Analyse 1

CORRIGE Serie n3

Exercice 1:

2. faix, on me peut mon due un (un). Contre exples
Un=(-D") Un=1 -> converge set war to out of
main (un) or conveye pap-
3. Vnoi
3. Frank; Conta-exple = les deux sous-sontes (ugn), (ugn), (ugn)
L. Vis, (Une) source sous-sinte de(Un) (corvers son linter be Un)
5. Vow; Un=Un.Un produit de deux soules un -> 1. 1
6. Four, on me peut neu die son la sonte (Un) a Contra explica
4 = 1 > - Va . Um Un = 0
7. Four, on se peut rin - due m (vo). Contre expla
$\frac{1}{n} \leq (-1)^n + 9 \leq \frac{4n+1}{n} > 4$ $ne c v pap.$
7. V201
9. Fame, un=n et vn=-00; un+ vn=0-00.
10, Fax; conta engle = vi(-1); it = (1)"; 10, xu=1-0.
1. Vnoi, touté ente de Eunel est bornée

Exercice 2

Pour tout entier n, posons $c_n = u_{6n}$.

- On a $c_n=a_{3n}$. La suite (c_n) est donc extraite de la suite (a_n) . On en déduit que la suite (c_n) est convergente de limite ℓ .
- On a $c_n = b_{2n}$. La suite (c_n) est donc extraite de la suite (b_n) . On en déduit que la suite (c_n) est convergente de limite ℓ' .
- Par unicité de la limite, il en découle $\ell=\ell'$.

Notons ℓ_a , ℓ_b et ℓ_c les limites respectives des suites (a_n) , (b_n) et (c_n) .

La suite de terme général $x_n = u_{6n} = a_{3n} = c_{2n}$ est extraite de la suite (a_n) .

La suite (x_n) est donc convergente de limite ℓ_a .

Mais la suite (x_n) est également extraite de la suite (c_n) .

Ell est donc convergente de limite ℓ_c .

Par unicité de la limite, on en déduit $\ell_a = \ell_c$.

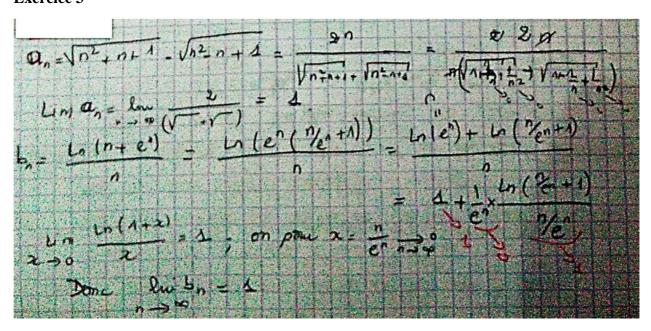
De même, la suite de terme général $y_n = u_{6n+3} = b_{3n+1} = c_{2n+1}$ est extraite de la suite (b_n) (donc convergente de limite ℓ_b) et extraite de la suite (c_n) (donc convergente de limite ℓ_c).

Par unicité de la limite, on en déduit $\ell_b = \ell_c$.

Finalement $\ell_a = \ell_b$. La suite des termes d'indices pairs et la suite des termes d'indices impairs de la suite (u_n) sont donc convergentes vers la même limite.

On en déduit que la suite (u_n) est convergente vers $\ell = \ell_a = \ell_b$.

Exercice 3



$$C_{n} = \frac{a^{n} \left(\lambda + \left(\frac{b}{a} \right)^{n} \right)}{b^{n} \left(\lambda + \left(\frac{b}{a} \right)^{n} \right)} \circ (a + a + b) \cdot \lim_{n \to \infty} a + b \cdot \lim_{n$$

$$h_{n} = \frac{1 - (y_{n})^{2}}{2^{k}} = \frac{1 - (y_{n})^{2}}{1 - (y_{n})^{2}} = \frac{1}{3} \times \frac{1 - (y_{n})^{2}}{1 - (y_{n})^{2}} = \frac{$$

Exercice 4

On écrit
$$u_n = \frac{1}{C_n^0} + \frac{1}{C_n^1} + \sum_{k=2}^{n-2} \frac{1}{C_n^k} + \frac{1}{C_n^{n-1}} + \frac{1}{C_n^n} = 2 + \frac{2}{n} + \sum_{k=2}^{n-2} \frac{1}{C_n^k}$$

Pour tout $n \ge 4$ et pour tout k de $\{2, \ldots, n-2\}$, on $a : \mathbb{C}_n^k \ge \mathbb{C}_n^2$ et $\mathbb{C}_n^2 = \frac{n(n-1)}{2}$.

On en déduit
$$2 \le u_n \le 2 + \frac{2}{n} + \frac{n-3}{C_n^2}$$
 c'est-à-dire : $2 \le u_n \le 2 + \frac{2}{n} + \frac{2(n-3)}{n(n-1)}$.

Finalement on trouve: $\lim_{n\to+\infty} u_n = 2$.

Montrons que pour tout $x \ge 0$, on a l'encadrement $x - \frac{1}{2}x^2 \le \ln(1+x) \le x$.

Pour cela on définit $x \mapsto \varphi(x) = x - \ln(1+x)$ et $x \mapsto \psi(x) = \ln(1+x) - x + \frac{1}{2}x^2$.

Pour tout $x \ge 0$, on $a : \varphi'(x) = 1 - \frac{1}{1+x} = \frac{x}{1+x} \ge 0$.

Pour tout
$$x \ge 0$$
, on a: $\psi'(x) = \frac{1}{1+x} - 1 + x = \frac{x^2}{1+x} \ge 0$.

Ainsi, les applications φ et ψ , qui sont nulles en 0, sont croissantes sur \mathbb{R}^+ . On en déduit que sur \mathbb{R}^+ elles sont à valeurs ≥ 0 , ce qu'il fallait prouver.

Pour tout
$$n \ge 1$$
, on a: $\ln u_n = \sum_{k=1}^n \ln(1 + \frac{k}{n^2})$.

Ainsi, en encadrant chaque terme de la somme : $\sum_{k=1}^n \left(\frac{k}{n^2} - \frac{k^2}{2n^4}\right) \le \ln u_n \le \sum_{k=1}^n \frac{k}{n^2}$

Autrement dit :
$$\frac{n+1}{2n} - \frac{(n+1)(2n+1)}{12n^3} \le \ln u_n \le \frac{n+1}{2n}$$
.

On fait tendre n vers $+\infty$ et on trouve : $\lim_{n\to+\infty} \ln u_n = \frac{1}{2}$ et donc $\lim_{n\to+\infty} u_n = \sqrt{e}$.

Par définition,
$$u_n = \sum_{k=1}^n \frac{n}{n^2 + k}$$
.

Pour tout entier k de $\{1, \ldots, n\}$, on a :

$$\frac{n}{n^2+n} \leq \frac{n}{n^2+k} \leq \frac{n}{n^2+1}$$

4

On en déduit l'encadrement $\frac{n^2}{n^2+n} \le u_n \le \frac{n^2}{n^2+1}$,.

En passant à la limlite quand $n \to +\infty$, on trouve donc $\lim_{n \to +\infty} u_n = 1$.

On écrit
$$u_n = \frac{1}{n!} \sum_{k=1}^{n-2} k! + \frac{1}{n} + 1 \ge 1.$$

Pour chaque k de $\{1, \ldots, n-2\}$, on a $k! \leq (n-2)!$.

On en déduit un encadrement de $u_n: 1 \le u_n \le 1 + \frac{1}{n} + (n-2)\frac{(n-2)!}{n!}$.

Autrement dit : $\forall n \geq 2, \ 1 \leq u_n \leq 1 + \frac{1}{n} + \frac{n-2}{n(n-1)}$. Il en découle $\lim_{n \to +\infty} u_n = 1$.

Exercice 5

(a) Il suffit de dresser le tableau de variation des fonctions $x \mapsto \ln(1+x) - x + \frac{1}{2}x^2$ et $x \mapsto x - \ln(1+x)$.

$$\ln u_n \le \sum_{k=1}^n \frac{k}{n^2} = \frac{(n+1)}{2n} \to \frac{1}{2}$$

et

$$\ln u_n \ge \sum_{k=1}^n \left(\frac{k}{n^2} - \frac{k^2}{n^4} \right) = \frac{n+1}{2n} - \frac{(n+1)(2n+1)}{6n^3} \to \frac{1}{2}$$

donc

$$u_n \to \sqrt{e}$$

Exercice 6

En exploitant la formule sin(2x) = 2 sin x cos x

$$\sin \frac{a}{2^n} P_n = \frac{1}{2} \sin \frac{a}{2^{n-1}} \cos \frac{a}{2^{n-1}} \cdots \cos \frac{a}{2} = \dots = \frac{1}{2^n} \sin(a)$$

Si a = 0 alors $P_n = 1 \rightarrow 1$.

Si $a \neq 0$ alors, pour n assez grand, $\sin(a/2^n) \neq 0$ et

$$P_n = \frac{\sin(a)}{2^n \sin \frac{a}{2^n}}$$

Puisque

$$\frac{\sin(x)}{x} = \frac{\sin(x) - \sin 0}{x - 0} \xrightarrow[x \to 0]{} \cos(0) = 1$$

on a

$$\frac{\sin a/2^n}{a/2^n} \underset{n \to +\infty}{\longrightarrow} 1$$

puis

$$P_n = \frac{\sin(a)}{2^n \sin \frac{a}{2^n}} \xrightarrow[n \to +\infty]{} \frac{\sin(a)}{a}$$

car

$$2^n \sin \frac{a}{2^n} \underset{n \to +\infty}{\sim} 2^n \frac{a}{2^n} = a$$

Exercice 7

- La suite (u_n) est croissante car $u_{n+1} u_n = \frac{1}{(n+1)!} > 0$.
- La suite (v_n) est décroissante car :

$$v_{n+1} - v_n = u_{n+1} - u_n + \frac{1}{(n+1)(n+1)!} - \frac{1}{n(n!)} = \frac{1}{(n+1)!} + \frac{1}{(n+1)(n+1)!} - \frac{1}{n(n!)}$$
$$= \frac{n(n+1) + n - (n+1)^2}{n(n+1)(n+1)!} = \frac{-1}{n(n+1)(n+1)!} < 0$$

- Enfin $\lim_{n \to +\infty} v_n u_n = \lim_{n \to +\infty} \frac{1}{n(n!)} = 0.$
- Les trois propriétés précédentes prouvent que les suites (u_n) et (v_n) sont adjacentes. Elles sont donc convergentes et ont une même limite ℓ .
- On peut prouver que $\lim_{n\to+\infty}u_n=\lim_{n\to+\infty}v_n=$ e.
- Pour tout entier n, on a $u_n < \ell < v_n$.

On en déduit l'encadrement : $n(n!)u_n < n(n!)\ell < n(n!)v_n$.

Mais $N = n(n!)u_n$ est un entier et $n(n!)v_n = N + 1$.

Cela prouve que $n(n!)\ell$ n'est jamais un entier, quelque soit n.

Il en découle que ℓ est irrationnel (par l'absurde, considérer n égal au dénominateur de ℓ).

Par une récurrence évidente, (u_n) et (v_n) sont bien définies et sont à valeurs > 0.

Pour tout $n \ge 0$, on a: $v_{n+1} - u_{n+1} = \frac{u_n + v_n}{2} - \sqrt{u_n v_n} = \frac{1}{2} (\sqrt{v_n} - \sqrt{u_n})^2 \ge 0$.

On en déduit que pour tout $n \ge 1$, on a l'inégalité : $u_n \le v_n$.

Dans ces conditions : $\forall n \geq 0, u_{n+1} = \sqrt{u_n v_n} \geq u_n$ et $v_{n+1} = \frac{u_n + v_n}{2} \leq v_n$.

La suite (u_n) est donc croissante, et la suite (v_n) décroissante, à partir de n=1.

En utilisant ce qui précède, on trouve : $\forall n \geq 1, u_1 \leq u_n \leq v_1 \leq v_1$.

Ainsi la suite (u_n) est croissante majorée, et la suite (v_n) est décroissante minorée.

On en déduit que ces deux suites sont convergentes.

Posons $\ell = \lim_{n \to +\infty} u_n$ et $\ell' = \lim_{n \to +\infty} v_n$.

Si on passe à la limite dans l'égalité $v_{n+1}=\frac{u_n+v_n}{2}$ on trouve $\ell'=\frac{\ell+\ell'}{2}$ donc $\ell=\ell'$.

Conclusion: les deux suites (u_n) et (v_n) sont adjacentes.

Par une récurrence évidente, (u_n) et (v_n) sont bien définies et sont à valeurs > 0.

Pour tout
$$n \ge 0$$
, on a: $v_{n+1} - u_{n+1} = \frac{u_n + v_n}{2} - \frac{2u_n v_n}{u_n + v_n} = \frac{(v_n - u_n)^2}{2(u_n + v_n)} \ge 0$.

On en déduit que pour tout $n \geq 1$, on a l'inégalité : $u_n \leq v_n$.

Dans ces conditions, pour tout entier naturel n:

$$\frac{2}{u_{n+1}} = \frac{1}{u_n} + \frac{1}{v_n} \le \frac{2}{u_n} \text{ (donc } u_n \le u_{n+1}) \text{ et } v_{n+1} = \frac{u_n + v_n}{2} \le v_n.$$

La suite (u_n) est donc croissante, et la suite (v_n) décroissante, à partir de n=1.

En utilisant ce qui précède, on trouve : $\forall n \geq 1, u_1 \leq u_n \leq v_n \leq v_1$.

Ainsi la suite (u_n) est croissante majorée, et la suite (v_n) est décroissante minorée.

On en déduit que ces deux suites sont convergentes.

Posons
$$\ell = \lim_{n \to +\infty} u_n$$
 et $\ell' = \lim_{n \to +\infty} v_n$.

Si on passe à la limite dans l'égalité $v_{n+1} = \frac{u_n + v_n}{2}$ on trouve $\ell' = \frac{\ell + \ell'}{2}$ donc $\ell = \ell'$.

Conclusion: les deux suites (u_n) et (v_n) sont adjacentes.

Exercice 8

On voit que les deux suites sont parfaitement définies et à termes strictement positifs.

Pour tout entier
$$n$$
, on a : $v_{n+1} - u_{n+1} = \frac{v_n^2 - u_n^2}{u_n + v_n} = v_n - u_n$.

Autrement dit la suite de terme général $d_n = v_n - u_n$ est constante.

On peut donc écrire, pour tout $n \ge 0$: $v_n = u_n + v_0 - u_0$.

D'autre part :
$$\forall n \in \mathbb{N}, \frac{v_{n+1}}{u_{n+1}} = \left(\frac{v_n}{u_n}\right)^2$$
. Ainsi : $\forall n \in \mathbb{N}, \frac{v_n}{u_n} = \left(\frac{v_0}{u_0}\right)^{2^n}$.

Posons
$$\lambda = v_0 - u_0$$
 et $\mu = \frac{v_0}{u_0}$.

- On constate que si $u_0 = v_0$, alors $u_1 = v_1 = \frac{u_0}{2}$ et plus généralement $u_n = v_n = \frac{u_0}{2^n}$ pour tout n. Les deux suites (u_n) et (v_n) sont alors convergentes vers 0

7

– On suppose donc $u_0 \neq v_0$, c'est-à-dire $\lambda \neq 0$ et $\mu \neq 1$.

Pour tout entier
$$n$$
, on a : $v_n = u_n \mu^{2^n} = u_n + \lambda$, donc $u_n = \frac{\lambda}{\mu^{2^n} - 1}$.

$$\diamond$$
 Supposons 0 < μ < 1, c'est-à-dire 0 < $v_0 < u_0.$

Alors
$$\lim_{n \to +\infty} \mu^{2^n} = 0$$
 donc $\lim_{n \to +\infty} u_n = -\lambda > 0$ donc $\lim_{n \to +\infty} v_n = 0$.

$$\diamond$$
 Supposons $1 < \mu$, c'est-à-dire $0 < u_0 < v_0$.

Alors
$$\lim_{n \to +\infty} \mu^{2^n} = +\infty$$
 donc $\lim_{n \to +\infty} u_n = 0$ donc $\lim_{n \to +\infty} v_n = \lambda > 0$.

La suite u est définie par $u_{n+1} = f(u_n)$, où $f(x) = \sqrt{12 - x}$.

L'application f réalise une bijection décroissante de $]-\infty,12]$ sur $[0,+\infty[$.

Pour que u_1 soit défini, il est nécessaire que $u_0 \le 12$.

Pour que u_2 soit défini, il faut alors $u_1 \le 12$, c'est-à-dire $12 - u_0 \le 144$, donc $u_0 \ge -132$.

Réciproquement, si $-132 \le u_0 \le 12$, alors $0 \le u_1 \le 12$ puis $0 \le u_n \le 12$ pour tout n.

L'équation $\ell = f(\ell)$ équivaut à $\ell^2 + \ell - 12 = 0$ et $\ell \ge 0$.

Or
$$\ell^2 + \ell - 12 = (\ell - 3)(\ell + 4)$$
.

La seule limite finie possible de la suite u est donc $\ell = 3$.

Pour tout
$$n \ge 0$$
: $u_{n+1} - 3 = \sqrt{12 - u_n} - \sqrt{12 - 3} = \frac{3 - u_n}{\sqrt{12 - u_n} + 3}$.

On en déduit $|u_{n+1} - 3| \le \frac{1}{3} |u_n - 3|$ et donc : $\forall n \ge 0, |u_n - 3| \le \left(\frac{1}{3}\right)^n |u_0 - 3|$.

Il en découle $\lim_{n \to +\infty} |u_n - 3| = 0$ c'est-à-dire $\lim_{n \to +\infty} u_n = 3$.

Remarque:

La suite u n'est pas monotone. On montre en effet que pour tout choix de u_0 , les suites de terme général $v_n = u_{2n}$ et $w_n = u_{2n+1}$ sont adjacentes, de limite commune $\ell = 3$.

Exercice 9

La suite u est définie par $u_{n+1} = f(u_n)$, avec $f(x) = \frac{1}{2}(x + \frac{a}{x})$.

Par une récurrence évidente, on voit que u_n est défini et strictement positif pour tout n.

On a
$$f(x) - x = \frac{a - x^2}{2x}$$
.

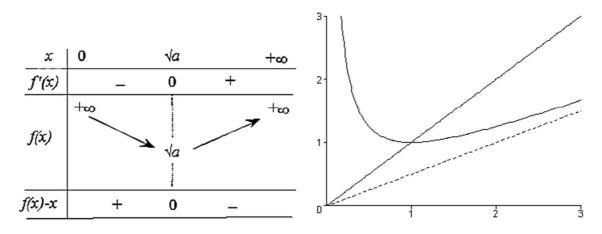
En particulier $f(x) = x \Leftrightarrow x = \sqrt{a}$.

La seule limite finie possible de la suite u est donc $\ell = \sqrt{a}$.

Pour tout
$$x > 0$$
, on a : $f'(x) = \frac{x^2 - a}{2x^2}$

On en déduit le tableau de variations de f (avec le signe de f(x) - x), et la courbe de f (avec

a=1, l'asymptote $y=\frac{x}{2}$ et la bissectrice y=x) :



On peut maintenant étudier la suite u, suivant les valeurs de u₀.

- Si $\sqrt{a} < u_0$.

Pour tout $x > \sqrt{a}$, on a $\sqrt{a} < f(x) < x$.

En particulier $\sqrt{a} < u_1 < u_0$ et $\sqrt{a} < u_2 < u_1$.

Par une récurence évidente, on trouve : $\forall n \geq 0, \sqrt{a} < u_{n+1} < u_n$.

La suite u, décroissante et minorée, converge vers sa seule limite finie possible $\ell=\sqrt{a}$.

– Si $u_0 = \sqrt{a}$.

Dans ce cas, la suite u est constante : $\forall n \geq 0, u_n = \sqrt{a}$.

- Si $0 < u_0 < \sqrt{a}$.

On constate que $u_1 = f(u_0) > \sqrt{a}$. On est donc ramené au premier cas.

– Conclusion : Dans tous les cas, $\lim_{n\to+\infty} u_n = \sqrt{a}$.

Remarque:

Puisque $f'(\sqrt{a}) = 0$, la convergence vers $\ell = \sqrt{a}$ est très rapide.

On peut en effet écrire :

$$u_{n+1} - \ell = f(u_n) - f(\ell)$$

= $(u_n - \ell)f'(\ell) + \frac{1}{2}(u_n - \ell)^2 f''(\ell) + o((u_n - \ell)^2) \sim \frac{1}{2\ell}(u_n - \ell)^2$

On dit que la convergence est de type quadratique. Dans la pratique, le nombre de décimales exactes, dans l'approximation $u_n \approx \sqrt{a}$, double à peu près à chaque itération.

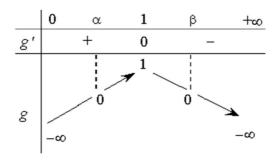
9

La suite u est définie par $u_{n+1} = f(u_n)$, avec $f(x) = 2 + \ln x$.

L'application f est une bijection strictement croissante de \mathbb{R}^{+*} sur \mathbb{R} .

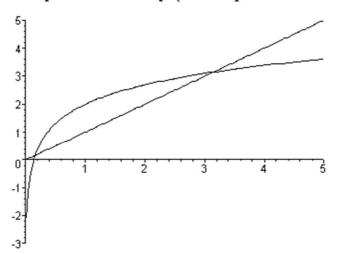
Sur
$$\mathbb{R}^{+*}$$
, on pose $g(x) = f(x) - x = 2 + \ln x - x$. On a $g'(x) = \frac{1}{x} - 1$.

Voici les variations de g. L'équation f(x) = x possède donc deux solutions distinctes α et β . On trouve $\alpha \approx 0.1585943396$ et $\beta \approx 3.146193221$.



 α et β sont les deux seules limites finies possibles de la suite u.

Voici maintenant la courbe représentative de f (avec la première bissectrice) :



On peut maintenant étudier la suite u, suivant les valeurs de u_0 .

- Si $u_0 = \alpha$ ou $u_0 = \beta$. La suite u est constante : $\forall n \geq 0, u_n = u_0$.
- Si $\alpha < u_0 < \beta$.

Pour tout x de $]\alpha, \beta[$, on a : $\alpha < x < f(x) < \beta$.

En particulier $\alpha < u_0 < u_1 < \beta$ et $\alpha < u_1 < u_2 < \beta$.

Plus généralement, une récurrence évidente donne : $\forall n \geq 0, \alpha < u_n < u_{n+1} < \beta$.

La suite u, majorée et croissante, est donc convergente.

Ici on a manifestement $\lim u_n = \beta$ (l'autre limite possible, α , est ici exclue).

- Si $\beta < u_0$.

Pour tout x de β , $+\infty$, on a : $\beta < f(x) < x$. En particulier $\beta < u_1 < u_0$ et $\beta < u_2 < u_1$.

Plus généralement, une récurrence évidente donne : $\forall n \geq 0, \alpha < \beta < u_{n+1} < u_n$.

La suite u, minorée et décroissante, est donc convergente.

Ici encore on a manifestement $\lim_{n\to+\infty} u_n = \beta$ (α est exclu).

- Si $0 < u_0 < \alpha$.

On a vérifier que la suite u n'est pas définie à partir d'un certain rang.

Pour cela on raisonne par l'absurde, et on suppose donc que pour tout n, u_n existe (et est donc strictement positif pour permettre le calcul de u_{n+1}).

Pour tout x de $]0, \alpha[$, on a $f(x) < x < \alpha$.

En particulier $0 < u_1 < u_0 < \alpha$ et $0 < u_2 < u_1 < \alpha$.

Plus généralement, une récurrence évidente donne : $\forall n \geq 0, 0 < u_{n+1} < u_n < \alpha < \beta$.

La suite u, minorée et décroissante, est donc convergente.

On aboutit à une contradiction car les deux seules limites possibles, α et β sont ici exclues.

Conclusion : si $0 < u_0 < \alpha$, alors la suite u n'est pas définie à partir d'un certain rang.

La suite (u_n) est bien définie car sa fonction itératrice $f: x \mapsto e^x - 1$ est définie sur \mathbb{R} .

Pour $n \ge 1$, $u_{n+1} - u_n = e^{u_n} - e^{u_{n-1}}$ est du signe de $u_n - u_{n-1}$.

La suite (u_n) est monotone et de monotonie déterminée par le signe de

 $u_1 - u_0 = e^{u_0} - u_0 - 1$.

Étudions la fonction $g(x) = e^x - x - 1$ définie sur \mathbb{R} .

g est dérivable et $g'(x) = e^x - 1$ du signe de x. g(0) = 0 donc g est positive.

Si $u_0 = 0$ alors (u_n) est constante égale à 0.

Si $u_0 > 0$ alors (u_n) est croissante. Si (u_n) converge vers un réel ℓ alors $\ell = e^{\ell} - 1$ donc $\ell = 0$.

Or (u_n) est minorée par $u_0 > 0$ donc ne peut converger vers 0. Par suite (u_n) diverge vers $+\infty$.

Si $u_0 < 0$ alors (u_n) est croissante et majorée par 0 donc (u_n) converge vers la seule limite finie possible 0.

Exercice 10

1. La fonction $x \mapsto \frac{1}{x}$ est continue et décroissante sur $]0, +\infty[$ et donc, pour $k \in \mathbb{N}^*$, on a :

$$\frac{1}{k+1} = (k+1-k)\frac{1}{k+1} \leqslant \int_{k}^{k+1} \frac{1}{x} \, dx \leqslant (k+1-k)\frac{1}{k} = \frac{1}{k}.$$

Donc, pour $k \ge 1$, $\frac{1}{k} \ge \int_k^{k+1} \frac{1}{x} dx$ et, pour $k \ge 2$, $\frac{1}{k} \le \int_{k-1}^k \frac{1}{x} dx$. En sommant ces inégalités, on obtient pour $n \ge 1$,

$$H_n = \sum_{k=1}^n \frac{1}{k} \ge \sum_{k=1}^n \int_k^{k+1} \frac{1}{x} dx = \int_1^{n+1} \frac{1}{x} dx = \ln(n+1),$$

et pour $n \ge 2$,

$$H_n = 1 + \sum_{k=2}^n \frac{1}{k} \le 1 + \sum_{k=2}^n \int_{k-1}^k \frac{1}{x} dx = 1 + \int_1^n \frac{1}{x} dx = 1 + \ln n,$$

cette dernière inégalité restant vraie quand n = 1. Donc,

$$\forall n \in \mathbb{N}^*, \ln(n+1) \leqslant H_n \leqslant 1 + \ln n.$$

Soit n un entier naturel non nul.

$$u_{n+1} - u_n = \frac{1}{n+1} - \ln(n+1) + \ln n = \frac{1}{n+1} - \int_n^{n+1} \frac{1}{x} \, dx = \int_n^{n+1} \left(\frac{1}{n+1} - \frac{1}{x} \right) \, dx \le 0$$

car la fonction $x \mapsto \frac{1}{x}$ décroit sur [n, n+1]. De même,

$$v_{n+1} - v_n = \frac{1}{n+1} - \ln(n+2) + \ln(n+1) = \frac{1}{n+1} - \int_{n+1}^{n+2} \frac{1}{x} dx = \int_{n+1}^{n+2} \left(\frac{1}{n+1} - \frac{1}{x} \right) dx \ge 0$$

car la fonction $x \mapsto \frac{1}{r}$ décroit sur [n+1,n+2]. Enfin,

$$u_n - v_n = \ln(n+1) - \ln n = \ln\left(1 + \frac{1}{n}\right)$$

et donc la suite u - v tend vers 0 quand n tend vers $+\infty$. Finalement, la suite u décroit, la suite v croit et la suite u - v tend vers 0. On en déduit que les suites u et v sont adjacentes, et en particulier convergentes et de même limite. Notons γ cette limite. Pour tout entier naturel non nul n, on a $v_n \le \gamma \le u_n$, et en

particulier, $v_3 \le \gamma \le u_1$ avec $v_3 = 0,5...$ et $u_1 = 1$. Donc, $\gamma \in \left[\frac{1}{2},1\right]$. Plus précisément, pour n entier naturel non nul donné, on a

$$0 \le u_n - v_n \le \frac{10^{-2}}{2} \Leftrightarrow \ln\left(1 + \frac{1}{n}\right) \le 0,005 \Leftrightarrow \frac{1}{n} \le e^{0,005} - 1 \Leftrightarrow n \ge \frac{1}{e^{0,005} - 1} = 199,5... \Leftrightarrow n \ge 200.$$

Donc $0 \le \gamma - v_{100} \le \frac{10^{-2}}{2}$ et une valeur approchée de v_{200} à $\frac{10^{-2}}{2}$ près (c'est-à-dire arrondie à la 3 ème décimale la plus proche) est une valeur approchée de γ à 10^{-2} près. On trouve $\gamma = 0,57$ à 10^{-2} près par défaut. Plus précisément,

$$\gamma = 0,5772156649...$$
 (γ est la constante d'EULER).

Soit k un entier naturel non nul. On sait que $\sum_{i=1}^k i^2 = \frac{k(k+1)(2k+1)}{6}$. Déterminons alors trois réels a, b et c tels que, pour entier naturel non nul k,

$$\frac{6}{k(k+1)(2k+1)} = \frac{a}{k} + \frac{b}{k+1} + \frac{c}{2k+1} (*).$$

Pour k entier naturel non nul donné,

$$\frac{a}{k} + \frac{b}{k+1} + \frac{c}{2k+1} = \frac{a(k+1)(2k+1) + bk(2k+1) + ck(k+1)}{k(k+1)(2k+1)} = \frac{(2a+2b+c)k^2 + (3a+b+c)k + a}{k(k+1)(2k+1)}.$$

Par suite,

$$(*) \Leftarrow \left\{ \begin{array}{l} 2a + 2b + c = 0 \\ 3a + b + c = 0 \\ a = 6 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a = 6 \\ b = 6 \\ c = -24 \end{array} \right.,$$

et donc,

$$\forall n \in \mathbb{N}^*, \ \sum_{k=1}^n \frac{6}{k(k+1)(2k+1)} = 6\left(\sum_{k=1}^n \frac{1}{k} + \sum_{k=1}^n \frac{1}{k+1} - 4\sum_{k=1}^n \frac{1}{2k+1}\right).$$

Ensuite, d'après l'exercice 3, quand n tend vers $+\infty$, $\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + o(1)$ puis

$$\sum_{k=1}^{n} \frac{1}{k+1} = \sum_{k=2}^{n+1} \frac{1}{k} = H_{n+1} - 1 = -1 + \ln(n+1) + \gamma + o(1) = \ln n + \ln\left(1 + \frac{1}{n}\right) + \gamma - 1 + o(1) = \ln n + \gamma - 1 + o(1).$$

Enfin.

$$\sum_{k=1}^{n} \frac{1}{2k+1} = -1 + \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{2k} = -1 + H_{2n+1} - \frac{1}{2}H_n$$

$$= \ln(2n+1) + \gamma - \frac{1}{2}(\ln n + \gamma) - 1 + o(1) = \ln 2 + \ln n + \ln\left(1 + \frac{1}{2n}\right) + \gamma - \frac{1}{2}\ln n - \frac{1}{2}\gamma - 1 + o(1)$$

$$= \frac{1}{2}\ln n + \ln 2 + \frac{1}{2}\gamma - 1 + o(1)$$

Finalement, quand n tend vers $+\infty$, on a

$$\sum_{k=1}^{n} \frac{1}{2k+1} = -1 + \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{2k} = -1 + H_{2n+1} - \frac{1}{2}H_{n}$$

$$= \ln(2n+1) + \gamma - \frac{1}{2}(\ln n + \gamma) - 1 + o(1) = \ln 2 + \ln n + \ln\left(1 + \frac{1}{2n}\right) + \gamma - \frac{1}{2}\ln n - \frac{1}{2}\gamma - 1 + o(1)$$

$$= \frac{1}{2}\ln n + \ln 2 + \frac{1}{2}\gamma - 1 + o(1)$$

Finalement, quand n tend vers $|\infty$, on a

$$\sum_{k=1}^{n} \frac{1}{1^2 + 2^2 + \dots + k^2} = 6\left(\ln n + \gamma + \ln n + \gamma - 1 - 4\left(\frac{1}{2}\ln n + \ln 2 + \frac{1}{2}\gamma - 1\right)\right) = 6(3 - 4\ln 2) + o(1).$$

Donc,

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{1^2 + 2^2 + \dots + k^2} = 6(3 - 4 \ln 2).$$

Exercice 11:

On colule:

$$|T_{n+p}-T_{n}| = |\sum_{k=1}^{n+p} \frac{k}{2^k} \sum_{k=1}^{n+p} \frac{k}{2^k} |$$
 $|T_{n+p}-T_{n}| = |\sum_{k=1}^{n+p} \frac{k}{2^k} |$
 $|T_{n+p}-T_{n}| = |\sum_{k=1}^{n+p} \frac{k}{2^k} |$
 $|T_{n+p}-T_{n}| = |\sum_{k=1}^{n+p} \frac{k}{2^k} |$
 $|T_{n+p}-T_{n}| = |T_{n+p}-T_{n}|$
 $|T_{n+p}-T_{n}| = |T_{n}-T_{n}|$
 $|T_{n}-T_{n}| =$

