

Université Djilali Bounaama-Khemis Miliana Faculté des Sciences et de la Technologie Département des Sciences de la matière

Cours Physique 1 : Mécanique

Niveau: 1ére année ST

Année Universitaire 2021/2022

Réalisé par : Dr. M. EL BAA

Annexe : Programme des enseignements du socle commun de Licence

Domaine " Sciences et Technologies "

Semestre 1

Unités d'enseignements UE Fondamentale Code : UEF 1.1 Crédits : 18 Coefficients : 9	Matières	Crédits	Coefficient	V	Volume horaire hebdomadaire		VHS		Mode d'évaluation	
	Intitulé	້	Coef	Cours	TD	TP	(15 semaines)	Autre *	Contrôle	
	Mathématiques 1	6	3	3h00	1h30	1	671-20		Continu	Exame
	Physique 1	6	3	3h00	-		67h30	82h30	х	х
	Structure de la matière	6	+		1h30	-	67h30	82h30	x	х
	Informatique 1	+	3	3h00	1h30		67h30	82h30	х	х
	TP physique 1	4	2	1h30		1h30	45h00	55h00	х	х
		2	1			1h30	22h30	27h30	x	
	TP Chimie 1	2	1			1h30	22h30	27h30		
	Méthodologie de la rédaction	1	1	1h00					Х	
UE Découverte Code : UED 1.1 Crédits : 1 Coefficients : 1							15h00	10h00		Х
	Les métiers en sciences et technologies 1	1	1	1h30			22h30	2h30		х
E Transversale ode : UET 1.1	Langue étrangère 1 (français et/ou anglais)			-			-			
rédits : 2 oefficients : 2		2	2	3h00			45h00	5h00		×
Travail	Total semestre 1	30	17	16h00	4h30	4h30	375h00	375h00		

PROGRAMME "Physique1 »

Chapitre 0. Rappels mathématiques :

- Les équations aux dimensions.
- Calcul vectoriel

Chapitre I. Cinématique:

- 1- Vecteur position dans les systèmes de coordonnées (cartésiennes, cylindrique...)- loi de mouvement Trajectoire.
- 2- Vitesse et accélération dans les systèmes de coordonnées.
- 3- Applications : Mouvement du point matériel dans les différents systèmes de coordonnées
- 4- Mouvement relatif.

Chapitre II. Dynamique:

- 1- Généralité : Masse Force Moment de force Référentiel Absolu et Gallilien
- 2- Les lois de Newton
- 3- Principe de la conservation de la quantité de mouvement.
- 4- Equation différentielle du mouvement 5- Moment cinétique
- 6- Applications de la loi fondamentale pour des forces (constante, dépendant du temps, dépendant de la vitesse, force centrale, etc).

Chapitre III. Travail et énergie :

- 1- Travail d'une force 2- Energie Cinétique
- 3- Energie potentiel Exemples d'énergie potentielle (pesanteur, gravitationnelle, élastique)
- 4- Forces conservatives et non conservatives Théorème de l'énergie totale

Chapitre 0: Rappels Mathématiques

المقادير الفيزيائية) I.1. Généralité sur les grandeurs Physique (المقادير الفيزيائية

- Une grandeur physique [A] est une quantité qui peut se mesurer et qui rapporte une propriété physique.
- •La grandeur physique est dite mesurable s'il est possible de lui associer une valeur numérique « a ».
- •Cette valeur « a » le rapport de la grandeur [A] à une grandeur de même espèce choisie comme unité $\{A\}$: $a = \frac{A}{A} \longrightarrow \text{Grandeur Physique}$ valeur mesurée $A = \frac{A}{A} \longrightarrow \text{Unité}$ $A = \frac{A}{A} \longrightarrow \text{Unité}$

Exemple: La vitesse V = 10 m/s

- **➢II existe deux types de grandeurs Physique mesurables**
- Grandeurs Scalaires :

Longueur, Masse, Temps, Energie

• Grandeurs Vectorielles :

Vitesse, Accélération, Champ électrique

Système international d'unité (Appelé Système SI)

> Ce système est composé des unités fondamentales suivantes :

Unité	Grandeur				
Mètre (m)	Longueur				
Kilogramme (Kg)	Masse				
Seconde (S)	Temps				
Ampère (A)	Intensité de courant électrique				
Kelvin (K)	Température				
Candéla (Cd)	Intensité lumineuse				
Mole	Quantité de la matière				

Les Quartes premières unités forment le système MKSA

(المقادير المشتقة) Grandeurs dérivées

> Ces grandeurs s'expriment comme une combinaison des grandeurs fondamentales (MKSA).

Exemple:

```
Surface: LxL, m<sup>2</sup>
```

Vitesse: X/t, m.s⁻¹.

Force: $Kg.m.s^{-2} = Newton(N)$.

Energie: $Kg m^2.s^{-2} = Joule(J)$

(معادلة الأبعاد) I.2. Equation aux dimensions

> Déterminer les unités dérivées en fonction des unités fondamentales

$$[A] = M^{\alpha} L^{\beta} T^{\gamma} I^{\lambda} \qquad \alpha, \beta, \gamma, \lambda : nombres \text{ réels}$$

Cette équation consiste l'équation aux dimensions d'une grandeur A, avec :

M : Masse, L : Longueur, T : Temps, I : Intensité de courant

Exemples:

***Vitesse**:
$$V = \frac{x}{t} \implies [V] = L.T^{-1} \ (m/s)$$

Accélération:
$$a = \frac{dV}{dt} \implies [a] = L.T^{-2} (m/s^2)$$

***Force**:
$$\vec{F} = m\vec{a}$$
 $\Rightarrow [F] = ML.T^{-2} (kg.m.s^{-2} = Newton)$

♦Travail:
$$W = \int \vec{F} d\vec{l}$$
 ⇒ $[W] = [F][dl] = MLT^{-2}L = ML^2T^{-2}$ ($Kg.m^2 / s^2 = Joule$)

Remarque:

 L'équations aux dimensions est utilisée pour vérifier l'homogénéité des formules physique.

Exemple:

La période d'oscillation d'un pendule simple de longueur L est-il donné par :

$$T=2\pi\sqrt{\frac{g}{L}}....(I)$$
 Ou par $T=2\pi\sqrt{\frac{L}{g}}....(II)$

•
$$(I) \Rightarrow T = 2\pi g^{1/2} L^{-1/2} \Rightarrow [T] = ((LT)^{-2})^{1/2} L^{-1/2} = T^{-1} \Rightarrow [T] = T^{-1}$$
 Fausse

•
$$(I) \Rightarrow T = 2\pi L^{1/2} g^{-1/2} \Rightarrow [T] = L^{1/2} ((LT)^{-2})^{-1/2} = T \Rightarrow [T] = T$$
 Juste

II. Rappel sur les vecteurs

- ➤ Un vecteur est une <u>entité</u> mathématique définie par plusieurs valeurs numériques.
- > Ces valeurs décrivent le module et l'orientation du vecteur.
- ightharpoonup Un vecteur \overrightarrow{AB} est caractérisé par :

- Son origine ou point d'application
- Sa direction.
- •Son sens qui est le sens du mouvement d'un mobile ayant du point **A** vers le point **B**.
- •Sa norme (son module) qui présente la longueur AB. On le note $\|\overrightarrow{AB}\|$

II.1- Projection d'un vecteur sur un axe :

$$\overrightarrow{AB} = \|\overrightarrow{AB}\|\overrightarrow{u}$$

 $ightharpoonup \vec{u}$ et $\overrightarrow{u'}$ représentent des vecteurs unitaires avec

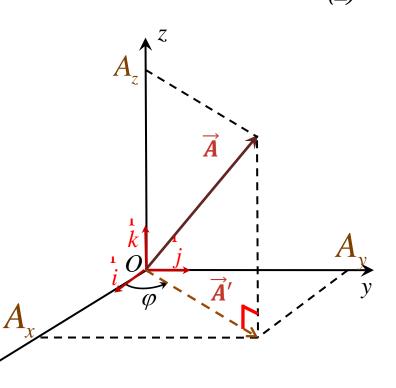
$$\|\vec{u}\| = \|\overrightarrow{u'}\| = 1$$

$$||\overrightarrow{A'B'}|| = ||\overrightarrow{AB}|| \cos\theta$$

II.2- Les composants d'un vecteur :

$$\vec{A} = A_x \vec{\imath} + A_y \vec{\jmath} + A_z \vec{k}$$
 Ou $\vec{A} \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix}$

Tel que $\|\vec{A}\| = \sqrt{{A_x}^2 + {A_y}^2 + {A_z}^2}$ présente le module de \vec{A}



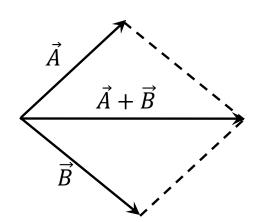
Opérations sur les vecteurs :

I. Addition

Analytiquement:

Si
$$\vec{A} \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix}$$
 et $\vec{B} \begin{pmatrix} B_x \\ B_y \\ B_z \end{pmatrix} \Rightarrow (\vec{A} \pm \vec{B}) \begin{pmatrix} A_x \pm B_x \\ A_y \pm B_y \\ A_z \pm B_z \end{pmatrix}$

Géométriquement



Propriétés:

$$(\overrightarrow{A} + \overrightarrow{B}) = (\overrightarrow{B} + \overrightarrow{A})$$

$$ightharpoonup (\overrightarrow{A} + \overrightarrow{B}) + \overrightarrow{C} = \overrightarrow{A} + (\overrightarrow{B} + \overrightarrow{C})$$

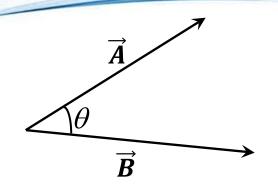
$$\geqslant \left\| \vec{A} + \vec{B} \right\| \neq \left\| \vec{A} \right\| + \left\| \vec{B} \right\|$$

$$\geqslant \vec{A} \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix} \Rightarrow -\vec{A} \begin{pmatrix} -A_x \\ -A_y \\ -A_z \end{pmatrix}$$

II. Produit de deux vecteurs :

II.1 Produit Scalaire:

$$\overrightarrow{A}.\overrightarrow{B} = \|\overrightarrow{A}\| \|\overrightarrow{B}\| \cos(\overrightarrow{A},\overrightarrow{B})$$



- \Box En coordonnées cartésiennes : $\overrightarrow{A} \cdot \overrightarrow{B} = A_x B_x + A_y B_y + A_z B_z$
- $\Box \text{ L'angle } \theta \text{ entre } \overrightarrow{A} \text{ et } \overrightarrow{B} \text{ est donnée par : } \cos \theta = \frac{A_x B_x + A_y B_y + A_z B_z}{\sqrt{A_x^2 + A_y^2 + A_z^2} . \sqrt{B_x^2 + B_y^2 + B_z^2}}$
- ☐ Propriétés :

1.
$$\overrightarrow{A}$$
. $\overrightarrow{B} = \overrightarrow{B}$. \overrightarrow{A}

2.
$$\overrightarrow{A}$$
. $(\overrightarrow{B} + \overrightarrow{C}) = \overrightarrow{A}$. $\overrightarrow{B} + \overrightarrow{A}$. \overrightarrow{C}

3.
$$\overrightarrow{A}$$
. $(\overrightarrow{B}$. \overrightarrow{C}) = $(\overrightarrow{A}$. \overrightarrow{B}). \overrightarrow{C}

$$\mathbf{4.} \ \overrightarrow{A}.\overrightarrow{A} = \left\|\overrightarrow{A}\right\|^2$$

5.
$$(\lambda \overrightarrow{A}) \cdot \overrightarrow{B} = \lambda (\overrightarrow{A} \cdot \overrightarrow{B}) = \overrightarrow{A} \cdot (\lambda \overrightarrow{B})$$

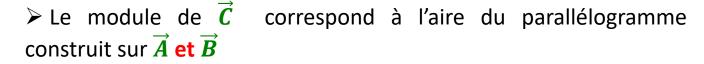
6.
$$\vec{A} \perp \vec{B} \Rightarrow \vec{A} \cdot \vec{B} = 0$$
 ($\vec{A}et\vec{B}$ sont orthogonaux)

II.2. Produit Vectoriel:

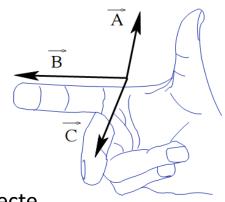
Le produit vectoriel des vecteurs \overrightarrow{A} et \overrightarrow{B} , noté $\overrightarrow{A} \wedge \overrightarrow{B}$, est un vecteur \overrightarrow{C} avec :

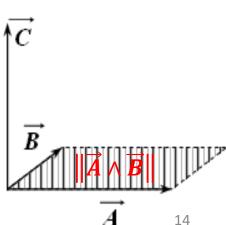
- $ightharpoonup \vec{C}$ est perpendiculaire au plan formé par les vecteurs (\vec{A}, \vec{B})
- ightharpoonup Le sens de $\overrightarrow{m{C}}$ est donné par la règle de la main droite .
 - $\Rightarrow (\vec{A}, \vec{B}, \vec{C})$ forment une trièdre directe (ثلاثية مباشرة)

Exemple: les vecteurs unitaires $(\vec{i}, \vec{j}, \vec{k})$ forme une trièdre directe,



$$\|\overrightarrow{C}\| = \|\overrightarrow{A} \wedge \overrightarrow{B}\| = \|\overrightarrow{A}\|.\|\overrightarrow{B}\|.|sin(\widehat{\overrightarrow{A},B})|$$





lacksquare Coordonnées cartésiennes de \overline{C}

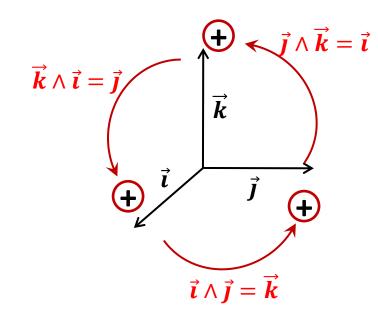
$$\vec{C} = \vec{A} \wedge \vec{B} = \left(A_x \vec{\imath} + A_y \vec{\jmath} + A_z \vec{k} \right) \wedge \left(B_x \vec{\imath} + B_y \vec{\jmath} + B_z \vec{k} \right)$$

$$= A_{x}B_{x}\hat{i} \wedge \hat{i} + A_{x}B_{y}\hat{i} \wedge \hat{j} + A_{x}B_{z}\hat{i} \wedge \hat{k}$$

$$+A_{y}B_{x}\hat{j} \wedge \hat{i} + A_{y}B_{y}\hat{j} \wedge \hat{j} + A_{y}B_{z}\hat{j} \wedge \hat{k}$$

$$+A_{z}B_{x}\hat{k} \wedge \hat{i} + A_{z}B_{y}\hat{k} \wedge \hat{j} + A_{z}B_{z}\hat{k} \wedge \hat{k}$$

On a:
$$\vec{\iota} \wedge \vec{\iota} = \vec{\jmath} \wedge \vec{\jmath} = \vec{k} \wedge \vec{k} = \vec{0}$$



$$\Rightarrow \overrightarrow{A} \wedge \overrightarrow{B} = (A_y B_z - A_z B_y) \overrightarrow{i} - (A_x B_z - A_z B_x) \overrightarrow{j} - (A_x B_y - A_y B_x) \overrightarrow{k}$$

Méthode de déterminant :

$$\vec{A} \wedge \vec{B} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ A_x & A_y & A_z \\ B_x & B_z \end{vmatrix} = +\vec{i}(A_y B_z - A_z B_y) -\vec{j}(A_x B_z - A_z B_x) + \vec{k}(A_x B_y - A_y B_x)$$

$$\Rightarrow \overrightarrow{A} \wedge \overrightarrow{B} = (A_y B_z - A_z B_y) \overrightarrow{i} - (A_x B_z - A_z B_x) \overrightarrow{j} + (A_x B_y - A_y B_x) \overrightarrow{k}$$

☐ Propriétés :

1.
$$\overrightarrow{A} \wedge \overrightarrow{B} = -(\overrightarrow{B} \wedge \overrightarrow{A})$$

2.
$$\overrightarrow{A}//\overrightarrow{B} \Rightarrow \overrightarrow{A} \wedge \overrightarrow{B} = 0$$

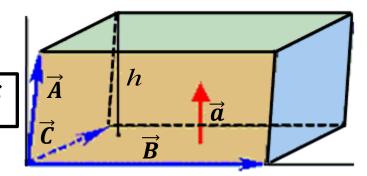
II.3. <u>Double produit vectoriel:</u>

$$\overrightarrow{A} \wedge (\overrightarrow{B} \wedge \overrightarrow{C}) = (\overrightarrow{A} \cdot \overrightarrow{C})\overrightarrow{B} - (\overrightarrow{A} \cdot \overrightarrow{B})\overrightarrow{C}$$

II.4. Produit mixte:

On appelle **produit mixte** des trois vecteurs \overrightarrow{A} , \overrightarrow{B} et \overrightarrow{C} la quantité scalaire m dont la valeur absolue est égale au volume du **parallélépipède** construit sur les trois vecteurs.

$$m = (\overrightarrow{A} \wedge \overrightarrow{B}) \cdot \overrightarrow{C} = (\overrightarrow{B} \wedge \overrightarrow{C}) \cdot \overrightarrow{A} = (\overrightarrow{C} \wedge \overrightarrow{A}) \cdot \overrightarrow{B}$$



Si les trois vecteurs sont coplanaires, alors m = 0.

II.4. Analyse Vectorielle:

☐ Gradient d'une fonction scalaire :

Le gradient d'une fonction scalaire f(x, y, z) est un vecteur, noté $\overline{V}f$ ou $\overline{grad}f$, dont les composantes dans une base orthonormée sont les dérivées partielles de frapport à chaque variable :

$$\vec{\nabla} f = \frac{\partial f}{\partial x} \vec{i} + \frac{\partial f}{\partial y} \vec{j} + \frac{\partial f}{\partial z} \vec{k}$$

□ <u>Divergence d'un vecteur :</u>

La divergence d'un vecteur $\vec{A} = A_x \vec{\iota} + A_y \vec{\jmath} + A_z \vec{k}$ dont les composantes sont fonction de (x, y, z) est un scalaire, noté $\vec{\nabla} \cdot \vec{A}$ ou $div\vec{A}$, avec :

$$\overrightarrow{\nabla}.\overrightarrow{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

□ Rotationnel d'un vecteur :

La rotationnel d'un vecteur $\overrightarrow{A} = A_x \overrightarrow{\iota} + A_y \overrightarrow{\jmath} + A_z \overrightarrow{k}$ dont les composantes sont fonction de (x, y, z) est un vecteur noté $\overrightarrow{\nabla} \wedge \overrightarrow{A}$ ou $rot \overrightarrow{A}$, avec :

$$|\vec{\nabla} \wedge \vec{A}| = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) \vec{i} - \left(\frac{\partial A_z}{\partial x} - \frac{\partial A_x}{\partial z} \right) \vec{j} + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right) \vec{k}$$

☐ Laplacien d'une fonction scalaire :

On appelle Laplacien d'une fonction scalaire f(x,y,z) la divergence de son gradient, on le note \overrightarrow{V} . $(\overrightarrow{V}f)$ ou Δf , avec :

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

☐ Propriétés (Exercice) :

Montrer que:

1.
$$\overrightarrow{rot}(\overrightarrow{grad}f) = \overrightarrow{0}$$

$$2. \ div(rot\overrightarrow{A}) = 0$$