الدوال العددية والاشتقاق

الدالة العددية لمتغير حقيقي: هي الدالة التي مجموعة بدئها $\mathbb R$ ، ومجموعة وصولها هي $\mathbb R$.

- x_0 عددیة معرفة عند a,b [و a,b [اله عددیة معرفة علی a,b] معرفة عند a,b النهایة المان a,b النهایة المان a,b الهان الهان a,b الهان الهان
- : ε عنی العبارة "عندما یؤول x إلی x ، تؤول x الی x الی y انه بإعطاء x عکن إیجاد x یرتبط به x . x الذي یضمن x الذی یضمن x الدی یوند x الدی یوند x الدی یضمن x الدی یوند x الدی الدی یوند x الدی الدی یوند x الدی الدی یوند x الدی الدی یوند x الدی یوند x الدی الدی الدی یوند x الدی الدی الدی یوند x الدی الدی ا

الاستمرار إذا افترضنا أن الدالة (x) المعرفة على الجال a,b [تقبل، عندما $x \to x_0$ النهاية $x \to x_0$ الله عن $\lim_{x \to x_0} f(x) = f(x_0)$ النهاية $\lim_{x \to x_0} f(x) = f(x_0)$. $\lim_{x \to x_0} f(x) = f(x_0)$

$$x_{0} \in D_{f}$$
 $\lim_{x \to x_{0}^{-}} f(x) = \lim_{x \to x_{0}^{+}} f(x) = f(x_{0})$ آکون الدالة f مستمرة عند f إذا تحقق:

- . I المحال f مستمرة عند كل نقطة من مجال f من \mathbb{R} ، نقول أن f مستمرة على المجال f
- كل دالة f مستمرة على مجال مغلق I، تكون محدودة من الأعلى بحدها الأعلى $M = \operatorname{Sup} f$ ومحدودة من الأدنى $m = \operatorname{Inf} f$

 $\lim_{x\to x_0^-} f(x) = \lim_{x\to x_0^+} f(x)$ مع $\int_0^{\infty} dx$ مع والدالة $\int_0^{\infty} dx$

$$g\left(x\right) = \begin{cases} f\left(x\right) &, & x \neq x_0 \\ \lim_{x \to x_0} f\left(x\right) &, & x = x_0 \end{cases} \quad : يمكن تمديد f بالاستمرار كما يلي :$$

 $\cdot \left(D_f \supset \right) \; I$ ليكن $t \in \mathcal{C}$ ، تكون الدالة t مستمرة على

 $\forall x, y \in I$, $|f(x)-f(y)| \le k|x-y|$ إذا حققت دالة f على المجال I الشرط الآتي:

نظرية القيم المتوسطة

[a,b] دالة معرفة ومستمرة على f

(f(b)) و f(a) من أجل كل قيمة y محصورة بين

y = f(c) و a بین a و محصورة بین c قیمة عصورة بین a

نتیجة إذا کانت f معرفة ومستمرة علی مجال مغلق ومحدود f (a,b)، بحیث یکون f (a) و f (a) من إشارتین مختلفتین، فإن f تنعدم علی الأقل عند قیمة f من f

الاشتقاق نفرض أن f(x) مستمرة عند عند افترضنا

أن الدالة $x=x_0$ غير المعرفة عند $x=x_0$ تقبل نماية عندما يؤول x إلى $x=x_0$ نقول أن الدالة أن الدالة

 x_0 عند النقطة x_0 تُسمى هذه النهاية العدد المشتق عند x_0

y = f

$$f'(x_0)$$
 وجد العدد المشتق عن $\Leftrightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ وجد العدد المشتق f

$$(\Gamma)$$
 من $M_{\Lambda}(x;f(x))$ و $A(a;f(a))$ و معلم كيفي. $A(a;f(a))$ من $M_{\Lambda}(x;f(x))$ المنحنى الممثل للدالة $M_{\Lambda}(x;f(x))$

 $(A \neq M)$ فإن $x \neq a$

$$AM$$
 ويكون معامل توجيه المستقيم . $\frac{f(x)-f(a)}{a}$

$$AM$$
 ويكون معامل توجيه المستقيم $\frac{f(x)-f(a)}{x-a}$.

a النقطة f تقبل للاشتقاق عند النقطة f

$$\stackrel{\frown}{(\Delta)}$$
 a ينتهي إلى المماس $\stackrel{\frown}{(\Delta)}$ لا $\stackrel{\frown}{(\Gamma)}$ عند $\stackrel{\frown}{(\Delta)}$ فإن

$$y - f(a) = (x - a)f'(a)$$
 : الذي معادلته

وغير الموازي لمحور التراتيب.

$$D \ni x_0$$
 . D دالة معرفة على عن اليمين f دالة معرفة

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$$
 قبل الاشتقاق عن يمين $x \to x_0$ فجدت النهاية $x \to x_0$

 $.f'(x_0^+)$ أي إذا وحد العدد المشتق عن اليمين

$$g(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 :ثدرس اشتقاق الدالة $g(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$

$$\lim_{x\to 0^{-}} e^{-\frac{1}{x^{2}}} = \lim_{x\to 0^{+}} e^{-\frac{1}{x^{2}}} = 0 : ناصفر لأن: g(x)$$

. $[\,0\,,+\infty\,[\,$ المحان دراسة تغيرات الدالة الزوجية $g\left(x
ight)$ على نصف المجال

$$g'(x) = \begin{cases} \frac{-\frac{1}{x^2}}{x^3}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 عند 0. ولدينا: $g(x)$ تقبل الاشتقاق عند 0. ولدينا: $g(x) = \frac{g'(x) - g(x)}{x^3}$ نستنتج أن $g(x)$ تقبل الاشتقاق عند 0. ولدينا:

قضية إذا كانت الدالة f تقبل للاشتقاق عند النقطة a، فإنحا مستمرة عند a. العكس غير صحيح. الدالة المشتقة f دالة عددية لمتغير حقيقي x من f

A. من A من على على من A من A تقبل الاشتقاق عند أية قيمة A من A تقبل الاشتقاق على A من

عمليات على الدوال القابلة للاشتقاق إذا كانت f و g دالتين تقبلان الاشتقاق على مجال I، فإن

- $\forall x \in I \quad (f+g)'(x) = f'(x) + g'(x)$: ولدينا ولدينا على مجال f ولدينا ولدينا ولدينا ولدينا على على على الاشتقاق على مجال g
- $(f\cdot g)'(x)=f'(x)\cdot g(x)+f(x).g'(x)$: تقبل الاشتقاق على محال I، ولدينا $f\cdot g$
- $(\lambda f)'(x) = \lambda f'(x)$: من $\lambda f'(x) = \lambda f'(x)$ من أجل كل $\lambda f'(x) = \lambda f'(x)$ من أجل كل الشتقاق على مجال الاشتقاق على م

: ولدينا الشتقاق على مجال g(x) ولدينا g(x) إذا كان g(x) ولدينا g(x)

$$\forall x \in I \quad \left(\frac{f}{g}\right)'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^{2}(x)}$$

الاشتقاق والرتابة f دالة تقبل الاشتقاق على المحال I

 $f'(x_0)=0$ فإن x_0 عند وتبلغ أحد حديها عند f فإن f قبل الاشتقاق عند f وتبلغ أحد حديها عند وأداكانت الدالة f

 $\forall x \in I \ f(x) - f(x_0) \ge 0$ افترضنا أن $f(x_0) = \inf_{x \in I} f(x)$ فسيكون لدينا

 $\cdot f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \le 0$ فإن $x - x_0 < 0$ وبما أن $f(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \le 0$ فإن $f(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \le 0$

 $f'(x_0)=0$ فإن $f'(x_0)\geq 0$ فإن $x-x_0>0$ أما إذا كان

- . x_0 النقطة عند النقطة f' عند النقطة عند النقطة f' فإن $f'(x_0) = 0$ الخاكان $f'(x_0) = 0$
- . x_0 انقطة انعطاف عند النقطة f'' و $f''(x_0) = 0$ عند النقطة ونا النقطة f'' و النقطة والنقطة والنقطة

 $\forall x \in I \quad (g \circ f)'(x) = g'(f(x)) \times f'(x)$ قبل الاشتقاق عند كل نقط الجال . I ولدينا:

 $\forall x \in \mathbb{R} \quad (\cos x)' = -\sin x$ $\forall x \in \mathbb{R} \quad (\sin x)' = \cos x$

- n من أجل كل عدد صحيع $f'(x) = n x^{n-1}$ هو $f'(x) = n x^{n-1}$ من أجل كل عدد صحيع
- $\forall x \in \mathbb{R} \quad (e^x)' = e^x \quad \text{a.} \quad \lim_{x \to a} \frac{e^x e^a}{x a} = e^a \cdot \lim_{x \to a} \frac{e^{x a} 1}{x a} = e^a \cdot \lim_{t \to 0} \frac{e^t 1}{t} = e^a \cdot 1 = e^a$
 - f(b) < b و a < f(a) بحيث a < f(a) بحيث لتكن f(b) < b

 $f'(x) \le g'(x)$:] a,b [من أجل كل $f(a) \le g(a)$ أن $f(a) \le g(a)$

f(c) = c نثبت أنه يوجد a,b من a,b بحيث

على [a,b]، ولدينا ولدينا ، g مستمرة على الدالة g . g(x) = f(x) - x

 $a < f(a) \Leftrightarrow f(a) - a > 0 \Leftrightarrow g(a) > 0$

 $f(b) < b \Leftrightarrow f(b) - b < 0 \Leftrightarrow g(b) < 0$

f(c) = c أي g(c) = 0 أي a,b أي ومنه يوجد

 $g(x) = \begin{cases} \frac{x}{e^x - 1}, & x \neq 0 \\ 1, & x = 0 \end{cases}$: المعرفة بالشكل g(x) المعرفة بالشكل •

بين أن g(x) مستمرة وتقبل الاشتقاق على مجموعة تعريفها. ادرس وجود الخطوط المقاربة.

$$g(0) = \lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{+}} g(x) = +1$$
 :غد الصفر لأن عند الصفر لأن عند الصفر أي عند الصفر الأن عند الصفر أي عند أي عند

$$g'(0) = \lim_{x \to 0} \frac{g(x) - g(0)}{x - 0} = \lim_{x \to 0} \frac{\frac{x}{e^x - 1} - 1}{x - 0} = \lim_{x \to 0} \frac{x - e^x + 1}{x (e^x - 1)} = -\frac{1}{2}$$

$$g'(x) = \begin{cases} \frac{-xe^x + e^x - 1}{(e^x - 1)^2}, & x \neq 0 \\ & : & \text{i.i.} \end{cases}$$

$$= \begin{cases} \frac{-xe^x + e^x - 1}{(e^x - 1)^2}, & x \neq 0 \\ & : & \text{i.i.} \end{cases}$$

$$= \begin{cases} \frac{-xe^x + e^x - 1}{(e^x - 1)^2}, & x \neq 0 \\ & : & \text{i.i.} \end{cases}$$

$$= \begin{cases} \frac{-xe^x + e^x - 1}{(e^x - 1)^2}, & x \neq 0 \\ & : & \text{i.i.} \end{cases}$$

$$= \begin{cases} \frac{-xe^x + e^x - 1}{(e^x - 1)^2}, & x \neq 0 \\ & : & \text{i.i.} \end{cases}$$

 $\lim_{x \to -\infty} \frac{g(x)}{x} = -1$ و $\lim_{x \to -\infty} \left(g(x) - x \right) = 0$ و $\lim_{x \to +\infty} g(x) = 0$ و $\lim_{x \to -\infty} g(x) = -\infty$ و \lim_{x

الدالة العكسية إذا كانت الدالة العددية f رتيبة تماما على المحال ومستمرة على I فإن:

.
$$f$$
 على I تقابل، و f تقبل دالة عكسية f^{-1} مستمرة وبنفس تغير f واقتصار f على f تقبل دالة عكسية عكسية والتصار والتصار

y = x ملاحظة • إذا أعطيت f بتمثيلها البياني في معلم متجانس، فإنه تمثيل f^{-1} يكون بالتناظر الذي محوره المستقيم

 $f\left(I
ight)$ على الشتقاق على الشتقاق على معدومة، فإن f^{-1} تقبل أيضا الاشتقاق على وكانت هذه المشتقة غير معدومة، فإن

$$\forall x \in I, \ f \circ f^{-1}(x) = x$$
 $\forall x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) \cdot (f^{-1}(x)) = 1$
 $\Rightarrow x \in I, \ f'(f^{-1}(x)) = 1$

f'(c)=0 غيث a,b من الأقل قيمة والمائة أولا على الأقل قيمة

يدل التمثيل الهندسي على وجود نقطة واحدة c على الأقل من القوس A (A تختلف عن B) بحيث يكون المماس عندها يوازي O. قد لا تكون هذه النقطة وحيدة .

نظرية لتكن f و g دالتين معرفتين ومستمرتين على $\begin{bmatrix} a,b \end{bmatrix}$ وقابلتين للاشتقاق على $\begin{bmatrix} a,b \end{bmatrix}$. بفرض أن الدالة المشتقة $\begin{bmatrix} a,b \end{bmatrix}$ لا تنعدم على $\begin{bmatrix} a,b \end{bmatrix}$ ، عندئذ يوجد عدد $\begin{bmatrix} a,b \end{bmatrix}$ من المجال $\begin{bmatrix} a,b \end{bmatrix}$ بخيث :

$$\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\alpha)}{g'(\alpha)}$$

 $[a,b\]$ دالتين قابلتين للاشتقاق على بحال $[a,b\]$ و $[a,b\]$ دالتين قابلتين للاشتقاق على المحال $[a,b\]$

وليكن α من الجحال a,b [النهاية $\frac{f'(x)}{g(x)-g(\alpha)}$ موجودة ، فإن النهاية $\lim_{x\to\alpha}\frac{f'(x)}{g'(x)}$ وليكن من الجحال

$$\lim_{x \to \alpha} \frac{f(x) - f(\alpha)}{g(x) - g(\alpha)} = \lim_{x \to \alpha} \frac{f'(x)}{g'(x)}$$

0

.
$$\lim_{x \to \alpha} \frac{f(x)}{g(x)} = \lim_{x \to \alpha} \frac{f'(x)}{g'(x)}$$
 فأن $f(\alpha) = g(\alpha) = 0$ عندما يكون عندما وأد نأت $f(\alpha) = g(\alpha) = 0$

$$f(-2) = f(0) = f(2)$$
 و شروط رول تتحقق على $f(x) = x \cdot (x-2) \cdot (x+2)$ لدينا $f(x) = x \cdot (x-2) \cdot (x+2)$

$$[0,2[$$
 من $x_1=rac{\sqrt{3}}{2}$ عند أيضًا عند $[0,2[$ من $x_0=-rac{\sqrt{3}}{2}$ عند $[0,2[$ من $x_0=-rac{\sqrt{3}}{2}$ عند معدد أيضًا عند أي

. I =]0,1[المعادلة $e^{-x} = x$ تقبل حلا وحيدا وحيدا •

$$.f(1)=1-rac{1}{e}>0$$
 و $f(0)=-1<0$ و مستمرة على I و مستمرة يكون لدينا: $f(x)=x-e^{-x}$ بوضع $f(x)=x-e^{-x}$ بوضع بنتيجة سابقة، توحد قيمة x_0 من الجحال المفتوح x_0 على x_0 على أورى الجمال المفتوح وحسب نتيجة سابقة، توحد قيمة x_0 عن الجحال المفتوح وحسب نتيجة سابقة، توحد قيمة x_0 عن الجحال المفتوح وحسب نتيجة سابقة، توحد قيمة x_0 عن الجحال المفتوح وحسب نتيجة سابقة، توحد قيمة x_0 عن الجحال المفتوح وحسب نتيجة سابقة، توحد قيمة وحسب نتيجة سابقة وحسب نتيجة وحسب وحسب نتيجة وحسب نتي

وحيد. لأنه لو كان معه
$$x_1$$
 من $x_1 = 0$ الأمر الذي يتطلب، $x_1 = 0$ الأمر الذي يتطلب، $x_2 = 0$ الأمر الذي يتطلب، $x_3 = 0$

 $f'(x'_0) \neq 0$. وهذا مجال لأن $x'_0 \neq 0$ عيث $f'(x'_0) = 0$ عسب رول، وجود x'_0 من $x'_0 \neq 0$ عيث $x'_0 \neq 0$.

 $> rac{m{B}}{a}$ صيغة التزايدات المنتهية إذا كانت دالة f مستمرة على [a,b] وتقبل الاشتقاق

: على a,b [من a,b [بحيث على الأقل قيمة a من a,b] على

$$f(b)-f(a) = (b-a)f'(c)$$

أي يوجد على الأقل θ من [0;1] ، بحيث

(2)
$$f(b)-f(a) = (b-a)f'(a+\theta(b-a))$$

0 < x ، [0;x] على على الدالة $f(x) = \ln x$ الدالة $f(x) = \ln x$

$$\exists \theta \in \left]0\,;1\right[\quad \ln(x+1) - \ln(x) = \frac{1}{x+\theta} \qquad \text{if} \quad \exists c \in \left]x\,;x+1\right[\quad \ln(x+1) - \ln(x) = \frac{1}{c} \text{ where } 1 = \frac{1}{c} \text{ and } 1 = \frac{1}{c} \text{ where } 1 = \frac{1$$

. طبق نظریة التزایدات المنتهیة علی الدالة e^x الدالة $f(x) = e^x$ علی الداله بعد التحقق من شروطها .

 $D=\left[0\,;+\infty
ight[$ بحموعة التعريف f هي $D_f=\left[0\,;+\infty
ight[$ ، و f تقبل الاشتقاق على

(
$$\lim_{x\to 0} \frac{e^{\sqrt{x}} - 1}{x} = \lim_{x\to 0} \frac{1}{\sqrt{x}} \frac{e^{\sqrt{x}} - 1}{\sqrt{x}} = +\infty$$
 في أجل $f'(x) = \frac{e^{\sqrt{x}}}{2\sqrt{x}} : 0 < x$ (من أجل $f'(x) = \frac{e^{\sqrt{x}}}{2\sqrt{x}}$

التمثيل الهندسي : يدل التمثيل الهندسي على وجود نقطة أو أكثر من القوس AB بحيث يكون المماس للمنحنى يوازي الوتر AB . (معامل توجيه المستقيم AB هو AB هو AB هو الوتر AB .

نتيجة لتكن f دالة معرفة ومستمرة على المجال a,b ، وقابلة للاشتقاق على المفتوح a,b . نفرض وجود ثابتين موجبين $m \leq \frac{f(b)-f(a)}{b-a} \leq M$: عندئذ يكون : $\forall x \in \]a,b$: $m \leq f'(x) \leq M$: بيث يكون : $m \leq f'(x) \leq M$: $m \leq f$

.
$$\frac{1}{x+1} \le \ln(x+1) - \ln(x) \le \frac{1}{x}$$
 : $0 < x$ کل •

: المعرفة على \mathbb{R}^*_+ لدينا $f(x) = \ln(x)$ وحسب نظرية التزايدات المنتهية

$$\exists c \in \left[x, x + 1 \right[, f(x+1) - f(x) = (x+1-x)f'(c) = \frac{1}{c} \right]$$

$$\cdot \frac{1}{x+1} \le \ln(x+1) - \ln(x) \le \frac{1}{x} \quad \text{if} \quad \frac{1}{x+1} < \frac{1}{c} < \frac{1}{x} \quad \text{if} \quad 0 < x < c < x+1 \text{ if } x < \frac{1}{x}$$

الدوال اللوغاريتمية والأسية

1 القيمة النايورية، الدالة الأصلية على المجال $0, +\infty$ للدالة $x \mapsto \frac{1}{x}$ والتي تنعدم من أجل القيمة النايورية، الدالة الأصلية على المجال $0, +\infty$ للمتغير x > 0, $\ln x = \int_1^x \frac{dt}{t}$ ولدينا بالتعريف: \mathbb{R}_+^* ولدينا بالتعريف: \mathbb{R}_+^* المجال المتغير x = 1 المجال المتغير المت

$$\lim_{x \to +\infty} (\ln x) = +\infty, \quad \lim_{x \to 0^+} (\ln x) = -\infty, \quad \lim_{x \to +\infty} \frac{\ln x}{x} = 0^+, \quad \lim_{x \to 0} \frac{\ln (1+x)}{x} = 1 : 10 + 10 = 10$$

$$a \in \mathbb{R}^*$$
 حيث $f(x) = \ln |ax| \Rightarrow f'(x) = \frac{1}{x}$: $]0, +\infty[$ حيث $f(x) = \ln |ax| \Rightarrow f'(x) = \frac{1}{x}$

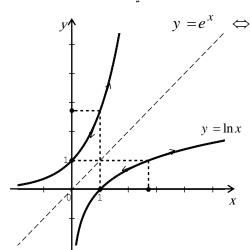
- $\ln(u \cdot v) = \ln u + \ln v , \ \ln \frac{u}{v} = \ln u \ln v , \ x > 0, \ n \in \mathbb{Q} \quad \ln x^n = n \ln x \quad \bullet$
- إذا كانت الدالة |u(x)| تقبل الاشتقاق وتحافظ على إشارتها في مجال I، فإن الدالة |u(x)| تقبل $f'(x) = \frac{u'(x)}{u(x)}$: كيث : $f'(x) = \frac{u'(x)}{u(x)}$

 \mathbb{R}_{+}^{*} الدالة اللوغاريتمية النيبيرية، تنعدم من أجل x=1 وهي مستمرة ومتزايدة تماما على \mathbb{R}_{+}^{*}

توجد قيمة لx=1:x، وهي العدد e الذي نسميه الأساس النيبيري، يحقق هذه المعادلة ، $\ln x=1$ قيمة تقريبية له

X	0		1		e	$+\infty$
$(\ln x)'$		+	0	+	0	+
ln x	-∞		· 0 ·		-1 ⁻	+∞

الدالة الأسية النيبيرية الدالة الأسية ذات الأساس النيبيري e ، التي نرمز لها ب $x\mapsto e^x$ ، هي الدالة العكسية للدالة ال



$$y=e^x$$
 \Leftrightarrow $x=\ln x$, $x>0$: ولدينا \mathbb{R} في \mathbb{R}_+^* في مستمرة ومتزايدة تماما من \mathbb{R}_+^* في \mathbb{R}_+^* . e^x

 $\lim_{x \to +\infty} e^x = +\infty$, $\lim_{x \to 0} x \cdot e^x = 0$, $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$, $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$ $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$ إذا كانت الدالة $\lim_{x \to 0} u(x)$ تقبل على مجال $\lim_{x \to 0} u(x)$ فإن الدالة $\lim_{x \to 0} u(x)$

$$\left(e^{u(x)}\right)' = u'(x) \cdot e^{u(x)}$$
 : I على الاشتقاق على الاشتقاق

تمارين محلولة:

$$f(x) = \begin{cases} (\ln x)^2 - \ln x , & 1 \ge x > 0 \\ (\ln x)^2 , & x > 1 \end{cases}$$
 : شيخ \mathbb{R}_+^* حيث $f(x)$

$$.f$$
 (5) ، f (e) ، f (2) ، f (1) ، f ($\frac{1}{2}$) ، f ($\frac{1}{e}$) ، f ($\frac{1}{5}$) عين الصور .1

 $x_0 = 1$ عند f عند اشتقاق عند 2

$$f^{-1}$$
 على \mathbb{R}^*_+ ، واستنتج بأن اقتصار f على g على g على العالميق تقابلي. عين التطبيق g على g . (g سم على المحورين). (g سم على المحورين). (g سم على المحورين).

4. أنشئ منحنييْ الدالتين
$$f$$
 و f^{-1} في معلم متعامد ومتجانس ($O; \overrightarrow{i}, \overrightarrow{j}$) . (2 سم على المحورين).

f(x) هل يمكن تطبيق نظرية التزايدات المنتهية على الدالة f(x) في المحال

$$f(2) \approx 0.48$$
, $f(e) = 1$, $f(5) \approx 2.60$, $f(1) = 0$, $f(\frac{1}{2}) \approx 1.17$, $f(\frac{1}{e}) = 2$, $f(\frac{1}{5}) \approx 4.20$

$$f\left(x
ight) = \left\{ egin{array}{ll} rac{2\ln x - 1}{x} \;, & 1 > x > 0 \\ rac{2\ln x}{x} \;, & x > 1 \end{array}
ight. : \mathbb{R}_+^* - \left\{1\right\}$$
 على $\left\{1\right\}$

$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{(\ln x)^2 - \ln x - 1}{x - 1} = -1 \cdot x_0 = 1$$
 الاشتقاق عند • الاشتقاق عند

$$x_0 = 1$$
 عند $x_0 = 1$.
$$\lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^-} \frac{(\ln x)^2 - 1}{x - 1} = 0$$

. ومنه منحنى f يقبل فرعا لا نمائيا باتجاه محور الفواصل. $\lim_{x \to +\infty} \frac{f(x)}{r} = 0$ ومنه منحنى f يقبل فرعا لا نمائيا باتجاه محور الفواصل.

انعطاف انعطاف منحنی f یقبل محور التراتیب کخط مقارب). کما نلاحظ بأن منحنی f یقبل نقطة انعطاف f یقبل نقطة انعطاف

عند النقطة التي فاصلتها $x_0=e$ ومغيرة إشارتما). $x_0=e$ تنعدم عند $x_0=e$ ومغيرة إشارتما).

х	0	1		e		$+\infty$
f'(x)	-	-1	0	+	+	
f(x)	+∞	<u> </u>	_	<u></u> →1 '		, +∞

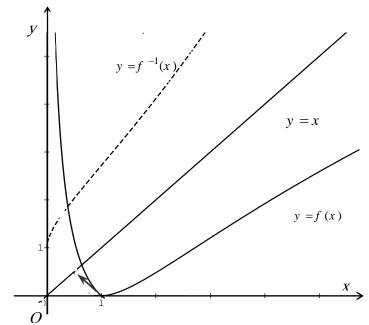
• الدالة f(x) مستمرة ومتزايدة تماما على f(x)، وتأخذ قيمها في f(x) فهي تقابل. دالتها العكسية $(O; \overset{
ightarrow}{i}, \overset{
ightarrow}{j})$ مستمرة ومتزايدة تماما على الجال $[0, +\infty[$ في $[0, +\infty[$ في المعلم و $[0, +\infty[$ مستمرة ومتزايدة تماما على الجال $[0, +\infty[$ $x=e^{\sqrt{y}}$, $y\geq 0$: خصل على $y=f(x)=(\ln x)^2$, $x\geq 1$: متناظرين بالنسبة ل

$$(x \ge 0) \qquad f^{-1}(x) = e^{\sqrt{x}}$$
: each

مستمرة على [0,2] لكنها لا تقبل الاشتقاق f

عند $x_0 = 1$ وبالتالي لا يمكن تطبيق نظرية التزايدات

المنتهبة في هذه الحالة.



$$f(x) = \begin{cases} e^{x-1} + 1, & x \ge 1 \\ x e^{x-1} + 1, & x < 1 \end{cases}$$

ندرس تغیرات f علی $\mathbb R$ ، ونستنتج بأن . قتصار f على $\int + \infty$ هو تطبيق تقابلي f^{-1} نعين التطبيق العكسي أ

$$f'(x) = \left\{ egin{array}{ll} e^{x-1} &, & x > 1 \\ (x+1) e^{x-1} &, & x < 1 \end{array}
ight. : \mathbb{R} - \left\{ 1 \right\}$$
الدالة f تقبل الاشتقاق على $\mathbb{R} - \left\{ 1 \right\}$

$$\mathbb{R}$$
 - الدالة f تقبل الاشتقاق على f -

$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{x e^{x - 1} + 1 - 2}{x - 1} = 2$$
 دراسة الاشتقاق عند $x_0 = 1$ بحساب النهايتين: •

$$\lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{e^{x - 1} + 1 - 2}{x - 1} = 1$$

 $x_0=1$ ينتج أن f لا تقبل الاشتقاق عند $x_0=1$ عند $x_0=1$ ومنحنى $x_0=1$

لدينا $\lim_{x\to +\infty} f(x) = +\infty$ ومنحنى $\lim_{x\to +\infty} \frac{f(x)}{r} = +\infty$ ومنحنى $\lim_{x\to +\infty} f(x) = +\infty$ لدينا

. (y=1 منحنی f یقبل أیضا خطا مقاربا (معادلته f(x)=1

х	+∞	-1	+1	+∞
f'(x)		2+ 0	_ 1	+
f(x)	1	$1-e^{-3}$		+8

منحنى f يقبل نقطة انعطاف عند النقطة التي فاصلتها x=-2 . (الدالة $x_0=1$ تنعدم عند $x_0=1$ مغيرة إشارتكا).

- الدالة f(x) مستمرة ومتزايدة تماما على f(x) ، وتأخذ قيمها في f(x) فهي تقابل. دالتها العكسية . $\begin{bmatrix} 1, +\infty \end{bmatrix}$ في $\begin{bmatrix} 1, +\infty \end{bmatrix}$ مستمرة ومتزايدة تماما على المجال $f^{-1}(x)$
 - $x = \ln(y-1)+1, y \ge 2$ نحصل على $y = f(x) = e^{x-1}+1, x \ge 1$: وضع وضع $(x \ge 2)$ $f^{-1}(x) = \ln(x-1) + 1$ ومنه