار عنصرين من مجموعة E. ونجد هذه الحالات بواسطة الشجرة التالية:



فرنسية

2) ترتیبات مع تکرار:

ترتيبات مع تكرار هو سحب أكثر من مرة (r مرة) من عناصر المجموعة الكلية (n). و هنا نجد حالتين:

- عندما تصبح المجموعة الجزئية (r) عند السحب عدة مرات العناصر تساوي المجموعة الكلية (n) أي (يتم سحب كل العناصر)، ففي هذه الحالة ترتيبة بتكرار تصبح تبديلة.
- إذا كانت المجموعة الجزئية (r) أصغر من المجموعة الكلية (n) و مع تواجد التكرار، ففي هذه الحالة نحن في حالة قائمة حيث :

$$AR_n^r = n^r$$
 فرنسية

مثلك

لدينا مجموعة E,F,A,B,C,D عناصر هي E,F,A,B,C,D نقوم بسحب ثلاث مرات عنصرين مع الإرجاع. المطلوب: إيجاد عدد الطرق التي يمكن أن ِنختار بها عنصرين من المجموعة E.

نستعمل في هذه الحالة ترتيبة بتكرار، و بأن n=r=6 فتصبح هذه الترتيبة تبديلة، و عليه عدد الطرق الممكنة

P(6) = 6! = 6*5*4*3*2*1=720

3. التوفيقات:

إذا كان ترتيب العناصر داخل المجموعة الجزئية المسحوبة من المجموعة الكلية E غير مهم في عملية الاختيار هذه الطريقة تسمى بالتوفيقات. حيث يوجد في التوفيقات حالتين كذلك بتكرار و بدون تكرار.

1) توفیقات بدون تکرار:

إن عدد التوفيقات لـــ r عنصر دون إعادة من n عنصر مختلفا ممثل بالقانون التالي:

$$C_n^r = \frac{n!}{r!(n-r)!}$$

$$\dot{e}_{i,i}$$

مثالد

مجموعة تتكون من 6 طالبات و 10 طلبة. تم اختيار بطريقة عشوائية لجنة ثلاثية من هذه المجموعة. ما هو عدد حالات اختيار طالبين.

الحل: بما أن الاختيار يتم بدون ترتيب، فسنطبق توفيقات في عملية اختيار طالبين من بين 10طلبة كما ىلى:

$$C_{10}^2 = \frac{10!}{2!(10-2)!} = \frac{10*9*8!}{2!*8!} = \frac{90}{2} = 45$$

2) توفیقات بتکرار:

إن عدد التوفيقات لـــ r عنصر مع إمكانية تكرار العنصر من n عنصر ممثل بالقانون التالي:

$$C_{m}^{r} = C_{n+r-1}^{r} = \frac{(n+r-1)!}{r!(n-r)!}$$

مثالد

لدينا كيس به 10 كريات، نقوم بسحب كرتين مع الإرجاع. المطلوب: إيحاد عدد الطرق التي يمكن أن نسحب بها كرتين من الكيس.

الحل: سنقوم بسحب كرتين من بين 10 كرات مع الإرجاع نستعمل في هذه الحالة توفيقات بإرجاع كما بلي:

$$C_{11}^{2} = C_{10+2-1}^{2} = \frac{(10+2-1)!}{2!(10-2)!} = \frac{11!}{2!8!} = \frac{11*10*9*8!}{2!*8!} = 495$$

للمزيد من المعلومات حول التوفيقات شاهد الفيديو التالي:

4. ملخص الدرس خاص بالتحليل التوافقي

يوجد ثلاث طرق في التحليل التوافقي :

	بدون تكرار	
	و. للذي يرمز له بـ . $n!$ هو. E عنصر مختلف من مجموعة n هي عدد الطرق. للتي يمكن أن ترتب بما:	
	n(n-1)(n-2)1 = n! P(n) =	
	: حالة خاصة تا التبديلات. للدائرية	
	(n-1)! P(n') =	عدد الطرق للتي يمكن أن ترت
	: في التبديلات	
التبديلات	تکرار غیر مسموح ترتیب مهم	
		الجزئيـة = مجموعة
	ذلك حسب القانون التالي	الكلية.
	$A_{n}^{r} = n! / (n-r)!$	التكرار.، فنحن في حالة <u>قائمة</u>
	ني الترتيبات.	$AR_{n}^{r} = n^{r}$
	، چ <i>نانویبات</i> تکرار غیر مسموح	تکرار مسموح –
التوتيبات	تگرار غیر مسموح	ترتیب مهم -
	تربيب نهم	الجزئية من المجموعة للكلية. في
	نهتم بعدد الطرق المختلفة -و بدون أخذ بعين الاعتبار الترتيب- التي يمكن أن نختار بها المجموعة الجزز	
	$C_{n}^{r} = n! / r! (n-r)!$	$C_{r}^{r} = (1$
	: في التوفيقات	
	تكرار غير مسموح −	تکرار مسموح –
التوفيقات.	ترتیب غیر مهم –	ترتیب غیر مهم –

فرنسية

The second of the seco

23

آ. تمرین

ســـؤال 1

[19 ص 1 حل رقم]

كم طريقة يمكن لـ 5 إخوة أن يجلسوا حول طاولة مستديرة لتناول وجبة الفطور؟

ســـؤال 2

[19 ص 2 حل رقم]

recherche: كم كلمة يمكن تشكيلها من كلمة

حل التمارين

$(17 \odot) 1 <$

بما أن وضعية الكراسـي تأخذ الشـكل الدائري تماشـيا مع هندسـة الطاولة، فان هذا يعني أنه يمكن للأخ الأول أن يجلس في أي مكان حول الطاولة (كثابت) و يمكن للإخوة الأربعة الآخرين أن يرتبوا انفسـهم حول طاولة و ذلك باسـتعمال قانون التبادل الدائري كما يلي:

> P(n)=P5=(5-1)!=4!=24 أي 24 طريقة

(17 ص) 2 <

نحن في حالة تبديلات بتكرار: $r_1=2$ تتكون من 9 أحرف مع تكرار الحروف حيث: $r_1=2$ الحرف"" يتكرر مرتين أي $r_2=2$ الحرف "C" يتكرر مرتين أي $r_2=2$ الحرف "h" يتكرر مرتين أي $r_3=2$ الحرف" $r_4=3$ يتكرر ثلاث مرات أي $r_4=3$ الحرف" $r_4=3$ $r_4=3$ الحرف" $r_4=3$ $r_4=3$ r

في حالة عدم تمكن الطالب من حل التمرين عليه بمراجعة الدرس وإعادة تطبيق الأمثلة.