

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieure et de la Recherche Scientifique Université Djilali Bounaâma de Khemis Miliana

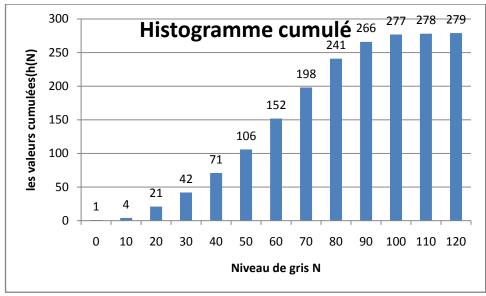
Niveau : 1ère année MA matière : introduction au traitement d'images 2020/2021

Série additive avec solutions

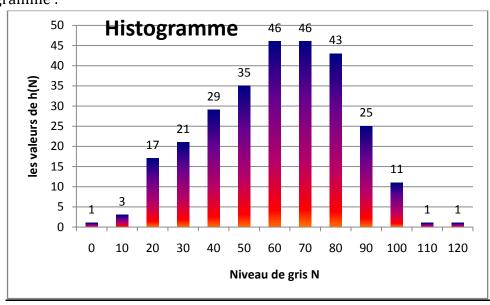
Exercice N°1

1-Compléter le tableau suivant donnant l'histogramme et l'histogramme cumulé.

niveau de gris x	0	10	20	30	40	50	60	70	80	90	100	110	120
histogramme cumulé	1	4	21			106	152	198	241		277	278	279
histogramme	1	3	17	21	29			46	43	25		1	1


2-tracer ces histogrammes

Solution de l'exercice N°1


• Le tableau :

Niveau de gris N	0	10	20	30	40	50	60	70	80	90	100	110	120
Histogramme cumulé	1	4	21	42	71	106	152	198	241	266	277	278	279
histogramme	1	3	17	21	29	35	46	46	43	25	11	1	1

• l'histogramme cumulé :

• l'histogramme :

Exercice N°2

on considère l'image suivante de taille 7X6, numérisée selon 8 niveaux de gris :

5	5	5	5	5	5
5	7	7	7	7	5
5	7	7	7	7	5
5	7	7	7	7	5
5	7	7	7	7	5
5	7	7	7	7	5
5	5	5	5	5	5

1-Donner, en bits et en octets, la taille de cette image.

2-realiser un filtrage de cette image en utilisant le filtre $\frac{1}{9}\begin{bmatrix}1 & 1 & 1\\1 & 1 & 1\\1 & 1 & 1\end{bmatrix}$ en précisant les valeurs des

niveaux de gris de l'image filtrée, en utilisant la convolution linéaire en prenant des valeurs nulles en dehors de l'image

3-dessiner le profil des niveaux de gris de cette images avant et après le filtre. Que remarquez vous?

Solution de l'exercice N°1

1-la taille de l' image

• la taille de l' image en bits :

On a 8 niveaux de gris \rightarrow 8=2³ \rightarrow c'est à dire chaque pixel est codé sur 3 bit Taille =nombre des lignes * nombre des colonnes * nombre de bit pour chaque pixels =7*6*3=126 bits

• <u>la taille de l' image en octets :</u>

2-réalisation d'un filtrage

Le filtre
$$\frac{1}{9}\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 est un filtre moyenneur $3x3$

5	5	5	5	5	5
5	7	7	7	7	5
5	7	7	7	7	5
5	7	7	7	7	5
5 5 5	7	7	7	7	5
5	7	7	7	7	5
5	5	5	5	5	5

Le résultat d'un filtrage moyenneur sur le bord en haut à gauche avec la méthode zero-padding l'image devient :

0	0	0	0	0	0	0	0
0	5	5	5	5	5	5	0
0	5	7	7	7	7	5	0
0	5	7	7	7	7	5	0
0	5	7	7	7	7	5	0
0	5	7	7	7	7	5	0
0	5	7	7	7	7	5	0
0	5	5	5	5	5	5	0
0	0	0	0	0	0	0	0

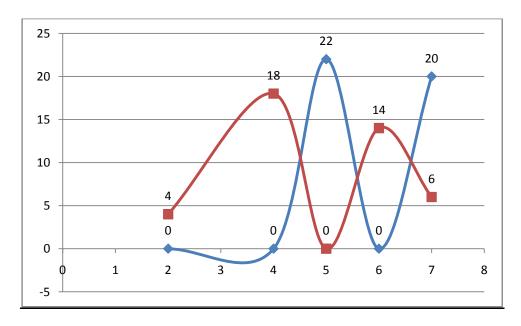
-la nouvelle valeur après le filtrage pour le pixel rouge

0	0	0
0	5	5
0	5	7

Nouvelle valeur = (0+0+0+0+5+5+0+5+7)/9= $2.44 \approx 2$

-la nouvelle valeur après le filtrage pour le pixel vert

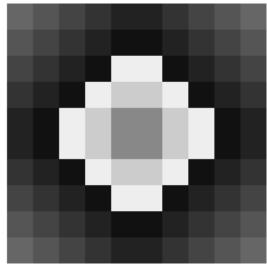
7	7	5
7	7	5
7	7	5


Nouvelle valeur = (7+7+5+7+7+5+7+7+5)/9=6.33 \approx 6

On suit la même procédure pour les autres pixels, la nouvelle image est :

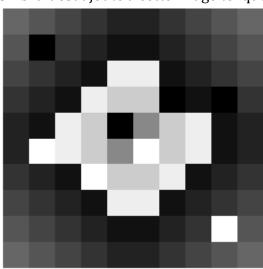
2	4	4	4	4	2
4	6	6	6	6	4
4	6	7	7	6	4
4	6	7	7	6	4
4	6	7	7	6	4
4	6	6	6	6	4
2	4	4	4	4	2

3-réalisation d'un filtrage


N	2	4	5	6	7
h(N)	0	0	22	0	20
h'(N)	4	18	0	14	6

On remarque que les valeurs des pixels se rapprochant

Exercice N°3


L'image de la figure suivante est une image à niveaux de gris de taille 10×10 pixels dont les valeurs des niveaux de gris sont codés sur 4 bits. Cette image représente un cercle su un fond sombre.

6	5	4	3	2	2	3	4	5	6
5	4	3	2	1	1	2	3	4	5
4	3	2	1	14	14	1	2	3	4
3	2	1	14	12	12	14	1	2	3
2	1	14	12	8	8	12	14	1	2
2	1	14	12	8	8	12	14	1	2
3	2	1	14	12	12	14	1	2	3
4	3	2	1	14	14	1	2	3	4
5	4	3	2	1	1	2	3	4	5
6	5	4	3	2	2	3	4	5	6

- 1) Calculer la taille de l'image.
- 2) Représenter alors son histogramme.

Un bruit est ajouté à cette image tel que :

I(2, 2)=0, I(5, 5)=0, I(4, 7)=0, I(9, 5)=0, I(6, 2)=15, I(6, 6)=15, I(9, 9)=15, I(7, 4)=15

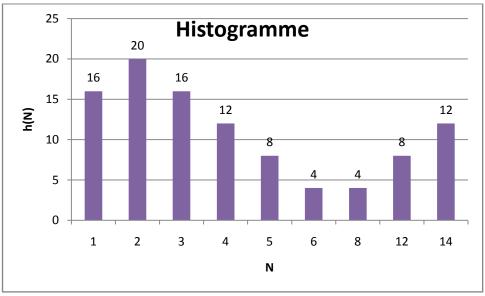
- 3) quelle est la nature du bruit
- 4) est-il multiplicatif ou additif?
- 5) à partir de l'image bruitée, donner sa matrice.
- 6) Appliquer un filtre moyenneur de taille 3×3 sur les points : I (2, 2)=0, I (5, 5)=0, I (4, 7)=0, I(9, 5)=0, I (6, 2)=15, I (6, 6)=15, I (9, 9)=15, I (7, 4)=15, I (5, 2), I (9, 2), I (3, 9), I (6, 9). Quel est l'effet de ce filtre ?
- 7) Appliquer un filtre médian de taille 3×3 sur les points : I (2, 2)=0, I (5, 5)=0, I (4, 7)=0, I (9,5)=0, I (6,2)=15, I (6,6)=15, I (9,9)=15, I (7,4)=15, I (5, 2), I (9, 2), I (3, 9), I (6, 9). Quel est l'effet de ce filtre ?
- 8) Quel filtre est plus adapté ? justifier ?
- 9) Quel est le résultat d'un filtrage moyenneur sur le bord en haut à gauche avec la méthode zero-padding

Solution de l'exercice N°3

1-la taille de l'image

• <u>la taille de l' image en bits :</u>

Taille =nombre des lignes * nombre des colonnes * nombre de bit pour chaque pixels =10*10*4=400 bits


• la taille de l'image en octets :

Taille en octets = Taille en bits /8

=400/8=50 octets

2-Représentation de son histogramme

N	1	2	3	4	5	6	8	12	14
h(N)	16	20	16	12	8	4	4	8	12

- **3-la nature du bruit :**C'est un bruit impulsionnel d'ordre 4 (poivre et sel)
- 4- multiplicatif ou additif ?: C'est un bruit additif
- 5-la matrice de l'image bruitée

6	5	4	3	2	2	3	4	5	6
5	0	3	2	1	1	2	3	4	5
4	3	2	1	14	14	1	2	3	4
3	2	1	14	12	12	0	1	2	3
2	1	14	12	0	8	12	14	2	1
2	15	14	12	8	15	12	14	2	1
3	2	1	15	12	12	14	1	2	3
4	3	2	1	14	14	1	2	3	4
5	4	3	2	0	1	2	3	15	5
6	5	4	3	2	2	3	4	5	6

6-Filtrage du bruit par filtre moyenneur

- B	- J		
Pixel	Valeur initiale	Valeur bruitée	Filtre moyenneur
I (2, 2)	4	0	3
I (5, 5)	8	0	10
I (4, 7)	14	0	7
I(9, 5)	1	0	4
I (6,2)	1	15	6
I (6, 6)	8	15	9
I (9, 9)	4	15	5
I (7,4)	14	15	9
I (5, 2)	1	1	6
I (9, 2)	4	4	4
I (3, 9)	3	3	3
I (6, 9)	1	1	4

L'effet de filtre moyenneur

- Le filtre moyenneur
 - Permet de lisser l'image (smoothing)
 - Remplace chaque pixel par la valeur moyenne de ses voisins
 - Réduit le bruit
 - Réduit les détails non-important
 - Brouille ou rend floue l'image (blur edges)

7-Filtrage du bruit par filtre médian

Pixel	Valeur initiale	Valeur bruitée	Filtre médian
I (2, 2)	4	0	4
I (5, 5)	8	0	12
I (4, 7)	14	0	8
I(9, 5)	1	0	2
I (6,2)	1	15	2
I (6, 6)	8	15	12
I (9, 9)	4	15	4
I (7,4)	14	15	12
I (5, 2)	1	1	2
I (9, 2)	4	4	4
I (3, 9)	3	3	3
I (6, 9)	1	1	2

L'effet de filtre médian

Il existe mieux que le filtre moyenneur

8-le filtre le plus adapté

Erreur moyenneur =
$$(4 - 3)^2 + (8 - 10)^2 + (14 - 7)^2 + (1 - 4)^2 + (1 - 6)^2 + (8 - 9)^2 + (4 - 5)^2 + (14 - 9)^2 + (1 - 6)^2 + (4 - 4)^2 + (3 - 3)^2 + (1 - 4)^2 = 144$$

$$(4-4)^2 + (3-3)^2 + (1-4)^2 = 144$$

Erreur médiane = $(4-4)^2 + (8-12)^2 + (14-8)^2 + (1-2)^2 + (1-2)^2 + (8-12)^2 + (4-4)^2 + (14-12)^2 + (1-2)^2 + (4-4)^2 + (3-3)^2 + (1-2)^2 = 76$

Tant que Erreur médiane < Erreur moyenneur, donc le filtre médian est le plus adapté

9-le résultat d'un filtrage moyenneur sur le bord en haut à gauche avec la méthode zero-padding La matrice de l'image bruitée devient :

		•	•								
0	0	0	0	0	0	0	0	0	0	0	0
0	6	5	4	3	2	2	3	4	5	6	0
0	5	0	3	2	1	1	2	3	4	5	0
0	4	3	2	1	14	14	1	2	3	4	0
0	3	2	1	14	12	12	0	1	2	3	0
0	2	1	14	12	0	8	12	14	2	1	0
0	2	15	14	12	8	15	12	14	2	1	0
0	3	2	1	15	12	12	14	1	2	3	0
0	4	3	2	1	14	14	1	2	3	4	0
0	5	4	3	2	0	1	2	3	15	5	0
0	6	5	4	3	2	2	3	4	5	6	0
0	0	0	0	0	0	0	0	0	0	0	0

-la nouvelle valeur après le filtrage pour le pixel rouge

0	0	0
0	6	5
0	5	0

Nouvelle valeur = (0+0+0+0+5+5+0+0+6)/9

2	3				
3					
2					
2					
3					
2					
3					
3					
3					
2					

La même procédure pour les autres pixels de bord