

GRAFET BD MAS Page 1/1

METHODE	Mise à jour 11 Mai 2003	GRAF_METHODE_CHOIX_MAS.doc
	Conversion de l'Energie	Comment choisir un moteur asynchrone?

Annexe 1.

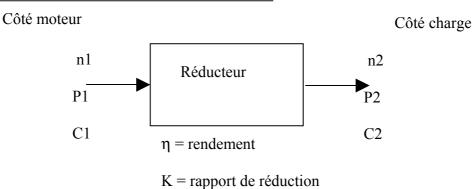
Formulaire de mécanique

$$\overrightarrow{F} = M \times \overrightarrow{g}$$
 $P = C \times \Omega$
 $P = \overrightarrow{F} \times v$
 $C = \overrightarrow{F} \times R$
 $\Omega = 2 \times \pi \times n$
 $\Omega = \frac{v}{R}$

$$F = Force en Newton$$

M = Masse en kg

g = accélération de la pesanteur (<math>g = 9.81 m / s 2)


P = Puissance en Watt

C = Couple en Nm

 Ω = Vitesse angulaire en rad / sec

v = Vitesse linéaire en m / s

Règle de calcul dans le cas d'un réducteur de vitesse

$$K = n2 / n1 = C1 / C2$$

 $\eta = P2 / P1$

GRAFET BD MAS Annexe 1/2

METHODE	Mise à jour 11 Mai 2003	GRAF_METHODE_CHOIX_MAS.doc
	Conversion de l'Energie	Comment choisir un moteur asynchrone?

Annexe 2.

ENVIRONNEMENT

- * CORRECTION SUIVANT LA TEMPÉRATURE AMBIANTE ($t_a > 40$ °C) :
- Si la température ambiante est supérieure à 40 °C, la puissance du moteur subit un déclassement K_t comme l'indique le tableau ci-dessous :
- Application:

Moteur 10 kW $t_a = 45$ °C.

Déclassement : $K_t = 95/100$.

Puissance disponible: $P_M = 10 \times 95/100 = 9,5 \text{ kW}$

(soit un déclassement de 99/100 sur P_n par °C au-dessus de 40 °C.

45 °C	95/100
50 °C	90/100
55 °C	85/100
50 °C	90/100

- * CORRECTION SUIVANT L'ALTITUDE ($a_i > 1000 \text{ m}$):
- Si l'altitude de fonctionnement est supérieure à 1000 m la puissance du moteur subit un déclassement k_a suivant la relation suivante :
- Application :

Moteur 100 kW $a_t = 3000 \text{ m}.$

Déclassement;

$$K_a = \frac{11000 - 3000}{10000} = 0.8$$

Puissance disponible: $P_M = 100 \times 0.8 = 80 \text{ kW}.$

• CORRECTION SUIVANT LA FRÉQUENCE DE ROTATION $(n \neq n_n)$:

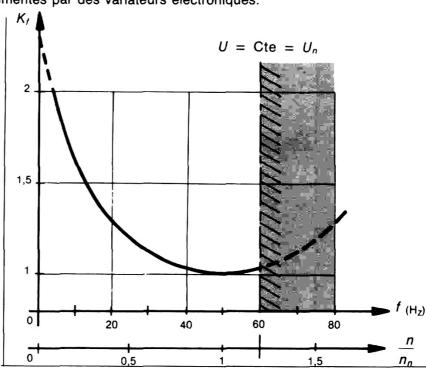
Cas des moteurs asynchrones alimentés par des variateurs électroniques.

(Convertisseur de fréquence)

La fréquence de rotation n dépend de la fréquence f.

Si le moteur fonctionne à $n \neq n_n$, il y a lieu de corriger sa puissance par un coefficient K_l .

Note: La courbe est donnée pour du matériel standard $(n/n_n \le 1,2)$.


Application:

Moteur 10 kW.

Variation de la fréquence de rotation dans un rapport 1 à 0,4. Coefficient correcteur : $K_I = 1,3$.

Puissance disponible: $N_f = 1,3$

 $P_M = 10/1,3 \simeq 7,7 \text{ kW}.$

GRAFET BD MAS Annexe 2/2