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PREFACE

Matrix analysis of structures and the closely related finite element method have achieved
wide acceptance and use in virtually all engineering disciplines. The use of these meth-
ods, which require the solution of large numbers of simultaneous equations, has become
a practicality due to the development of digital computers. Ever since the introduction
of desktop microcomputers, these methods have been used in most engineering offices
to solve a wide variety of problems.

The purpose of Matrix Analysis of Structures is to present to the student the dis-
placement method of matrix analysis. Background required consists of basic strength
of materials and introductory courses in structural analysis. The text should therefore
be suitable for senior-level undergraduates, beginning graduate students, and practic-
ing engineers in disciplines including civil, mechanical, architectural, and agricultural
engineering.

The text begins with the development of the matrix method for the one-dimensional
bar element. Because the bar or rod element is very simple, it allows development of
all the necessary procedures without involving topics such as coordinate transformations.
These transformations are derived when required for the element being considered. Thus,
two-dimensional coordinate transformations are introduced in Chapter 2 for the truss and
in Chapter 3 for the frame. Three-dimensional transformations are discussed in Chapter 5
(trusses) and in Chapter 6 (frames).

The distinction between matrix analysis of structures and the finite element method
applied to structural problems is somewhat artificial since the same basic concepts and

Xi



xii Preface

procedures are used in both cases. The primary difference between these methods lies
in the procedures used for deriving the stiffness of the individual elements; that is, the
determination of the force-displacement relationships for a specific type of element such
as a bar, beam, plate, or shell element.

In the matrix analysis method, these relationships are generally determined by using
strength of materials and basic structural theory. Thus, the method is limited to simple
shapes such as rod, beam, and frame elements. In contrast, the finite element method is
thought of as using more complicated elemental shapes such as plate or shell elements.
The procedures used for deriving the force-displacement relationships for these elements
generally involve minimizing a functional such as total energy.

Of course, these minimization procedures can also be applied to the simpler ele-
ments. This text uses, in addition to the structural analysis approach, the principles of
virtual work and minimum potential energy to derive the elemental stiffnesses and global
stiffness equations. In addition, topics such as non-nodal forces and the assemblage of
elements can be developed easily using these techniques.

The author believes that computer programming is an essential part of learning the
material presented. Naturally, the student is not expected to write commercial-quality
code; however, the organization of program steps and understanding of algorithms is
greatly enhanced by a hands-on programming problem. As a result, code fragments per-
meate the text in areas where procedures and algorithms are discussed, and problems for
most chapters include the writing and use of a computer program for analyzing structures
using the type of element presented in that chapter. And, once one program has been
written, it can be easily modified and extended to deal with more complicated elements
by simply addressing additional elemental degrees of freedom, coordinate transforma-
tions, and the differences in the elemental stiffness matrices. In this way, the author
hopes that the student will gain a firm grasp of the techniques used in the ever-increasing
number of commercial structural analysis and design computer programs available.

Although special topics and energy methods are presented in Chapters 7 and 8,
respectively, some instructors may want to include sections of these chapters at earlier
stages of development of the method. Thus, derivation of elemental stiffnesses and
treatment of non-nodal loads using the principle of virtual work could be introduced in
parallel with the development of material presented in Chapters 1 and 3. In addition,
material presented in Chapter 7 such as elastic and inclined supports, and hinges in beam
and frame members, could be considered when discussing the truss, beam, and frame
chapters.

Finally, Chapter 9 presents a brief introduction to the finite element method. This
is accomplished by using work and energy methods to derive the stiffness matrix and
structural stiffness equation for the three-node triangular element.

The author is indebted to a number of reviewers for their useful comments and
valuable suggestions. Specifically, the author wishes to thank Dr. Jack H. Emanuel,
University of Missouri, Rolla; Dr. William J. Hall, University of Illinois; Dr. Ronald S.
Harichandran, Michigan State University; Dr. Eric Lui, Syracuse University; and Dr.
Everett McEwen, University of Rhode Island.

Robert Sennett
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1.1 INTRODUCTION
In matrix analysis of structures, two formulations are possible:

(1) the force method (flexibility method)
(2) the displacement method (stiffness method)

The difference between these formulations involves the selection of the variables
used as unknown quantities. The force method, as you might expect, uses forces as the
unknowns for which a solution is desired. Similarly, displacements are the unknowns in
the displacement method of analysis. We can identify the classical methods of structural
analysis with one or the other of these techniques. For example, when using the force
method the equilibrium equations are first used. Additional equations are found by
introducing compatibility conditions. Consider the beam shown in Figure 1-1.

@,
°

|
Ry Rey  Figure 1-1

The beam shown is statically indeterminate to the first degree. That is, there are four
possible reactions and only three equilibrium equations available. The possible reactions
present at any support can always be determined by determining the displacements that
are restrained. A reaction is possible in a given direction if the displacement in that
direction is restrained. For the beam shown, the horizontal displacement is prevented at
point a and the vertical displacements are prevented at all three support points. Thus, four
reactions are possible. Since we are considering a two-dimensional problem, only three
independent equilibrium equations are available. If we write the equilibrium equations
we find:

Y Fi=0 Ru=0
DY F, =0  Ray+Rpy+Rey=0.
Y My=0  R,Ql)+ Ryy() = P(U/2) =0

Notice that the last two equations contain three unknowns. Clearly, we need an
additional equation.
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One classical technique for finding a solution to this problem is the method of
superposition., As you will recall from your structural analysis coursework, the first step
in applying this method is to select a redundant (or redundants if we have a multi-degree
of indeterminacy problem) that, when removed, results in a stable, determinate structure.
This is called our “primary” structure. Suppose we select the vertical reaction at point b
as our redundant. We next draw a superposition diagram as shown in Figure 1-2.

P

le‘gﬁf'r%

+
b
1k
&b
1k Figure 1-2 Superposition diagram.

From this diagram we can see that in order for the superposition to be valid we
must insist that the total vertical deflection at point b is zero in order to match the zero
displacement at this point on the original structure. Thus, 87 + R, x 8} = 0. This is
a compatibility of displacement equation that, when solved simultaneously with the two
remaining equilibrium equations, yields the three unknown forces. Thus, the method of
superposition is an example of the force method of analysis.

This problem can also be solved by other techniques such as slope-deflection or
a technique derived from it, moment distribution. Again recall from your structural
analysis courses that when using the slope-deflection method the unknowns are the joint
rotations and translations. Equilibrium of the joints yields equations in these unknown
displacements. Having found the displacements, the slope-deflection equations are then
used to determine the forces (moments) at the joints, or nodes, of the members. Thus,
the method of slope-deflection is an example of the displacement approach to solving
structural problems.

The displacement method deals with kinematic indeterminacy rather than static
indeterminacy. The degree of static indeterminacy of a structure is equal to the number
of equations, in addition to the equilibrium equations, necessary to determine completely
the reaction and member forces.

The degree of kinematic indeterminacy is equal to the total number of degrees
of freedom of a structure that must be constrained to ensure zero displacements of the
structure, excluding boundary constraints.

As an example, consider the two structures in the figure that follows.

[L————
(@ ®


Dell
Texte surligné 

Dell
Texte surligné 

Dell
Texte surligné 
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If axial deformation is neglected, which is generally the case for beams, (a) is one-
degree statically indeterminate (4 reactions, 3 equilibrium equations), and three degrees
kinematically indeterminate (3 rotations at the supports). Part (b) has four degrees of
static indeterminacy (4 vertical reactions and 2 moments at the fixed ends), but only two
degrees of kinematic indeterminacy (2 rotations at the intermediate supports).

The formulation of a structural problem is generally much simpler when the dis-
placement (or stiffness) method is used. Note that the more highly statically indeterminate
the structure, the fewer displacements need to be found. Of course, the number of dis-
placements that need to be found represents the number of simultaneous equations that
must be solved. Most commercial computer programs use the stiffness approach, and
we will use only this method in this text.

1.2 NODES AND DEGREES OF FREEDOM

As we have seen, the stiffness method uses displacements as the unknown quantities.
Furthermore, these displacements are those of the nodes of the members. The nodes
are points at which equilibrium will be enforced and displacements found. They are
generally located at the ends of the members for most common structural shapes such
as rods or beams. However, formulations are possible that place nodes at interior points
of a member. We have noted in the previous section that the number of degrees of
freedom at a node is equal to the number of possible displacements of that node. That
is, the number of displacements that need to be specified in order to define uniquely the
position of a node equals the number of degrees of freedom of that node. Therefore, for
a one-dimensional bar or rod element, where displacements are restricted to a translation
in the axial direction of the bar, each node has a single degree of freedom. For a two-
dimensional truss element, each node has two degrees of freedom that correspond to
translations in two directions (say x and y). For a two-dimensional beam element, we
have one translation and one rotation possible at each node, yielding two degrees of
freedom per node. For a two-dimensional frame element, each node has the capability
of translating in two directions and rotating about one axis. Thus we have three degrees
of freedom for each node. Since displacements constitute the unknowns in the stiffness
formulation of a problem, the number of degrees of freedom will be indicative of the
number of simultaneous equations that we will eventually need to solve. Of course, each
structure has to have a number of restraints (such as supports) in order to remove any
rigid body motion that could be present. The actual number of equations that must be
solved is equal to the total number of degrees of freedom of the structure minus the
number of restraints present.

1.3 STIFFNESS DEFINITION

If we have a simple linear spring fixed at one end with a force F applied at the other end,
we know that the relationship between the applied force and the resulting displacement
is F = kx where x is the displacement and & is called the spring constant or the spring
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stiffness. We have a linear spring since the force-displacement relationship is linear
with x. Notice that k is the force corresponding to a unit displacement x = 1. Of
course, we can expand the concept of force-displacement relationships to structures with
multiple degrees of freedom. When we do this, we generally write these relationships in
matrix form, {F} = [k]{u}. For a two-degree-of-freedom system this matrix equation is

expanded as shown below:
{ l } [ ) 12] { l }
F, kai ko u

where the k;;’s are called the stiffness influence coefficients and form the stiffness matrix.

Suppose that we let u; = 1 and uz = 0. Then F; = k;,. That is, ky; is the force
at point 1 corresponding to a unit displacement at point 1 and only point 1. Similarly,
k) is the force at point 2 corresponding to a unit displacement at point 1 only. In fact,
in general, the stiffness element k;; is defined as the force at i corresponding to a unit
displacement at j and j alone. This force is that required to maintain equilibrium in the
displaced configuration. We will now use this definition to determine the stiffness matrix
for a simple structure. Consider the following problem:

The structure shown in Figure 1-3 consists of two bar elements with individual
stiffnesses (spring constants) k; and k», and three nodes. The two elements are connected
at node 2. We wish to determine the stiffness matrix for the entire structure using the
definition of stiffness. Notice that the structure has three degrees of freedom; three
translations, one at each node in the axial direction of the bars. Thus, we will generate
a 3 x 3 stiffness matrix.

1 2 3
) [ B ®

k, kj Figure 1-3 Two-element structure.

To accomplish our task it is necessary to introduce a unit displacement at each
node, one at a time, and find the forces that must be present at the nodes in order to
maintain equilibrium. Forces and displacements will be considered positive when acting
toward the right.

Introduce a unit displacement at node 1, keeping all other nodes at their original
positions. Figure 1-4 shows the free-body diagrams of the nodes and elements for this
configuration.

6i=1
F, F, F3
— — —
O T —@  EETETEED °
k8, kb  kidy kid, Figure 1-4 Unit displacement at
Node 1 Node 2 Node 3 node 1.

To maintain equilibrium of node 1, force Fj, which is the force at node 1 cor-
responding to a unit displacement at node 1, or k;;, must be equal to k;8;. Thus,
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ki) = k18, = k; (since 8, = 1). For equilibrium of node 2, force F,, which equals k,,
must be equal to —k;8,. Thus ky; = —k|8; = —k;.
Since there are no displacements of nodes 2 and 3, there is no force in element 2

and F3, which equals k3, is zero. Thus, k31 = 0.
We next introduce a unit displacement at node 2. The corresponding free-body
diagrams are shown in Figure 1-5.

6;=1
F; Fp F;
— —_— —
O— rumEmEEEED—  —O0— ~EEEEEs— —O
k8, ks, k3, k,;8, ko  Figure 1-5 Unit displacement at
Node 1 Node 2 Node 3 node 2.

Proceeding in a manner similar to the previous case, realizing that §, = 1, we find
Fi=kp=-k, b =kn =k +k, and F3 = k3 = —k3.

Finally, we introduce a unit displacement at node 3. Figure 1-6 shows the free
body diagrams corresponding to this case.

83=1
F; F; F;
— —_— —
[ ] L] - —ommmmmmEm— —O
k, 8, k,8, Figure 1-6 Unit displacement at
Node 1 Node 2 Node 3  node 3.
We find

Fi=ki3 =0, F, =kp = —ky, and F3 = k33 = k.

Thus the 3 x 3 stiffness matrix for this structure is

k' -k 0
[Kl=|~ki ki+k —kz}
0 —ky k2

We can achieve the same result by superposition of the forces in Figures 1-4, 1-5,
and 1-6 when arbitrary displacements §; are imposed.
To illustrate, from Figure 1-4 where a displacement §,; is introduced, we have

F] = k16,, F2 = —k151, and F3 =0.
For a displacement §,, Figure 1-5 yields

Fi = —ki18;, F, = (ky + k)82, and F3 = —k36;.



Sec. 1.3 Stiffness Definition 7

Finally, for a displacement &3, Figure 1-6 gives
F1 =0, F2 = —k283, and F3 = k283.

Since we are dealing with a linear system, superposition is valid. Thus, if we
introduce all three displacements simultaneously, the nodal forces required to maintain
equilibrium will be the sum of the forces obtained by introduction of each displacement
separately.

Adding the forces yields

Fi=kiéi — k162 + (0)33
Fr = —ki161 + (k1 + k2)82 — k283
F3 = (0)8; — k26, + k263
Writing the above equations in matrix form yields
F ki —k 0 (8,
Fop = | =k kitks -k, P
F, 0 —k, ks 03
or
{F} =[K){3}.
Suppose we attempt to solve this equation for the displacements §; through &s.
{8} = [K17'(F)

Clearly, we need to calculate the inverse of the structural stiffness matrix [K].
In order for a matrix to possess an inverse, its determinant must be non-zero (see Ap-
pendix A). Calculating the determinant of [K] by using Cramer’s rule and expanding
using the first row we have

ki +ky —k;
—kz k>

= ky(kiky + k3 — k3) + ki (—k1k2) = O

ki —k

K| =k o

- (k1)

Thus, the stiffness matrix is singular. This means that we have an infinite number
of solutions to the equation. Referring to Figure 1-3, we note that there have not been any
constraints imposed on the structure. Physically, with no support conditions specified,
rigid body motion can occur, resulting in an infinite number of possible displaced con-
figurations. As we shall see, once support conditions are introduced, a unique solution
will be possible as long as the structure is a stable one.

Note that the stiffness matrix is symmetrical and has positive terms on the main
diagonal. This will always be the case in structural problems. Positive terms must be on
the main diagonal since a positive displacement at a node requires a positive force at that
node. Also note that the terms in each column add to zero. This is a direct consequence
of nodal equilibrium for unit displacements of each node individually.
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1.4 INDIVIDUAL ELEMENT STIFFNESS

In the previous section we derived the stiffness matrix for a two-member structure di-
rectly. Since our ultimate goal is to apply the matrix analysis approach to systems with
large numbers of degrees of freedom, we would like to generate the structural stiffness
matrix for any structure by combining stiffnesses of individual members. Toward this
goal we now derive the force-displacement relationships for a single bar element. That
is, {F} = [k){u}.

Consider the single element shown in Figure 1-7.

Fg

Figure 1-7 Single-bar element.

Clearly, this element has two nodes and therefore two degrees of freedom. We
need to determine the elements of the stiffness matrix [£] in the equation

Fo\ _ [kn klZ] U
Fg kai kx| | ur

Note that when ug = 0 and u;, = 1, F, = k;; and Fg = k2, which agrees with
our definition of stiffness k;; as the force at i corresponding to a unit displacement at
j. In addition, when ug = 1 and u; = 0, F; = k> and Fg = ky. Therefore, to find
the elemental stiffness terms, we need to introduce unit displacements at each end of the
bar, one at a time, and find the corresponding forces.

Recall from basic mechanics of materials that the change in length of a prismatic bar
loaded by an axial force F at its end is given by the expression § = F L/EA. Introducing
a unit displacement at only the left end yields u, = F L/EA. Thus, F; = EA/L = ky;.
AlSO, FR = _FL = —EA/L = k21.

Next we introduce a unit displacement at only the right end giving ug = 1 =
FrL/EA. Thus, Fr = EA/L = ky. Ff = —Fgp = —EA/L = kj3. The elemental
stiffness matrix becomes

[ EA/L —-EA/L) _ 1 -1
[k]_[—EA/L EA/L]_EA/L[—I 1]

and the force-displacement relationship for this one-dimensional bar or rod element be-

comes
FL _ 1 -1 ur
(e[ 1))

Note that in the force-displacement relationship it is important to keep the order
of forces and displacements as left first, and then right, since this is the order for which
the elemental stiffness matrix was derived.
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1.5 COMBINATION OF ELEMENT STIFFNESSES

Figure 1-8 shows free-body diagrams of the members and joints of the two-member
structure shown in Figure 1-3.

F; F; F;
— — —
O— SR «— @ T — @
Fii Fy; Fp F3 Figure 1-8 Free-body diagrams of
Node 1 Node 2 Node 3 elements and nodes.

Note that the F; forces are either applied nodal forces or reactions. From joint
equilibrium, Fy, = Fy;, F, = F31 + Fy», and F3 = F3;. Also note that the forces Fj;
correspond to forces at the i"* node of the j element. Since we cannot specify both
a force and a displacement at the same node, at each node we will know either the
applied nodal force or the nodal displacement. To illustrate the combination of elemental
stiffnesses, consider the example shown in Figure 1-9.

E.A,L

———
Fr 25k Fy 10K

Figure 1-9 Two-element bar
Element 1 Element 2 structure.

Example 1.1

Referring to Figure 1-8 and using the elemental force-displacement relationships we have:
F 11 — 1 _1 U
{F21 } - (ElAl/L‘) [—1 1 U

Fal = [ L)

[F32 =(E242/L)| | s

Letting E; A;/L; = k; we have
FEISEIE
F21 1 -1 1 Uz
() ==l T
F3p 2l 1 u3

Element 1:

Element 2:

(1.1)

(1.2)
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We want to form {F} = [K]{u} for the entire structure by combining these individual
element stiffnesses. Since there are three nodes and therefore three degrees of freedom for
this structure, the force matrix {F} will be of order 3 x 1, the stiffness matrix [K] of order
3 x 3, and the displacement matrix {u} of order 3 x 1.

The overall force-displacement relationship for the structure is constructed by placing
the coefficients of uy, u2, and u3 and corresponding F;;’s into appropriate locations in the
structural stiffness matrix [K].

For example, the first column of [k] in equation (1.1) multiplies u, thus

BRI

Next, the second column of equation (1.1) and the first column of equation (1.2)
multiplies u, giving

Fny ki —k - uj
Foy+Fpg=|~-ki ki+k - uz
F3 - -k —1l-

Finally, the second column of equation (1.2) multiplies u3 giving

Fii ki =k 0 uy
Foy+Fpi=|—-ki ki+ky —ky[{u
F3 0 —ky ky us

Now, Fi = F11, F, = F21 + F», and F3 = F3; from the previous equilibrium
equations. The final structural stiffness formulation becomes

Fy ki —ky 0 ui
Fry=| -kt ki+ky —ka|{u2
F3 0 —ky 193 u3

Also, remember that F|, F», and F3 are either reactions or nodal applied loads.
Naturally, this structural stiffness matrix is identical to the one obtained earlier for the same
two-element structure by direct means.

One procedure that can automate the construction of the structural stiffness matrix
from the individual elemental stiffness matrices involves identifying the rows and columns
of these individual elemental stiffnesses with the global displacements associated with them.
For example, using the stiffness matrices in equations (1.1) and (1.2) we have:

Member 1:

Member 2:
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where the numbers identifying the rows and columns are those of the u displacements
associated with each element. The structural stiffness matrix is then constructed in the
following way:

(1) Create a square matrix that is of order equal to the total number of degrees of freedom
of the structure (the structural stiffness matrix). In this case a 3 x 3 matrix is created.

(2) Place the elements of each individual stiffness matrix in the rows and columns of the
new matrix corresponding to the global displacement coordinates.

(3) If there is more than one element to be placed in the same location in the overall
structural stiffness matrix, the elements are added at that location.

For example, k7 in the structural stiffness matrix will be k| + &, since ky for member
1 and &, for member 2 both lie at global coordinates 2-2.

We can visually represent this assembly process by overlaying the individual elemental
stiffness matrices on the structural stiffness matrix. Figure 1-10 illustrates this process.

A 2 3

Element 1

Figure 1-10 Combining elemental
Element 2 stiffnesses.

For the problem being considered, u; = 0, Fp = 25%, and F3 = —10%. The above

equation becomes
F ki —ky 0 0
255 b = —ky ki +ky —k2 | { w2 (1.3)
—10 0 —ka k2 u3

Note from this equation that we have two unknown displacements, u; and u3. We
next reduce this matrix equation to one that contains only the unknown displacements. We
perform this task by noting that the first column of the matrix will multiply the known
zero displacement and therefore can be eliminated. The first row can also be eliminated at
this point since it will only be used to determine the reaction F) after the two unknown
displacements have been found. Another way to think about this process is to notice that
if we would expand this matrix equation, the last two equations would contain the applied
nodal forces and the two unknown displacements. After eliminating the first row and column

we have
25% _[ki+k —k2][u2
10t [ —k2 kz] [usl R

Since the elements of the stiffness matrix in equation (1.4) are known, this matrix
equation represents two scalar equations in the two unknown displacements u; and u3. The
left hand side of equation (1.4) contains the applied nodal loads.
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Let E; = E2 =29 x 10% ksi, Ay =2 in?, Ay = 1 in%, L; = Ly = 10 in. Then
k1 =29 x 1032 in?)/10 in = 58 x 102 k/in, and k2 = 29 x 102 k/in.
Equation 1.4 becomes
25"}_[ 87 x 102 —29 x 102]Iu2]
—10F] T L -29x102  29x 102 ]| u;
Solving equation (1.5) we find u, = .002586 in and u3 = —.000862 in.
We determine the reaction F| by expanding the first row of equation (1.3). This

yields Fy = —kju; = —15k. The member forces are found by using u, and 3 in equations
(1.1) and (1.2).

) =sexae [0 T3] oomss} = { 1)
Fp ] =817 I.002586 =1 15t

Fn) _ 2[ 1 —1] .002586]_[ 10’<}
Fsz} =29x10°1 ;] 1 000862 = | —10*

Referring to Figure 1-11, the member free-body diagrams are shown with the actual
directions of the member forces. Remember that positive member forces act to the right
along the axis of the member.

(1.5)

15% 15 10% 10¥  Figure 1-11 Member free-body
— T — —> TR e— diagrams.

To illustrate the process further, consider the following problem:

Example 1.2

E= 10 x 10 psi

s 10
q 1in? — 2in® =— lin®
j@ loll @ loll @ loll Gi

Member 1 Member 2 Member 3 Figure 1-12

Using the material and geometric properties given, we first write the elemental force-
displacement relationships.

Member 1:
1 2
F”}_ s 1 —ﬂlul}l
Fay =10x 10 -_1 IJ w2
Member 2:
2 3
Fzz}_ 5 [ 2 —Z-qulz
IF32 =10x 10 -—2 2 uz ) 3
Member 3:
3 4
F33} s[ 1 —1'Iu3]3
=10x 10
IF43 x -—1 1_ ug) 4
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Combining, using the labeled rows and columns, we have

1 2 3 4
Ry 1 1 -1 0 0[] 1
S| _ ) Fau+Fn | _ s1-1 3 =2 0|)u|2
105 7 ) B2+ F3 | 1010 0 -2 3 -1 us [ 3 (1.6)
R4 Fa3 0 0 -1 1 ug ) 4

Since both u#; and u4 are zero because the ends of the structure are fixed, we eliminate
rows 1 and 4 and columns 1 and 4 giving the following equation to be solved for the unknown

displacements u2 and u3;
5k — 3 2 /5]
(-2 ) () o

This equation is called the reduced structural stiffness equation. Solving, we find
up = —.001 in, and u3 = —.004 in. From the complete set of equations we next find the
reactions Ry and Rs. Ry = 10 x 103 (g —up) = 1000 b = 1¥. Ry = 10 x 105(—u3 +us) =
4000 1b = 4%, Note that these reactions create overall equilibrium with the applied loads
(see Figure 1-13).

5k 10*

1¥ — -— 4k Figure 1-13  Applied loads and
—— - reactions.

We next determine the member forces.

Member 1:
Fiy _ s[ 1 —1-{ 0 ]_{ 1000#
{le =101}, 1 —001 ] = | —1000#
Member 2:
Fpn) _ s[ 2 —2-{—.001 _{ 6000#
{F32 =107 5 51 —004] = [ —6000#
Member 3:
Fggl_ s[ 1 —l'[—.004]_[ 4000#
{F43 =100 11 0 = [ 4000

Figure 1-14 shows free-body diagrams of the nodes and members.

1000# 1000# 6000# 6000# 4000# 4000#
— T e ——e b R AR —

5000# 10000#
—o— —ro— —o— —o—

1000#  1000# 1000# 6000# 6000# 4000# 4000#  4000#

Figure 1-14 Free-body diagrams of members and nodes.

We could also obtain our reduced structural stiffness equation, (1.7) from the com-
bined stiffness equation, (1.6), by using a partitioning technique on equation (1.6).
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Consider rewriting equation (1.6) in the following way:
Fp Kpp  Kps ] { Up }
= 1.8
{ F } [Ksp K Us (1.8)

F, = submatrix of applied loads

F; = submatrix of reactions

u, = submatrix of unknown displacements

u; = submatrix of known displacements, including support movements.

Expanding equation (1.8) we have
Fp = Kppttp + Kpsus (1.9)
Fs = Kspup + Kisus (1.10)

Note that the number of applied loads and unknown displacements are always equal.
Thus, K, will always be a square matrix.
From equation 1.9

up = Ky (Fp, — Kpsu) (1.11)

We can solve equation (1.11) for the unknown displacements. If reactions are
desired, equation (1.10) can then be used.
For the previous example we rearrange equation (1.6) in the following way:

5" 3 -2 -1 0 Uus

—10* s|-2 3 0 -1 us
R (= 10x10°| 7 o, ‘ (1.12)
Ry 0 -1 0 1 us

Referring to equation 1.8 we have

=z} wi=f2)=(3)

From equation 1.11, since {u} is null, we have {u,} = [K,p,]"'{F,} or

w) _[ 3 =217 &
{a)=[2 ) {-e) 0
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Comparison of equation (1.13) with equation (1.7) shows that the solution for u;

and u3 will be identical.

1.6 STRUCTURES WITH SPECIFIED NON-ZERO DISPLACEMENTS

Consider Example 1.1 presented in section 1.5.
Instead of applying the 10k load at node 3, let us specify a displacement u3 =

—.000862 in (the value calculated previously).

ki=58x102kfin ko =29 x 102 kfin

1 2 3
——— ———
Fp= 25K uz= .000862"

Element 1 Element 2 Figure 1-15

Our matrix equation for the structure now becomes

R, ki =k 0 0
{25*}: [—kl ki + ks —kz]{ us } (1.14)
R; 0 —ky k2 —.000862
For this simple problem we can expand the second row of this equation to obtain

258 = (ky + k2)uz — ka(—.000862).

Solving for u, yields u, = .002586 in as obtained previously.
If we use the partitioning technique presented in section 1.5, we reorder equation

ki + ks —ky —k uz
—k; kk O 0
L) 0 ky —.000862

1.14 as shown below.
25k
R3
K,y = [k + k2], Kps =[-ki —k2]
=k _ |k O
K:p—{_kz} s K::— 0 k2:|

0
up =lual s = —000862}’

Thus,



16 Analysis of One-Dimensional Bars Chap. 1

From equation 1.11 we have-

) = <[25 ) - [k —kzl{_.(mm})
1

(25% — k2[0.000862])

T kit
_ 1
T 87 x 102
Of course, this is the solution obtained previously.
There is also a numerical procedure that can be automated and is capable of treating
complex problems. Since many matrix inversion routines make use of the symmetry of

the global stiffness matrix, it would be beneficial for our procedure to maintain this
symmetry. The following method for handling non-zero displacements does this.

(25% — 2.5%) = .0025861 in

(1) Eliminate the rows and columns corresponding to zero displacements as before.
For the previous example we obtain

25k _ ki+ky —k 1753
Ry [ T | =k ks —.000862
(2) If a displacement u, is specified at coordinate n, multiply k,, by a large number
M and replace the force value in row n by u; x M x k,,. We have

25% _ ki +ky —ks us (1.15)
—.000862 x ks x M [ — | —kp» M xk us ’
(3) Solve for the displacements in the normal fashion.

To illustrate with this example, we invert the modified stiffness matrix in equa-
tion (1.15) to obtain

(K]~ = [Mkz/(Mkz(kl + k) — k3) kz/(same denom.) ]

k,/(same denom.) (k1 + k2)/(same denom.)

Premultiply the force-displacement equation by [K]~! in order to solve for u; and
us3. We find:
25k, — .000862k3
U =
2T hke + K2 —2/M
o = (25ka/ M) — 000862(k1kz + k3)
T kiky + k2 — K2/ M
In these equations, the last term in the denominator is very small due to the presence
of the large number M. This term is neglected in comparison to the other terms. In

addition, the first term in the numerator of the expression for u3 is also neglected in
comparison to the other terms. Substituting the values for k; and k; of 58 x 10% ksi
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and 29 x 10? ksi respectively, we find that #, = .002586 in and 43 = —.000862 in (the
specified displacement).

1.7 NON-NODAL FORCES

Up to this point we have dealt with structures that have forces applied only at the nodes.
Clearly, we need to be able to address problems that have concentrated and distributed
loads applied between nodal points. Figure 1-16 shows such a structure.

/ p(x)

Figure 1-16 Non-nodal loads on an
element.

Of course, one approach that could be used to solve this problem would be to add
several more nodal points—one at the concentrated load so that the load will be acting
at a nodal point location, and several more in the region of the distributed load. We
would then break up the distributed load into a series of concentrated forces acting on
the additional nodal points in that region. The magnitude of the concentrated forces
would generally be based on tributary length. For example, in Figure 1-17 the portion
of the distributed load assigned to each node is indicated. The total load applied to a
node would be that load contained in a length half the distance to each adjacent node.

p(x)

NG

Total load in segment ab  pjgyre 1.17 Tributary lengths.

The number of additional nodes required would be dependent on how rapidly the
distributed load changes, that is, the gradient of the load. The faster the magnitude of
the load changes, the more nodal points necessary to achieve a reasonable approximate
solution to the problem.

A major difficulty arises, however, when using this technique. Since we have
added nodes we have added degrees of freedom and consequently increased the size of
our force, stiffness, and displacement matrices. As a result, solution time and storage
requirements will increase. We need to find a method that will enable us to determine
nodal forces at the ends of the bar that are equivalent to the loads applied between nodes.
The use of fixed end forces allows us to perform this task.

Suppose we fix each node in position before applying the loads. After the loads
have been applied, forces are required at the nodes in order to maintain zero displace-
ments. These are the fixed end forces. If the nodal restraints are now removed, the
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ensuing displacements will be those caused by loads equivalent to the opposite of the
fixed end forces. That is, the fixed end forces are removed when the nodes are allowed
to displace. Thus the displacements will be due to loads equal in magnitude to the fixed
end forces but opposite in sense. Therefore, equivalent forces that must be applied to
the nodes of an element in order to account for non-nodal forces are exactly opposite of
the fixed end forces.

Consider the superposition diagram shown in Figure 1.18.

Original Fixed End Forces Equivalent
Nodal Forces
@ ®) © Figure 1-18 Superposition diagram.

For determining the nodal displacements we solve part (c) of the superposition dia-
gram shown in Figure 1-18. Since part (b) of the diagram has zero nodal displacements,
the displacements found in part (c), using the equivalent nodal forces, are the true nodal
displacements of the original structure. However, we must add the forces in both parts
(b) and (c) in order to obtain the forces acting at the nodes of the original structure.

Formulating the procedure algebraically, we can write

{FY+ {Fequiv} = [K1{u} (1.16)

The solution of equation (1.16) yields the true nodal displacements.
The true nodal forces acting on the members are found by using .

F; = [k); {u}; — {Fequiv} = [k]i {u}; + {Ffixed-end},-

where all subscripted terms refer to the element being considered.

After determining the true nodal forces we can then construct the axial force dia-
grams by considering free-body diagrams of the original structure with the actual loads
applied.

The determination of fixed end forces and the use of equivalent nodal forces are
illustrated in the following examples.

Example 1.3

Determine the equivalent nodal forces for the uniformly distributed load shown. The cross-
sectional area of the bar is constant. We shall determine the fixed end forces and then
reverse their sense.

p(x) = p ,(constant)

pd

Figure E1-3a Bar element with
uniformly distributed load.
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Since we have two unknown axial forces, Ry and R, and only one axial equilibrium
equation, the structure has one degree of indeterminacy. The compatibility condition we
need to generate in order to obtain an additional equation results from the knowledge that
there is no relative displacement of one end of the member with respect to the other since
both nodes are fixed.

Drawing a free-body diagram of a portion of the structure we have

Py

—

Ry — = P
) Figure E1-3b Portion of bar

=X element.

from which P(x) = R; — pox. The strain at position x is P(x)/AE. The total elongation
of the bar is zero, and is obtained by integrating the strain over the length of the bar. Thus,

)
0= (1/AE)/ (R1 — pox)dx = (1/AE) [Ril — pol?/2]
0

from which R = pol/2.

From overall equilibrium, R| + Ry = pol. Thus, Ry = pol/2.

Since both R; and R are positive, we have assumed the correct directions for these
forces. Reversing their directions yields the equivalent nodal loads.

Note that each equivalent force is equal to one-half the total load.

Figure E1-3¢ Equivalent nodal
Po V2 s —— P, U2 loads.
Example 1.4

Solve for the nodal displacements and member end forces for the structure shown in Fig-
ure El1-4a. Construct the axial force diagrams for each member.

1 kip/in.

Element 1 Element 2 Figure E1-4a Example 1.4.

Since the uniformly distributed load totals 10 kips, 5 kips acting in the positive
direction (to the right) are added to the applied nodal forces. This yields the nodal forces
shown in Figure E1-4b.

Using values of k; = 58 x 102 k/in and k> = 29 x 10% k/in, and equation (1.16), the
structural equation becomes

58 x 10> —58 x 102 0 0
30'< 58 x 102 87 x 102 —29x 102 | { up

—sk —29x 102 29 x 102
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Element 1 Element 2 Figure E1-4b Total nodal loads.

Reducing the above equation by eliminating the first row and column, which corre-
spond to the reaction and zero displacement at the fixed end, we solve for the unknown
displacements obtaining u2 = .00431 in and u3 = .00258 in.

Solving for member forces we have

) =51 1 1] ooan )+ {0}
lel—58x10 -1 1])1.00431] 10

Thus, Fi; = —25 kips, F2; = +25 kips.
Fzzl_ 2[ 1 —1][.00431} [-—5}
Fo f =21 1 1 ]loo2ss| T -5
Thus, F22 = 0, F3, = —10 kips.
Note that the last terms in the above equations reflect the addition of the fixed end
forces (opposite of the equivalent nodal loads).

Figure E1-4c shows free-body diagrams of the nodes and members, and Figure E1-4d
shows the axial force diagrams.

25 25 25 25 25

—
— =

Figure El-4c Free-body diagrams of members and nodes.

25k

10¥ o . .
- Figure E1-4d Axial force diagram.

Before constructing the axial force diagrams, free body diagrams such as those of
Figure E1-4c should be drawn with the forces acting in the true directions. Remember
that our matrix solution sign convention requires positive forces to act in the positive
direction of the axis of the member independent of the end being considered. This is
different from the standard strength of materials sign convention where tension in the
member is considered positive. By constructing the free-body diagrams we can easily
relate the actual force directions to the strength of materials sign convention for forces.

Another very important reason for drawing the free body diagrams is that it gives
us the ability to check equilibrium of the members and nodes. This is essential with
any output from a computer program, since errors in input or the program itself can be
readily found.
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1.8 THERMAL EFFECTS

When a temperature change occurs in a bar element, an axial strain linearly proportional
to this temperature change takes place. This strain is generally expressed as €7 = o (AT),
where « is the coefficient of thermal expansion and has units of strain/°F or strain/°C,
and AT is the temperature change. If the bar has a length L, the total change in length
due to a temperature change over the entire bar is AL = ez L = a(AT)L. We can treat
thermal effects in rods in the same way that we dealt with non-nodal forces. That is, we
will use the concept of fixed end forces and equivalent nodal loads.

As in problems dealing with non-nodal loads, the equivalent nodal forces are the
same magnitude as the fixed end forces but opposite in sense. After applying the equiv-
alent nodal loads and solving for the unknown nodal displacements, we find the member
forces by superposing the fixed end forces and the forces calculated using the nodal
displacements. Since 0 = P/A = E€ = Ea(AT), then P = EAa(AT) and the fixed
end forces for the rod are given by

{F}fixea = EAa(AT) { _} }

Of course, since we are dealing exclusively with linear systems, the superposition prin-
ciple is valid and the thermal effects can occur simultaneously with both applied nodal
loads and non-nodal loads.

Example 1.5

For the structure shown in Figure E1-5a, determine the nodal displacements and member
forces. In addition to the load applied at node 2, member 2 undergoes a temperature increase
of 60°F. All bar areas are 2 in?, E = 29 x 10° psi, and & = 6.5 x 1079 in/in/°F.

10,0004

10 in 15 in
member 1 member 2 Figure E1-5a Example 1.5.

The fixed-end forces due to the temperature change in member 2 are found using
P=EAA/L=(EA/L)a(AT)L = EAa(AT) = 22,620 lbs compression. The equivalent
nodal forces (opposite of the fixed end forces) are shown in Figure E1-5b.

10000#

o o ,
—~— ——  Figure E1-5b Applied loads and
22620# 22620# equivalent thermal forces.

For member 1:

(m)=se0 [ 7 ]{L)
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For member 2:

A 6[ 1 —1]{u2}
{R]=3sesx10°[ | ~]]{%
Combining,

58x100 —5.8x 108
—12620 —58x 105 9.666 x 10° —3. 866 x 108
0 —3.866 x 10°  3.866 x 106

Smce uy and u3 are both zero, the second equation yields —12,620# = 9.6666 X
105u. Thus, up = —.0013055 in.

Member forces:

Member 1:
i _ 6[ 1 —1]{ 0 l_{ 7572]
{le =58x10°1 1 1] {— 0013055 ] = | —7572 Pounds
Member 2:
R _ 6[ 1 —1] {—.OOI3OSS] { 22620 _ { 17572]
{F3 ] =3866x10°[ | ) ] ol =1 _ 1| pounds
Figure E1-5¢ shows free-body diagrams of the members and node 2.
10000#
— R — —@— —E— Figure E1-5¢ Free-body diagrams of
1572# T572# 17572%# 17572# elements and nodes.

Note that the member nodes are in equilibrium. This should always be checked.

1.9 COMPUTER FORMULATION

To automate the solution process illustrated above, we need to be able to combine the
individual stiffness matrices into the structural stiffness matrix. In addition, we need
to reduce the resulting matrix using the known displacements to solve for the unknown
displacements. A general outline for a computer program to solve these one-dimensional
problems is cited below.

(1) Sketch the structure labeling nodes and members and show applied loads.

(2) Enter geometric and material properties, applied loads, and support conditions
(known displacements).

(3) For the number of elements, generate each elemental stiffness matrix and place its
elements in the appropriate locations in the global (structural) stiffness matrix.

(4) Reduce the global stiffness matrix using the boundary conditions (including known
non-zero displacements).

(5) Solve the resulting equations for the unknown displacements.
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(6) Calculate the member forces using the computed displacements and the individual
member stiffness matrices.

(7) Print out input data, member forces, and nodal displacements.
Let us assume that the following data have been entered into the program:

NE = number of elements
NN = number of nodes

For each member:

E(I) modulus of elasticity of member I
A(I) cross-sectional area of member I
L(I) = length of member I

NL(I) = left node number of member I
NR(I) = right node number of member I

We want to form SK(I,J), the global structural stiffness matrix. Consider the fol-
lowing code fragment:

FOR I =1 TO NN

FOR J =1 TO NN

SK(I,J)=0. [zero structural stiffness matrix]

NEXT J: NEXT I

FOR I=1 TO NE [loop on number of elements]

EK=E(I)*A(I)/L(I)

EKT (1, 1)=EKT (2, 2)=EK

EKT(1,2)=EKT(2,1)= -EK [elements of member stiffness matrix]
IJ(1)=NL(I)

I1J(2)=NR(I) [counters (left and right node numbers)]

FOR IR =1 TO 2 [row index]

FOR IC =1 TO 2 [column index]

KR = IJ(IR) [row of SK matrix]

KC = IJ(IC) [column of SK matrix]

SK(KR,KC) = SK(KR,KC) + EKT(IR,IC) [accumulate element stiffnesses in
global stiffness matrix]

NEXT IC:NEXT IR

NEXT I

For each elemental stiffness matrix:

(a) elements 1,1 and 2,1 multiply the left node number displacement;
(b) elements 1,2 and 2,2 multiply the right node number displacement.

Thus, element 1,1 should be placed in the SK matrix in both the row and column
corresponding to the left node number global displacement. Also, element 1,2 should be
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placed in the row corresponding to the left node number and the column corresponding to
the right node number. Element 2,2 should be placed in the row and column correspond-
ing to the right node number. Element 2,1 should be placed in the row corresponding to
the right node number and the column corresponding to the left node number.

The code fragment shown above accomplishes these tasks. Note that the elemental
stiffness matrices are not saved. Each matrix is calculated and immediately placed in
the global stiffness matrix. Although this will require recalculation of the elemental
stiffnesses in order to find member forces, it reduces memory requirements.

Next, consider the reduction of the global stiffness and force matrices using the
boundary conditions.

If the displacement boundary conditions are all homogeneous (i.e., u; = 0), as in
the previous examples, we must eliminate the rows and columns corresponding to the
zero displacements. The rows eliminated correspond to the unknown reactive forces, and
the columns correspond to the zero displacements (the same number row and column for
each zero displacement).

Clearly, we must specify which nodes have zero displacement when entering data.
Suppose that for each node we have specified a restraint code where zero (0) means that
the node is free to displace and one (1) means that the node has zero displacement. We
have stored these values in an array KRES(I), where I ranges from 1 to the number of
nodes. In Example 1.1 the KRES(I) matrix would be {1 0 0} since we have three nodes
and node number 1 has zero displacement.

We first determine the order of the reduced stiffness matrix SKR(I,J). The order
of this matrix will be equal to the number of degrees of freedom minus the number of
nodes that are restrained. Remember that for this one-dimensional element, each node
has only one degree of freedom. A code fragment to find the order of SKR might look
like the following

KSUM=0 ([initialize KSUM to zero]

FOR I=1 TO NN [loop on number of nodes]

IF (KRES(I))>0 THEN KSUM=KSUM+l1 [accumulate the number of restraints]
NEXT I

NKR=NN-KSUM [calculate the order of SKR]

We next determine the numbers of the rows and columns that will be kept.

J=0

FOR I=1 TO NN

IF KRES(I)=0 THEN J=J+1:KEPT(J)=I
NEXT I

In Example 1.1, KEPT(J)=(2 3}, which are the numbers of the rows and columns
we want to keep when constructing the reduced stiffness matrix SKR.

Now we fill SKR and generate a new reduced force matrix that contains the known
applied loads. These will be the forces of the original force matrix that are in the rows
corresponding to the row numbers kept.
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FOR I=1 TO NKR

N=KEPT(I): FR(I)=F(N)

FOR J=1 TO NKR

M=KEPT (J) : SKR(I,J)=SK(N,M)
NEXT J: NEXT I

The solution of the resulting equations requires the inversion of SKR and multi-
plication of the reduced force matrix FR. That is, since {FR}=[SKR]{UR}, then {UR}=
[SKR]~'{FR} where {UR} is the matrix of calculated unknown displacements. We must,
however, place the calculated displacements in the correct row of the global displace-
ment matrix {z}, which contains all displacements, including the ones that are zero or
specified. This can be accomplished as illustrated below, where it is assumed that after
inversion of SKR, SKR contains the inverse. In other words, the original elements of
SKR have been replaced by its own inverse during the process of inversion. In the
following code fragment, U represents the unknown displacements to be calculated and
DU represents the complete global displacement matrix. After inverting SKR,

FOR I=1 TO NKR: U(I)=0: NEXT I [zero all unknown displacements]
FOR I=1 TO NKR

FOR J=1 TO NKR

U(I)=U(I)+SKR(I,J)*FR(J) [calculate the unknown displacements]
NEXT J: NEXT I

FOR I=1 TO NN: DU(I)=0.: NEXT I [zero global displacements]

FOR I=1 TO NKR: ND=KEPT(I): DU(ND)=U(I): NEXT I

Note that the code fragment above assumes that there are no non-zero specified
displacements. In addition, we have included forces applied at only the nodes.

Next, we calculate the member forces. Note that we can compute the values of the
unknown reactions from the original SK matrix and DU displacements, or by using the
member forces at the nodes with zero displacements.

In calculating the member forces, we need only the force at one end of the member
since the force is constant throughout the bar when loads are applied only at the nodes.
We choose the right end of the member since a positive force at this end indicates
tension in the member, which is consistent with the common strength of materials sign
convention.

For element j, with nodes i and i + 1, F; = k;(u;1+1 — u;). The code becomes

FOR I=1 TO NE [loop on number of elements]
P(I)=(E(I)*A(I)/L(I))*(DU(I+1)-DU(I))
NEXT I

P(I), of course, represents the force in member I.

We can now print out all displacements and forces. In general, it is always good
procedure to print out all data that was entered into the program as well. If this is done,
then it becomes much easier to check input data and, if necessary, to debug the program.
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1.10 SUMMARY

In this chapter we have derived the elemental stiffness matrix for a one-dimensional
bar. We accomplished this by using the basic definition of stiffness as the force at i
corresponding to a unit displacement at j. We showed how the individual elemental
stiffnesses are combined in order to form the structural stiffness matrix. A method of
treating specified non-zero displacements was presented. Equivalent nodal forces due to
non-nodal loads were derived by considering the fixed end forces corresponding to these
non-nodal loads. We saw that these equivalent nodal forces resulted in the correct nodal
displacements; however, the member forces required the addition of the fixed end forces
in order to obtain the true end forces. We also outlined the programming steps necessary
to develop a computer program for solution of these one-dimensional problems, and we
presented algorithms to accomplish this task.

In the chapters that follow we will be investigating the use of many commonly used
elements for solving structural problems. Later in the text we shall present alternative
ways of deriving the elemental stiffness matrices, the overall structural stiffness matrix,
and the fixed end forces due to non-nodal loads.

PROBLEMS

1.1 For the structure shown in Figure P1-1

13 F3 K
G

20 in je— 15 in -te— 10 in —ol
Member 1 | Member 2 I Member 3

Areas for all members =2 sq. in Figure P1-1

(1) Determine the structural stiffness matrix for the entire structure by using the basic defini-
tion of stiffness.

(2) Determine the structural stiffness matrix by combining individual elemental stiffnesses.

(3) If the left end of the structure is fixed, solve for the nodal displacements and member
forces if F» = 10 kips, F3 = —5 kips, and F4 = 8 kips. Use the partitioning method and
the method of removing rows and columns from the original structural stiffness matrix.
E = 29 x 10 psi for all members.
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1.2 For the structure shown in Figure P1-2, solve for nodal displacements and member forces.

5 in? 3> 1in?
sk 15k
20in  20in  20in
E = 29 x 10° psi
Member 1 2 3 Figure P1-2

1.3 Solve for nodal displacements and member end forces for the structure in Figure P1-3. Also
construct the axial force diagrams.

2 kfin 3 kin

15
1in2  ° 2in?
|-_ 10 in —-l— 15 in —-l
E = 30 x 10% psi
Member 1 2 Figure P1-3

1.4 Referring to Example 1.4, replace the 10 kip load at node 3 with a specified displacement of
+.00258 in. Solve for all displacements and member forces. Use the partioning method and
the numerical method presented in section 1.6.

1k/in

i 5ex 10in  —— "
10 in 25k usz = .00258 Figure P1-4

1.5 Determine the equivalent nodal forces for the loads shown in Figures P1-5a through P1-5f.

Figure P1-5a

L l Figure P1-5b
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isin nx/L

Figure P1-5c

Figure P1-5d

kx 2
X
L
/ ~
X
L Figure P1-5Se
S
~ L

Figure P1-5f

1.6 Using the equivalent nodal forces from problem 1.5, solve for displacements and member
forces of the structure shown in Figure P1-6. Show the forces on free body diagrams of each
member. A =1 in?, E = 10 x 10° psi.

1000 #/in

20 in 20 in
1 2

Member Figure P1-6

1.7 Using the code fragments in this chapter as the basis for your work, write a computer program
that will solve one-dimensional bar problems. It should have the capability to use up to
10 elements for modeling a structure. It should calculate nodal displacements and member
end forces. You may use the matrix inversion routine in Appendix B if desired. It is not
necessary for the program to deal automatically with non-nodal loads or specified non-zero
displacements.
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1.8 Using the program you wrote in problem 1.7 and the results you obtained from problem 1.5,
solve for the nodal displacements and member end forces. Draw free body diagrams of each
node and each member showing the directions and magnitudes of all forces acting on them.
A=1in? E =30x 10°.

0.2x3

Member 1 2 3 Figure P1-8

1.9 For the structure shown in Figure P1-9, determine the exact solution for the displacement as a
function of position along the bar. Model the structure with 2, 4, and 8 elements, and use your
computer program to solve for nodal displacements. Compare your computer results with the
exact solution. A =2 in?, E =30 x 10° psi.

2 kfin

x 20 in Figure P1-9
1.10 Model the tapered bar shown in Figure P1-10 with 2, 4, and 6 elements, using the average
area for each element. Compare your computer results with the exact solution. £ = 29 x 108

psi.

4 in? 2 in2

20

20 in Figure P1-10

1.11 Member 1 in the structure shown in Figure P1-11 undergoes a temperature increase of SO°F.
Using E = 29 x 10% psi and @ = 6.5 x 1079 in/in/°F, find the nodal displacements and
member forces. Draw free-body diagrams of each member.

ber 1 ber 2
1 10 10 in
2 sq. in 1sq. in

Figure P1-11
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1.12 In addition to the distributed load shown acting on the structure depicted in Figure P1-12,
member 1 undergoes a temperature change of 30°F. Using E = 10 x 10° psi and «
12.8 x 1079 in/in/°F, find the nodal displacements and member forces. All areas are 1 inZ.

3000#/in
20 in 20 in 20 in
Member 1 2 3

Figure P1-12

1.13 Determine the static and kinematic indeterminacy for the following structures:

A= o O () Bar
(a) Truss
a |
[o EoN EoR
777 /77
(c) Beam (d) Frame

Figure P1-13
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2.1 INTRODUCTION

Chap. 2

You will recall from your basic structures coursework that several assumptions were

made when considering the solution of truss problems. They were:

(1) The members of the truss were connected only at their ends.

(2) The connections between members at a joint consisted of frictionless pins.

(3) The members were straight.
(4) Loads were applied only to the joints.

As a consequence of these assumptions we found that each member was a two-force
member having only an axial force, either tensile or compressive. Of course, assumptions
(2) and (4) above are generally not valid in a real structure such as a timber roof truss,
but they do provide us with a “primary” solution to the problem. A “secondary” solution
that accounts for end fixity and loads applied intermediate to the joints is then superposed

on the primary solution before members are designed.

When we considered the one-dimensional bar element in Chapter 1, the elemental
axis was oriented along the length of the bar. The global or system x-axis for the entire
structure (the assemblage of bar elements) was also oriented along the axis of the bars.

Naturally, there was a single displacement of each node, also oriented along

the bar

axis. In other words, the elemental x-axis and global x-axis were in the same direction.

A two-dimensional truss element, however, can be oriented in any direction in

the x-y

plane. As a result of this, the elemental axis, which is generally considered to act along
the length of the bar from left to right, in general will not be parallel to a global or
structural system coordinate axis. In addition, since an unrestrained joint in the structure

can displace in the plane of the structure, we must allow for two displacements

at each

node. Thus, each node will have two degrees of freedom. These displacements are
conveniently taken as parallel to the x and y global axes. Since it is always simpler to
derive the elemental stiffnesses with respect to the elemental coordinate system, we must
find a way to transform the displacements, forces, and elemental stiffness matrices, which
are expressed in elemental coordinates, to our global coordinate system before combining
to form the structural stiffness matrix. That is, we must have all quantities expressed in
terms of a single coordinate system. This requirement leads us to a discussion of vector

coordinate transformations.
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2.2 COORDINATE TRANSFORMATIONS

Consider the truss member shown in Figure 2-1.

¥ A
d4 e 3
us
y, W
N 6
62
u
81
Figure 2-1 Local and global

= X coordinate systems.

Note that the elemental displacements §; through &4 are parallel and perpendicular
to the member coordinate system x’ and y’. Also note the order of numbering of the
displacements. Displacements 1 and 2 are at the left end of the member while dis-
placements 3 and 4 are at the right end. We denote the elemental displacements by &
in order to distinguish them from the global displacements u. In order to include the
displacements &, and 84 in our elemental force-displacement equation, we must expand
the elemental force, stiffness, and displacement matrices to a four-degree of freedom
system (two degrees of freedom per node). We do this by adding the equations P, = 0
and P4 = 0. Our elemental force-displacement relationship {P} = [k]{8} becomes

P 1 0 -1 07 (&
P 00 00|]s
pl=EML 1 0 1 0f)s
Ps 00 o o)\

Note that the elemental forces which act in the elemental coordinate directions
x'—y" are denoted by P in order to distinguish them from the global forces F, which
act parallel to the global x-y coordinate system. We would like to express the elemental
displacements in terms of the global or system displacements. This transformation will
take the form

~N

2.1

{8} = [B] {u} 2.2)

Consider the vector displacement of the left end of the member as shown in Fig-
ure 2-2.

In Figure 2-2, 6 is the angle between the global x-axis and the element x-axis,
measured positive counterclockwise. We can see that

81 = u;cos@ + u, sinf

82 = up,cos6 — uj sinf
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, Figure 2-2 Components of
I W 1 displacement vector.

The same relationships between displacements will also exist at the right end of
the member. Thus

83 = uzcosB + uy sinf
84 = Uy COSO — uz sinfh

In matrix form, equation (2.2), {§} = [B1{u}, becomes

61 cosf sinf 0 0 U
&\ _ | —sinf cosb 0 0 Uy
& [ 0 0 cos® sin6 usz 23)
N 0 0 —sin® cos6 Uy

Now, the length of the displacement vector must be the same in both the system
and the elemental coordinate systems.

8248 = ul +ul

[6 32]{2} =[u uzl{Z;}

which can be written

1817 {8} = [w]" {u) (24)
Since {8} = [B]{u)} then
{u}) = [B)" {8) (2.5)
From matrix algebra, if [A] = [B][C], then [A]T = [C]T[B]T. Thus,
{(8)" = [l 18" (26)

Using equations (2.5) and (2.6) in equation (2.4) yields
)" 1817 {8} = [u]" (1" {6}
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Thus,
B =18" 2.7

Equation (2.7) is a property of rotation of an orthogonal coordinate system.

2.3 GLOBAL STIFFNESS MATRIX

When we combined the elemental stiffness matrices for the one-dimensional rod in order
to generate the system or global stiffness matrix, it was done directly by identifying
stiffness terms with nodal displacements. This was possible since all elemental stiffnesses
were also stiffnesses with respect to the global coordinate system (remember that the
coordinate systems were identical). This is not the case for the truss element. The local
(elemental) and global coordinate systems are not, in general, the same. Before we can
combine the elemental stiffnesses in order to generate the global stiffness matrix, we
must transform each elemental stiffness to a common set of axes. We naturally choose
the global set of axes as this common set.

Equation (2.3), {6} = [B]{u}, is the transformation equation for a two-dimensional
vector. It can therefore be used for forces as well as displacements. That is, we can
write

{P}=[B1{F} 2.8)

where { P} represents the elemental forces with respect to the elemental coordinate system
and {F} represents the elemental forces with respect to the global coordinate system.
For the elemental coordinate system we have

{P} =[] {8} (2.9
Using equation (2.9) in equation (2.8) we find
[k1{8} = [BI{F} (2.10)
Substituting equation (2.2) into (2.10) yields
(k1 [B]{u} = [BI{F} (2.11)
Solving for {F} we have
{F)=181"" K] [B]{n) (2.12)

Since the force-displacement relationship for the global coordinate system can be written
{F} = [K]{u}, then from equation (2.12) we see that

[K1= 81" [k [B]
which by virtue of equation (2.7) becomes

[K]1=[B1" [K1(B) (2.13)
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Equation (2.13) is used to transform the elemental stiffness matrix [k] with respect
to the elemental coordinate system, to the elemental stiffness matrix [K] with respect to
the global coordinate system. Once the stiffnesses of each element in our structure have
been transformed in accordance with equation (2.13), we will be able to combine them
into a global structural stiffness matrix. We can then write for the entire structure

{F}global = [K]global {u}global

where the “global” subscript refers to the entire structure.
Expanding equation (2.13) and designating the sine and cosine terms by S and C,
respectively, we have

C =S 0 0 1 0 -1 0 cC S 00
s C 0 0 00 0O0||=-SC 00O
(Klysien coma. = EAIL 15 9 ¢ _s||-1 0 10| 00 C s
L0 0 § C 00 00 0 0 =S C
r Cc? CcS -C* -cCS§
cs §* —-cS -$?
=EAIL| & _os 2 cs (2.14)
L -CS =52 cs 82

Equation (2.14) is the elemental stiffness matrix in terms of system (global) coordinates.
Thus, we can formulate the system stiffness matrix by summing the elemental stiffness
matrices after they have been transformed to the global coordinate system.

2.3.1 Truss Examples

Example 2.1

Consider the truss shown in Figure E2-1.

® P

EA= constant

x
B o4
I global system
3
© L
L
@ Figure E2-1
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The system displacements with respect to the global coordinate system are as follows:

Node System displacements

1 ui, u2
2 U3, Ua
3 us, Ueg

Note that the x displacement at each node has a subscript equal to twice the node number
minus 1, and the y displacement subscript has a subscript equal to twice the node number.
We will use this scheme to designate displacements for a truss.

For element number 1, consider nodes number 1 and 2 as the left and right ends of
the member, respectively. Thus, for element number 1, with §;_» =0°and C =1, § =0,

we have
1 2 3 4
F 1 0 -1 0 up ) 1
R _ 0 0 00 uy | 2
AA=EAL 1 0 1 0] )us(3
F4 0 0 0 0 Ug 4

For element number 2, nodes 2 and 3 locate the left and right ends of the member.
Therefore 62_3 = 135°, and C = —1/+/2, S = 1/+/2. Thus,

3 4 s 6
Fs 12 —12 =12 127 (us) 3
Fa | _ -1/2 1/2 172 -1/2 us | 4
ol X VE ) O K S I
Fe 12 -12 =12 12 lug] 6

For element 3, nodes 1 and 3 are located at the left and right ends of the member, so
61-3=90°and S=1,C =0.

1 2 5 6
Fl 0 0 0 0 ui 1
| _ 0O 1 0 -1 uy | 2
Fs |~ EA/L O 0 0 O us | 5
Fg 0 -1 0 1 ug ) 6

Since we now have all elemental stiffnesses expressed in terms of the global coordinate
system, we can now construct the system stiffness matrix. The structure has three nodes
and therefore six degrees of freedom. The structural stiffness matrix will be a 6 x 6 matrix.
Accumulating elements of the elemental stiffness matrices using the global codes noted
above and to the right of the matrices we find

Fi 1 0 -1 0 0 0 u
F 0 1 0 0 0 -1 us
F3 —EA/L 1 0 1+1/2v2 —1/2v2 —=1/2V2 172v2 | ) us
Fio| 0 0 —1/2v2 17242 12V2  -172v2 | ) ma
Fs 0 0 —=172v2 1/2v2  1/2v2  =172v2 | | us
Fe 0 -1 12v2 —1/2¥2 =1/2v2 1+ 172424 \ug

(2.15)
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where each term in the force matrix represents the total nodal force in a global x or y
coordinate direction at a node. These forces are either reactions or applied forces. As
an example of the combination of stiffnesses, note that a row 6 and column 6 designation
appears in the elemental stiffness matrices for both elements number 2 and 3. Thus, element
6,6 in the structural stiffness matrix is the sum of these two individual stiffnesses.

We now reduce equation (2.15) by applying support condition constraints. Both nodes
1 and 3 are pinned. As a result, displacements u;, uz, us, and ug are zero. Eliminating the
rows and columns associated with these zero displacements results in the reduced stiffness
matrix shown in equation (2.16).

(Rh=ean (02 TR @19

Solving equation (2.16) for the two unknown displacements u3 and u4 yields

uz=(F3+ F4))L/EA
us = [(1 +2V2)Fy + F3] L/EA

The reactions Fy, F>, Fs, and Fg are found by substituting these displacements into
equation (2.15). We find,

Fil=—(F3+F), F,=0Fs=F,, andFg=—F,.

Sketching these reactions and the applied loads F3 and F4 on the structure as shown below,
we verify overall equilibrium.

F,
B
F,
Fs;+ F
s+ B . R
0

We next calculate the member forces.

Since {8} = [B){u}and {P} = [k]{6}, then {P} = [k][B){u}, where [k] is the elemental
stiffness matrix with respect to the elemental coordinate system. The [B] and {u} matrices
are different for each element.

For element number 1,

P, 10 -1 071 00 07 (u —(F3 + F3)
Pl _ 00 oo0||lo1oo]|)Jul_]Jo
Bl EMYE 210 1t ol|loo o us[T)] m+Fp
Py 00 00][000 1] [us 0
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For element number 2,

P, 1 0 -1 07J[-1/2 1/4/2 o 0 us
p| _ 00 0O0|]|~-1/V/2 -1/¥2 0 0 U
P3 = EA/V2L -10 10 0 0 —1/v2  1/V2 | ) us
Ps 00 00 0 0 -1/v2 =1/v2 ] | us
2Fy
=1vz] ?
—2F,
0

and for element number 3,

P 1 0 -1 0 01 00 ui 0
P | _ 00 00 -1 0 00 u | _ )0
Pl EA/L -1 0 10 00 01 us [ ) O
Py 00 00O 00 -1 0 ug 0

Note that we need to calculate only P3 for each member since it represents the axial
force in the member, positive when tensile.

Example 2.2

Consider the truss shown in Figure E2-2. EA = constant.

Figure E2-2

Let node number 1 be the left end of each member. From equation (2.14) the
transformed elemental stiffness matrices become:
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Member 1:
013 =180° Lj_3 =1L

10 -10
00 00

Ul =EA/L} | o 1 0
0 00

Member 2:
9[_2 = 120°, L1_2 = 2L

125 —.2165 —.125 2165
—.2165 375 2165 —.375
—-.125 2165 125 —.2165

2165 —-375  -.2165 375

[k} = EA/L

Member 3:
01-4 = 210°, L1—4 = 1.155L

.65 375 -65 =375
375 2165 —-.375 —.2165

kls=EA/L| _os _375 65 375
-375 -.2165 375 2165
Now,
F u F u F u
R _ u R _ u R\ _ us
Fs (= [k]y us Rl= (k]2 us Fl= [k]3 U7
Fe u6 Fy u4 Fg ug

Combining, we find

Fi) - 1775 1585 —.125 2165 —1 0 —65 375 7 (u1)
F, 1585 5915 2165 —375 0 0 —375 —2165 | | ua
F _125 2165 125 -2165 0 0 0 0 s
Fa 2165 —375 —2165 375 00 0 0 s
F [ S EAL] 0 0 0 10 0 0 s
Fe 0 0 0 0 00 0 0 u
F _65 375 0 0 00 6 3715 ||w
| Fy | 375 -2165 0 0 00 3715 2165 lus

2.17)

Noting that only u; and uy are non-zero, our reduced equation becomes

Fi] _ [1.775 .1585][141]
le]‘EA/L 1585 5915 Lu, (2.18)

Solving for the displacements we find

uy | _ 577 —.1547] l Fi ]
luz ] =L/EA [—.1547 1.732 1) 219
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Thus,
uy = (L/EA)(577F, — .1547F;) uy = (L/EA)(—-.1547F + 1.732F,)

Using equation (2.17), the reactions are found to be

F 125 2165

F 2165 —375

Fs | _ -1 0 ui

g =EAL] T 0 [ ” ] (2.20)
F —65 —375

Fe —375  —.2165

Using {P} = [k][B]{u} and calculating P3 for each member gives
Prember 1 = (STTF) — 1547 F)
Prember 2 = (211F) — 789 F;)

Prember 3 = (365F) + .634F)

A free-body diagram of node 1 appears below.

I

577 F)- 1547 F,
-— @

/

365 F;+ 634 F,

211 F,- 789 F,

I

Resolving the forces into the horizontal and vertical directions, and writing the equi-
librium equations yields

T Fy =—.1055 F| — 577 F1 — 3161 F1 + F) + 3945 F, + .1547 F, — 549 F, = 0
TFy=F(.183 - .183) + F,(—.683 - 317+ 1) =0

2.4 SUPPORT MOVEMENTS

We often need to account for specified support displacements. These displacements could
be due to soil consolidation or expansion or to non-precise placement of foundations of
the structure.

In the first case, the geotechnical engineer will make an estimate of the possible
movement of supports based upon soil profiles, moisture content and its variation, and
both dead and live loads transferred to the foundations by the structure.

In the case of imprecise foundation placement, which is generally discovered during
erection of the structure, a survey is performed to determine the magnitudes of the
discrepancies between the specified position and actual location. In either case, the
support displacements will be known.
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Techniques for dealing with prescribed nodal displacements for the one-dimensional
rod were presented in Chapter 1. Of course, these techniques can be used for any structure
with support movements, and both techniques will be illustrated for a two-dimensional
truss.

As in section 1.5, suppose we write the structural equation in the following way:

{ {F>} } _ [[Kpp] [Kps]J { {uy } } @.21)

{Fs} [Ksp] [Kss] {us}

where {F,} and {u,} represent known applied nodal forces and corresponding nodal
displacements, and {F;} and {u} represent unknown support reactions and corresponding
support displacements (some of which may be zero). Note that this requires reordering
of the rows and columns of the original matrix equation. Expanding equation (2.21)
yields

{Fp} = [Kpp) {up} + [Kps] {us} (2.22)
{Fs} = [Kop) {up} + K] {us) 2.23)

Note that if {u;} = {0}, that is, if all support displacements are zero, the above
equations become

{Fo} = [Kpp) {up} (2.24)
(Fs} = [Kop) {up} (2.25)

The terms in equation (2.24) are identical to the reduced force, stiffness, and displace-
ment matrices obtained by removing the rows and columns associated with the zero
displacements.

Once the displacements {u,} have been found by solving equation (2.24), equation
(2.25) is used to determine the reactions.

Consider the case where some or all terms of {u;} are non-zero. Solving equation
(2.22) for {up} yields

{up} = [KPP]—I ({Fp} — [Kps] {us}) (2.26)

We now use the values of {u,} in equation (2.23) to determine the forces associated
with the specified displacements.

Keep in mind that for a determinate structure, no additional bar forces will be
introduced by support movements. Since a determinate structure is not overconstrained,
it is able to accommodate support movements by altering its configuration through dis-
placements of the nodes. That is, the members undergo rigid body motion and therefore
develop no additional stresses.

Let us solve the following problem using both techniques presented.

Example 2.3

Use the technique presented in Chapter 1 to solve for nodal displacements, reactions, and
member forces of the truss shown in Figure E2-3. The support at node 1 displaces down
0.6 in and node 4 displaces to the left 03 in. All areas are 2 in and E = 29 x 10° psi.
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All areas = 2 in?

E-

30000#

29x10° psi

b— 10 ft ——10 ft —-i——lOft —-| Figure E2-3

Step 1: Generate the overall structural stiffness equation. This equation is shown
below.

343806 257345 —170884 —170884 —172923 —86461 0 0 uy
257345 214115 —170884 —170884 —86461 —43231 0 0 uz
—170884 —170884 827140 84423 483333 0 —172923 86461 u3
—170884 —170884 84423 214115 0 0 86461  —43231 n
—172923 —86461 —483333 0 827140 —84423 —170884 170884 us
—-86461  —43231 0 0 —84423 214115 170884 —170884 3
0 0 —-172923 86461 —170884 170884 343807 —257345 u7

0 0 86461  —43231 170884 —170884 —257345 214115 ug
2.27)

Step 2: Eliminate the rows and columns associated with zero displacements. In this
case, #] and ug are zero. We therefore eliminate rows 1 and 8, and columns 1 and 8.

Step 3: If a displacement uy is specified at coordinate n, multiply k,, by a large
number M and replace the force value in row n by uy x M x kpn. In this example,
displacements u; and u7 are specified. We therefore multiply k7, and k77 by a large number
(taken as 10%), and replace the force values in rows 2 and 7 by the appropriate products.
Equation (2.28) is the result of these manipulations.

F
1)
F3
Fy _
Fs
Fg
Fq
Fg
—1.2847
0
—-30000
0
0
—-1.0314

x 101 214115 x 10° —170884 —170884 —86461 —43231 0 uz
—170884 827140 84423 —483333 0 —172923 us
_ | —170884 84423 214115 0 0 86461 us
= | -86461 —483333 0 827140 —84423 —170884 us
—43231 0 0 —84423 214115 170884 ug
x 1014 0 —172923 86461 —170884 170884 343807 x 10° u7
(2.28)
Solving equation (2.28) for the displacements, we find
u
u3 - 33848
ug —.36437 | .
inches 2.29
us -32343 2.29
us —.00925
u7 —.30000

The reactions are found from equation (2.27) by expanding rows 1, 2, 7, and 8. The

results are
Fy 22426
£ = 20001 pounds 2.30)

—22427
10001
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Note from the sketch shown below that overall equilibrium checks with very little round-off
error.

300004

-

20001# 10001 #

The member forces are now obtained from {P} = [k][B}{u}. As an example, consider
member number 1. With EA/L = 341,768.3#/in and 6 = 45°, we have

P 1 0 -1 0 7071 .7071 0 0 uy
P\ _ 00 0O -.7071 .7071 0 0 u
P3 = 3417683 -1 0 1 0 0 0 7071 7071 u3
Py 00 00O 0 0 —.7071 .7071 uy
(2.31)
which gives
P, 0727246 24855
123 O 0 _ 0
Py = 341768.3 _o727246 | = \ —24855 pounds (2.32)
Py 0 0

Similarly, for member number 4, with E,_'A/L = 216,153.2i#/in,

Py 1 0 -1 0 8944 4472 0 0 uj
m=em2| o Vo700 e i |
Py 00 00 0 0 —.4472 .8944 ueg
which yields

P 5425

2 = -542(5) pounds

Py 0
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Sketching the forces at node 1 we have

24855#

54254
224264 ——

—_—

|

20001#

Resolving these forces into x and y components provides a joint equilibrium check.

These checks are very important to perform, particularly when computer programs
are used for solving problems. They enable errors in input data and/or the program itself to
be detected.

Example 2.4

Solve the previous problem using the matrix partitioning technique.
Since up, uy, u7, and ug are the known displacements, we must reorder the original
structural stiffness matrix in the following way:

F3 827140 84423 —483333 0 —170884 —170884 —172923 86461 u3
Fy 84423 214115 0 0 —170884 —170884 86461  —43231 ug
Fs —483333 0 827140 —84423 -—172923 86461 —170884 170884 us
Fe \ _ 0 0 —84423 214115 —-86461 —43231 170884 —170884 Ug
Fi [ — | —170884 —170884 —172923 —86461 343807 257345 0 0 Ui
F —-170884 —170884 —86461 —43231 257345 214115 0 0 uz
12} —172923 86461 —170884 170884 0 0 343807 —257345 u7
Fg 86461  —43231 170884 —170884 0 0 —257345 214115 ug

(2.33)

In this example, each of the submatrices is a 4 x 4 matrix. This will not always be
the case. Using equation (2.26) we have

2.0017 -.7892 1.2187  .4805
—.7892 49816 —.4805 —.1895
1.2187 —.4805 2.0017 7892

4805 —.1895 7892  4.9816

(Kpp) ' [Fp = Kpgus] = 107°

0 —170884 —170884 —172923 86461 0
—30000 _ —170884 —170884 86461 —43231 —-.6
0 —172923 —86461 —170884 170884 -3
0 —86461 —43231 170884 —170884 0
—.33848
={_ gggi; inches (2.34)

—.00924
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Equation (2.23) yields the following reactions:

F 22426

_ AR _ 20001
{Fs} = F (=) —22425 pounds (2.35)

Fg 10000

Member forces are obtained as in Example (2.3).

2.4.1 Discussion

As expected, the results obtained from the use of each technique are nearly identical
(within 0.02%) with round-off error accounting for the difference.

The partitioning technique has the advantage of having to invert a 4 x4 matrix rather
than a 6 x 6. However, it requires reordering of the rows and columns of the structural
stiffness matrix and a number of matrix multiplications, additions, and subtractions. The
reordering is, of course, dependent on the specific displacements given. As a result,
implementation of this technique in a computer program would require not only checks
to determine which displacements are non-zero (as does the Chapter 1 technique), but also
would require extensive bookkeeping to identify rows and columns to be interchanged
and specific portions of rows and columns to be used in the other extensive mathematical
operations.

In addition, for most large problems where the stiffness method would generally be
used, the number of specified displacements is small in comparison to the total number
of degrees of freedom. Thus, the order of the matrix to be inverted when using the
partitioning technique is not much smaller than the entire reduced stiffness matrix.

Therefore, the partitioning technique, although useful from a theoretical point of
view and for hand solution of small problems, is unwieldy and not advantageous to use
as an algorithm for implementation in computer code.

2.5 TEMPERATURE CHANGES AND FABRICATION ERRORS

Temperature effects and fabrication errors such as an incorrect bar length are dealt with by
using the concept of fixed end forces and equivalent nodal loads. Recall that we used this
technique in Chapter 1 when addressing temperature changes in a one-dimensional rod
element. We prevent any displacements of the nodes and determine the forces required
to maintain the nodes in this undisplaced configuration (the fixed end forces). We then
apply the equivalent nodal loads, which are the opposite of the fixed end forces. After
determining the nodal displacements, the member forces are found by superposing the
fixed end forces and the forces found using the calculated displacements.

For the truss element, as for the bar element, the fixed end forces will be directed
along the axis of the member. Since the nodal forces are specified in terms of the global
coordinates, we need to transform the elemental fixed end forces to the global coordinate
system. This is easily done.
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When we discussed vector transformations, we found that {8} = [B]{u} and {P} =
[BI{F}, where § and P are expressed in terms of the elemental axes and 4 and F in terms
of the global axes. Since {P} = [B]{F}, then {F} = [B]~!{P}. Remember, however,
that [8]~! = [B]7. Thus,

{F}=(B81"{P} (2.36)

Equation (2.36) enables us to transform the elemental equivalent nodal forces {P} to
the global equivalent forces {F'}. These equivalent forces are simply the opposite of the
fixed end forces resolved into the global, coordinate directions. For example, suppose
that member ab in the truss shown in Figure 2-3 is fabricated 1/4 inch too short.

b

a 60
A O Figure 2-3

Assuming a cross-sectional area of 2 in?, a length of 20 ft (240 in), and an E =
29 x 10° psi, the force required to maintain zero displacements of nodes a and b is
P = EAA/L = 60417# (tension). The equivalent nodal forces at a and b are shown in
Figure 2-4. Note that they act in a direction parallel to the axis of member ab.

604174

o

a 60
/ -

604174# Figure 2-4

The [B] matrix for this member is

5 86 0 0
—866 .5 0o 0

Blao=| o o 5 866 237
0 0 —866 5
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Now, from equation (2.36),

F 5 —.866 0 0 60417# 30208.5
Rl _ |86 5 0 0 0 _ 52322.6 unds
F 0 0 5 —.866 —60417# ( = Y —30208.5 (P°
Fy 0 0 .86 .5 0 —52322.6
(2.38)
These equivalent nodal loads are shown in Figure 2-5.
52322.6#
b 30208.5#
52322.6#
a 30208.5# Figure 2-5

The forces shown in Figure 2-5 are now applied to the structure and nodal dis-
placements found. After the member forces are determined, we will add the fixed end
forces to member ab. The following examples illustrate this procedure.

Example 2.5

For the truss shown in Figure E2-3, solve for the force in member 4 if it has been fabricated
1/4 in too short. Remove the 30-kip load and the support movements.

The fixed end forces for member 4 are EAA/L = 54038# (tension). The [8] matrix
for member 4 is

89445 44723 0 0
—.44723 .89445 0 0
[Bla=| "y 0 89445 44723 (2.39)
0 0 —.44723 89445
From equation (2.36), noting that nodes 1 and 3 are at the ends of this member, we have
F 89445 —.44723 0 0 54038# 48334
F | _ | 44723 .89445 0 0 24167 ounds
F[~| o 0 89445 —.44723 —54038# —48334 [P
Fg 0 0 44723 .89445 —24167
(2.40)

After removing rows and columns 1, 2, 7, and 8 from the structural stiffness matrix
to account for zero displacements at nodes 1 and 4, the reduced stiffness matrix becomes

827140 84423 —483333 0

84423 214115 0 0
(Klr=1 _483333 o 827140 —84423 24D
0 0 —84423 214115

Inverting the reduced stiffness matrix and solving for the unknown nodal displace-
ments, we find
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u3 2.0017 -.7892 1.2187 4805 0 —.07050
s\ _ 1076 « —.7892 49816 -—.4805 -—.1895 0 _ .02780 inches
us | 1.2187 -.4805 2.0017 7892 —48334 [ ~ | -.11582
ug 4805 -—.1895 7892  4.9816 -24167 —.15854
(2.42)
The force in member 4 is
P 1 0 -1 O] [ .89445 .44723 0 0 0
Py — 216153 00 0O —.44723 .89445 0 0 0
Py~ -1 0 1 0 0 0 89445 44723 —.11582
Py 00 0o o0JL O 0 —.44723 89445 —.15854
—54038 -16319
+ 0 0 ounds (2.43)
54038 16319 [ P :
0 0
Example 2.6

Using the truss in Example 2.5, solve for the bar forces in members 2 and 4 if member 2
undergoes a temperature change of —40°F. Use a = 6.5 x 10~ %in/in/°F.

The fixed end forces are P = EAa(AT) = 15080# (tension). The equivalent nodal
loads are shown in Figure E2-6. Note that a formal transformation of these forces to the
global coordinate system is not necessary since the member axis is aligned with the global
X-axis.

@ 3

15080# 2

15080#
T

©) ® 10 ft.
N2 IR
b= 10 —— 10 ——10 Figure E2-6

The reduced stiffness matrix was found in the previous example (equation [2.41]).
Solving for the unknown displacements, we have

U3 2.0017 —-.7892 12187  .4805 15080# 0118
us | _ jgm6, | —7892 49816 —.4805 -.1895 0 —0047 |
us [~ 12187 —.4805 2.0017  .7892 | | —15080# —.0118 [ '"ehes
ue 4805 —.1895  .7892 4.9816 0 ~.0047
(2.44)
The force in member 2 is
P, 10 -1 011 0 0 0 0118 15080
p| 00 oo0|[o 1 0 o0]f])-.0047 0
P (=833 1 0 1 0lloo 1 of)-ons{t] 1508
Py 00 00J[lo oo 1]]|-.0047 0
—3673
0
= 3673 pounds (2.45)
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The force in member 4 is

P 1 0 -1 0 89445 44723 0 0 0
P = 216153 00 00 —44723 89445 0 0 0
P3 -1 0 10 0 0 89445 44723 -.0118
Py 00 00 0 0 —.44723 89445 —.0047
2736
0
=1 o736 pounds
0

We next discuss implementation of a computer program to solve two-dimensional
truss problems.

2.6 COMPUTER FORMULATION FOR THE TRUSS

The basic outline of a truss computer program is identical to that presented in Chapter 1
for the one-dimensional bar. Since we have increased the number of degrees of freedom
per node to two, and since we need to transform the elemental stiffness matrices from the
elemental coordinate system to the global coordinate system, there are some additional
considerations to discuss.

We first need to define the geometry of the truss. Assume that the left and right
node numbers for each member have been entered in the arrays ML(I) and MR(I). After
the nodal x and y coordinates X(I) and Y(I) have been entered we calculate the length
of each member and the sines and cosines of the angles each member axis makes with
the global x-axis.

L(I)=SQR((X(MR(I))-X(ML(I)))" 2 + (Y(MR(I))-Y(ML(I)))" 2)
S(I)=(Y(MR(I))-Y(ML(I)))/L(I) [sine of angle]
C(I)=(X(MR(I))-X(ML(I)))/L(I) [cosine of angle]

The total number of degrees of freedom is equal to twice the number of nodes, i.e.,
2*NN. The displacements of each node will be identified in the following way: The x
displacement of the left node of the member will be 2*ML(I)-1 and the y displacement
2*ML(I). Similarly, the x displacement of the right node will be 2*MR(I)-1 and the
y displacement 2*MR(I). Notice that the examples presented in the previous section
follow this convention. Since we have computed the length and sines and cosines of
each member, we can write the elements of the transformed elemental stiffness matrix
directly and place them in the appropriate location in the global system stiffness matrix
with the following code fragment:

FOR I=1 TO NM [loop on the number of members]

AK=A (I)*E(I)/L(I)

EKT (1,1)=AK*C(I)*C(I) [element 1,1 of transformed elemental
stiffness from equation (2.14)]

EKT (3, 3)=EKT (1, 1)

EKT (2, 2) =AK*S (I) *S(I)
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. other stiffness elements
IJ(1)=2*ML(I)-1
1J(2)=2*ML(I)
IJ(3)=2*MR(I)-1
I1J(4)=2*MR(I) [identifies rows and columns in
the global K matrix]
FOR IR=1 TO 4
FOR IC=1 TO 4
KR=IJ(IR) [row of global stiffness matrix]
KC=IJ(IC) [column of global stiffness matrix]
SK (KR, KC) =SK (KR, KC) +EKT (IR, IC) [£ill global K matrix]
NEXT IC:NEXT IR
NEXT I

If KXRES(I) and KYRES(I) represent restraint codes (0 for no restraint, 1 for
complete restraint), the order of the reduced stiffness matrix can be found using the
following code fragment:

KSUM=0

FOR I=1 TO NN [loop on number of nodes]
KSUM=KSUM+KXRES (I)+KYRES (I)

NEXT I

NKR=2*NN-KSUM [order of reduced stiffness matrix]

As in the case of the one-dimensional rod, we now fill the KEPT array with the
numbers of the rows and columns we wish to keep in the reduced stiffness matrix. In
this case we have two possible restraints at each node.

J=0

FOR I=1] TO NN

IF (KXRES(I)>0) THEN GOTO 3020
J=J+1:KEPT (J)=2*I-1

3020 IF(KYRES(I)>0) THEN GOTO 3040
J=J+1:KEPT (J)=2*1

3040 NEXT I

Now we construct the reduced force and stiffness matrices.

FOR I=1 TO NKR

N=KEPT (I)

FR(I)=F(N) [reduced force matrix]
FOR J=1 TO NKR

M=KEPT (J)

SKR(I,J)=SK(N,M)

NEXT J:NEXT I
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We now invert the reduced stiffness matrix and calculate the non-zero displace-
ments. Assuming that after inversion, SKR contains the inverse,

FOR I=1 TO NKR

FOR J=1 TO NKR
U(I)=U(I)+SKR(I,J)*FR(J)
NEXT J:NEXT I

We next place the non-zero displacements in the appropriate locations in the global
displacement matrix DU(I).

FOR I =1 TO NKR
ND=KEPT (I)
DU(ND)=U(I)
NEXT I

The member forces are found by calculating P; for each member.

FOR I=1 TO NM [loop on number of members]

K=2*ML(I)

LL=K-1

M=2*MR(I)

N=M-1

P(I)=(E(I)*A(I)/L(I))*(C(I)*(DU(N)-DU(LL))+S(I)* (DU (M)-DU(K)))
NEXT I

2.7 SUMMARY

In this chapter we have developed the stiffness matrix for the truss element. This neces-
sitated using two degrees of freedom per node. In addition, since the local and global
coordinate systems are not, in general, parallel, it was necessary to develop a transforma-
tion equation for the elemental stiffness matrix. This equation transformed the elemental
stiffness matrix with respect to the elemental coordinate system to the global coordinate
system. We could then generate the global structural stiffness matrix. We presented the
topics of support movement, temperature effects, and fabrication errors. Truss examples
were presented and computer formulation of the truss problem was discussed. In the
next chapter we will consider two-dimensional beam and frame elements.

PROBLEMS

2.1 For the truss shown in Figure P2-1,
(1) Find the overall stiffness matrix.
(2) Using the support conditions, generate the reduced stiffness matrix.
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(3) Calculate the nodal displacements and member forces.
Solve the problem by the method of joints as presented in your basic structures courses and
compare with part 3 above.

A = 1in? E= 29 x 10° psi
A, =2in’

1 €Y 2
-

’<_ 10 ft _.{ Figure P2-1

2.2 For the truss shown in Figure P2-2, find all member forces. All areas are 1 in? and E = 10x 10°
psi.

|-—3ft —+—3ft—~|

4

5000#  Figure P2-2

2.3 Find all member forces for the truss shown in Figure P2-3. All areas are 2 in® and E =
29 x 10 psi.

30,0004
l 2 40,0004
o O 5 \O
Ll oo,

l—10ft —— 10ft—  Figure P2-3
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For the truss shown in Figure P2-4,

(1) Find the overall structural stiffness matrix.

(2) Generate the reduced stiffness matrix.
Calculate the nodal displacements and member forces.
The area of each member is 3 inZ.

o
G

) @ 10 ft

3

4 @ 45°

15,000#  Figure P2-4

The truss in Figure 2-2 undergoes a support movement at node 4 of 3/8 in to the right in
addition to the applied load of 5000#. Find the final bar forces by
(1) Using the procedure presented in Example 2.3
(2) Using the matrix partitioning technique (Section 2.4)
Member 3 of the truss in Figure P2-3 undergoes a temperature change of +40°F. Solve for
the bar forces considering
(1) Only the temperature change
(2) The loads and temperature change.

Use the results of Problem 2.3 and part (1) to verify part (2) by superposition. Use
o =6.5x 107" /" /°F.
Find all bar forces in Figure P2-7 if member 5 is fabricated 1/4 in too short. All areas are 2
in% and E = 29 x 106 psi.

2 @ 3

12&@ @ @ @

O
| 128t Figure P2-7

Using the computer code fragments presented in Section 2.6, develop a computer program to
solve truss problems involving nodal applied loads. The program should have a capacity of 15
nodes and 20 members. Use your hand solutions to problems 2.1-2.4 to verify the operation
of your program.

Use your computer program as an aid for solving the following problems:
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2.9 Solve for the bar forces of the truss in Figure P2-9 if there is a vertical load of 20,000# acting
down at node 4. Use E = 29 x 10% psi. Members 4 and 5 have cross-sectional areas of 1.5
in2. All other areas are 1 in?.

2 @ 3 @ 4

®

15&@ - ®

@ 5
'—-— 15 ft ——i-—— 15 ft ——=—
Figure P2-9

2.10 If members 2 and 7 of the truss in Figure P2-9 have a temperature increase of 40°F, find all
bar forces. Use o = 6.5 x 107" /" /°F.

2.11 Node 2 of the truss shown in Figure P2-11 has a horizontal load of 50,000# acting to the left
and a vertical load of 25,000# acting down. Areas of members 1, 3, and S are 4 in2. All other
members have areas of 2 in?. Use E = 29 x 10° psi.

Solve for all nodal displacements and bar forces. Check equilibrium at all nodes.

77
f—20ft —+— 0 = pure P21

2.12 Member 4 of the truss in Figure P2-11 was fabricated 1/4 in too short. Find the bar forces
for this fabrication error only.

2.13 Members 1 and 5 of the truss in Figure P2-11 are subjected to temperature changes of +30°F.
Find the bar forces for these temperature changes only. Use a = 6.5 x 107%” /" /°F,

2.14 Bars 2, 5, and 7 of the truss shown in Figure P2-14 have areas of 5 in2. For all other members
A = 3 in%. If members 4 and 6 undergo a temperature rise of 60°F, find all bar forces.
E =29 x 10% psi and & = 6.5 x 107%”/” /°F. Check equilibrium of all nodes.
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® a
*‘_ 30 ft 30 ft. _.‘ Figure P2-14

2.15 Horizontal loads of 40,000# are acting to the right at nodes 2 and 5 of the truss in Figure P2-14.
Solve for all bar forces.

2.16 Solve problem P2.15 where, in addition to the applied loads, member 5 is fabricated 1/8 in
too long.
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3.1 INTRODUCTION

Beam and frame elements play major roles in structural analysis and design. They provide
flexural rigidity, a property that the two-force truss element does not have. In fact, after
analyzing a truss for axial forces due to nodal loads, which are often determined using
the concept of tributary area, we then must separately consider the non-nodal loads that
cause bending in the truss member. A roof truss is an example of a structure where this
procedure is required. For example, consider the simple roof truss shown in Figure 3-1.

60 #/ft

I

a b _c

T

. . Figure 3-1 Roof truss showing
Tributary widths a, b, and ¢ tributary widths.

Assume that the total load for which the truss must be designed is 60 Ib per foot
of span. The nodal loads that are acting on the truss would be determined by using
the loads contained in the indicated tributary areas. An analysis of the truss would next
be performed and the member axial forces found. However, the top chord members of
this truss are actually subjected to a distributed load that causes these members to act as
beams in bending. An analysis that treats these members as beams is next performed and
the results superposed on the nodal force solution in order to find the total axial forces
and bending moments for which each member must be designed.

Figure 3-2 shows sketches of both a beam and a frame element.

P,,u, P4 ,’u> 4 P;,u, P, ,u,
i | Pl >U P4 WUy
Pl ’ul Pgaug P2,ll2 P5 )us

Figure 3-2 Beam and frame
Beam Frame elements.
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Note that the beam element has two degrees of freedom at each end: a rotation
about an axis perpendicular to the plane of the beam and a translation perpendicular
to the axis of the beam. Axial deformation is neglected. In contrast to the beam
element, the frame element includes axial deformation at each end in addition to the
beam deformations. It therefore has three degrees of freedom at each end, or node, of the
element. One additional important difference deals with the orientation of the elements
when forming a structure. The beam elements have their longitudinal axis aligned as
did the one-dimensional bar element. However, the axis of the two-dimensional frame
member can have any orientation in the plane of the structure.

Since the frame element has axial deformation added to the deformations of the
beam element, and since there is no coupling between the axial and flexural deformations
(for small displacements), we will first derive the stiffness matrix for the beam element
and then add the effects of axial deformation to obtain the elemental stiffness matrix for
the frame element.

Note, also, that there is no coordinate transformation required for the beam element,
since, as in the case of the one-dimensional bar, all elemental axes are aligned. However,
since the frame element can have any orientation in its plane, the development of the
[B] transformation matrix will be necessary.

3.2 THE BEAM ELEMENTAL STIFFNESS MATRIX

Since the beam element has a total of four degrees of freedom we can write

Py ki ki ki ki uy

Py \ _ |k ko ks ko up 3.1
P3 kst ks ksz kas us )
Py kay kaz ka3 kaa Ug

In equation (3.1), the {P} matrix represents the elemental forces at each end of
the member, the k;;’s the elements of the beam stiffness matrix, and the {#} matrix the
displacements of the nodes of the member. Note that since the elemental displacements
are in the same directions as the global displacements, we have used {u} rather than
{8} for the elemental nodal displacements. We will not be able to do this for the frame
element.

Using the definition of stiffness, in order to determine the elements of the stiffness
matrix, we must introduce a unit displacement at one and only one degree of freedom at
a time and determine the forces corresponding to this displacement pattern. We will use
the slope-deflection equations to accomplish this task.

Consider the beam in Figure 3-3:

Mpa

"

T Figure 3-3 Positive forces and
eib i displacements for the beam element.
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In general, the slope-deflection equations for the beam shown in Figure 3-3 can be
written (see Appendix C):

My, =2EIJL [26,+6, —3A/L1—2EI/L[26 + 6F ] (3.2)
Myo =2EI/L [ 26, + 6, —3A/L1—2EI/L[ 26F + 6] (3.3)

In the above equations, M,, and M,, are the moments at the @ and b ends of
the beam, taken positive clockwise; 8, and 6, are the total rotation angles at each end,
also taken positive when clockwise; A represents the relative displacement of one end
of the beam with respect to the other perpendicular to the axis of the beam, taken
positive when the chord of the member rotates clockwise; and 6 and 6} are the angles
of rotation at the ends of a simply supported beam due to applied lateral loads, also
positive clockwise. Note that the last terms in these equations represent expressions for
the fixed-end moments due to loads. Note that we can calculate these fixed-end moments
by evaluating rotations at the ends of a simply supported beam due to the applied loads.
We now proceed with the derivation of the elements of the beam stiffness matrix.

Figure 3-4 shows a beam where the displacement u; is equal to unity.

Figure 3-4 Beam deformation for
uy=1.

P= k1 P;= k3

Writing the slope-deflection equations for this case yields

Mg, =2EIJL [04+0-3(1)/L]=—6EI/L? (3.4)
My, =2EI/L[0+0—-3(1)/L]=—6EI/L? (3.5)

Note that A = u, is positive, giving negative end moments, which indicates that
these moments act in a counterclockwise direction. This direction for moments is positive
with respect to the elemental coordinate system shown in Figure 3-2. Thus, k;; =
6E1/L?* and k4; = 6E1/L*. Summing moments about the right end of the beam yields
ki = 12E1/L3. Vertical equilibrium gives k3; = —12E1/L3.

We next introduce the displacement u; = 1 as shown in Figure 3-5.

Figure 3-5 Beam deflection for
up = 1.
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The slope-deflection equations yield
My =2EI/L[2(-1)4+0-0]=—-4EI/L 3.6)
My, =2E1/L[0+ (-1)-0])=-2EI/L 3.7

These equations give k), = 4E1/L and k4 = 2E1/L. Summing moments about
one end and writing the vertical equilibrium equations result in k), = 6EI/L? and
ks = —6E1/L2.

The remaining two columns of the stiffness matrix are found by individually in-
troducing unit displacements at the right end of the member. The final form for equa-
tion (3.1) becomes

P, 12EI1/L* 6EI/L* —12EI/L® 6EI/L*\ (u
P _ 6EI/L*> 4EI/L  —6EI/L* 2EI/L uy 3.8
Py (T | =12E1/L®* —6EI/L* 12EI/L® —6EI/L? us (8
Py 6EI/L* 2EI/L  —6EI/L* 4EI/L Uy

You should verify the last two columns of this matrix by writing the slope-deflection
and equilibrium equations for unit displacements specified at the right end of the beam.

3.3 STIFFNESS MATRIX FOR THE TWO-DIMENSIONAL FRAME
ELEMENT

Consider the frame element shown in Figure 3-6.

3 I Figure 3-6 Positive displacements
3 LA, I for the frame elements.

Notice that we have labeled the displacements §; in order to distinguish the elemen-
tal coordinates from the global coordinates. This is necessary since the frame element
can be oriented in any direction in the plane of the structure. The axial forces and
deformations that we must add are P;, &,, and P4, 84. Thus, the axial stiffness terms
must be included by adding row and column numbers 1 and 4. Furthermore, since the
axial terms are uncoupled from the flexural terms—that is, moments and shears are not
affected by the axial forces and vice versa—the only non-zero elements in these rows
and columns will be those that multiply the displacements §, and é4.

Using the results for the one-dimensional bar element (for the axial effects), we
can expand the beam stiffness matrix to obtain

Py EA/L ] ] —EA/L ] 0 51

P, 0 12EI/L> 6EI/L? 0 —12EI/L® 6EI/L? 5

P\ 0 6EI/L* 4EI/L 0 —6EI/L* 2EI/L 83 (3.9)
Py (| —EA/L 0 0 EA/L 0 0 ) :
Ps 0 —12EI/L? —6EI/L? 0 12EI/L?> —6EI/L? 8s

Ps 0 6EI/L* 2EI/L ] —6EI/L*  4EI/L 86
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Equation (3.9) is the elemental stiffness matrix for the frame element in terms of
the local or elemental coordinate system. As in the case of the truss element, we must
develop the [B] transformation matrix for the frame element.

3.4 THE TRANSFORMATION MATRIX FOR THE FRAME ELEMENT

Consider the frame element shown in Figure 3-7.

& W 84

N

ue,06

> e ut—

81 us,03 Figure 3-7 Local and global

displacements for the frame element.

The relationships between the elemental translational displacements &;, 8>, 84, and
ds and the global displacements u,, u3, us, and us are identical to those for the truss
element. Also, the rotational displacements 83 and 8¢ are the same as u3 and ug since
we are dealing with a two-dimensional element. That is, the local z axis has a direction
out of the plane of the element as does the global z axis. We can therefore write

81 = uycosb + u, sinf
8 = upcosf — u, sin@
53= Uus
84 = uscos6 + ussiné
85 = uscos0 — uysinf
56= Ue

Since {8} = [B){u}, rewriting the equations above in matrix form yields the fol-
lowing beta matrix:

cosf sinfd O 0 0 0
—sinfd cosé O 0 0 0
0 0 1 0 0O o0
(Bl =1 o 0 0 cos sind 0O 3.10)
0 0 0 -—sinfé cosfé O
0 0 0 0 0 1

As in the case of the truss element,

[ke ]global =[B ]T [ke ]element [B1 3.11)
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Using equations (3.9) and (3.10) in equation (3.11) and expanding, we find the
following elemental stiffness matrix for the frame element transformed to the global
coordinate system:

- (EA/L)C? (EA/L)SC  —(6EI/L?>)S —(EA/L)C? —(EA/L)SC  —(6EI/L*)S
+(12E1/L*)S* —(12EI/L%)SC —(12EI/L*)S* +(12EI/L*SC
- (EA/L)S? (6EI/L®)C  —(EA/L)SC —(EA/L)S? (6EI/L*)C
+(12E1/L3)C? +(12EI/L*)CS —(12EI/L*)C?
- - 4EI/L (6EI/L?)S —(6E1/L*)C 2EI/L
[ke]:y.wem=
- symmetric - (EA/L)C? (EA/L)SC (6EI/L?)S
+(12E1/L%S* —(12E1/L3)SC
- - - - (EA/L)S? —(6EI/LY)C
+12(EI/L%)C?
- - - - - AEI/L
(3.12)

In equation (3.12), the S and C represent the sine and cosine of the angle 8 between
the global x axis and local x axis, positive counterclockwise.

As before, after each elemental stiffness has been transformed to the global coor-
dinate system, we can combine them to form the global structural stiffness matrix. The
general procedure for solving the equations and calculating member forces is the same
as described previously. We next consider simple beam and frame examples.

3.5 EXAMPLE BEAM AND FRAME PROBLEMS

Example 3.1
Consider the beam shown in Figure E3-1a.

EI=10"#-in2, L=1 in
P

T t Figure E3-1a Two-element beam
Fru, Fyu, Fsus  structure.

Remember that for the beam element, the elemental and global forces and displace-
ments are in the same direction. Using the values for E/ and L given, using equation (3.8)
we can write for element 1,
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For element number 2 we have

F
Fy
Fs
Fe

Analysis of Two-Dimensional Beams and Frames

12 6 —12 67 fu
6 4 -6 2 u
-12 -6 12 -6 u3
6 2 -6 4 us

=10’

126 -12 67 [us
6 4 -6 2 U
-12 -6 12 -6 us
6 2 -6 4 ug

=10’

Chap. 3

(3.13)

(3.14)

In the case of the beam element, the {P} and {F} matrices as well as the {5} and
{u} matrices are interchangeable. It is important, however, to write the individual force-
displacement relationships keeping in mind that the first two forces and displacements are
at the left end of the member and the second two are at the right end of the member.
Combining to form the structural stiffness matrix we have

F
)
F3
Fy
Fs
Fe

=10’

12 6 -12 6 0 o0

6 4 -6 2 0 0 uz
-12 -6 24 0 -12 6

6 2 0 8 -6 2
0 0 -12 -6 12 -6 us
0 o 6 2 -6 4 Ueg

(3.15)

Noting that u; = uy = us = ug = 0, we eliminate the rows and columns associated
with these displacements. The reduced set of equations becomes

(b= % o ] {i)

Solving for the displacements u3 and u4 yields

u3 = —P/24 x 107 and us = 0.

(3.16)

The member forces are calculated next using the elemental force-displacement rela-

tionships.
Member 1:
Py 12
P\ _ 7 6
P 10 -12
Py 6
Member 2:
P, 12
P2 _ 7 6
Pl 10 -12
Py 6

6 —-12 6 0 P2
4 -6 2 0 P/4
-6 12 -6 —P/(24 x 107) —P/2
2 -6 4 0 P/4
6 —12 6 ~P/(24 x 107) —P/2
4 -6 2 0 ) -p/4
-6 12 -6 0 =) pn2
2 -6 4 0 —P/4

3.17

(3.18)
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Note that in the above equations we have used the {P} matrix in order to emphasize
that these are elemental forces. Free-body diagrams of the members and node 2 are shown
in Figure E3-1b. The actual directions of the forces are shown. That is, positive forces act
in positive elemental coordinate directions and negative forces act in the negative coordinate
directions.

— -Lp ‘— )
P/2 P2 Figure E3-1b Member and nodal

P/2 forces.

The bending moments at the fixed ends of the beams check with the value of PL/8
for the case of a concentrated force applied at the center of the beam (note that L = 2L in
this example).

Since the sign convention we are using for the matrix formulation is different from
the common strength-of-materials sign convention, it is important to sketch a figure such as
Figure E3-1b before attempting to construct shearing-force and bending-moment diagrams.
It also allows an equilibrium check to be performed on the structure.

Using the forces shown in Figure E3-1b, we can construct the diagrams shown below
L=1).

- - M t
o I/ I o omen

We next consider a simple frame.

Example 3.2

Consider the frame shown in Figure E3-2a.
Keeping all units in terms of pounds and inches we find:

(EA/L); = 4.166 x 10%, (EI/L?), = 28935.19, (E1/L>)| = 1004.69
(EA/L); = 7.14286 x 10%, (E1/L?); = 425170, (E1/L%); = 5061.55
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5 8
M=12 fk t o
6_'4 C 2 %’ T

@ 12 ft.

For both members 2
E=30 x 10°
I=100 in*

A=20 in2 6 1
3

Figure E3-2a Example frame
problem.

Since only displacements 4, 5, and 6 are non-zero, we need only to calculate those
terms in each transformed elemental stiffness matrix that multiply these displacements. If
we consider the left end of member 1 to be the fixed end, we need to calculate the lower
3 x 3 portion of the 6 x 6 transformed stiffness matrix for this member. Similarly, only the
upper left 3 x 3 of the stiffness matrix for member 2 needs to be calculated assuming that
its right end is fixed.

For member 1,0 =90°, S = 1, C = 0. We find using equation (3.12),

12, 056 3 0 868 055
4.166 x 10° (3.19)
868, 055 0 83. 33 x 109
For member 2,0 = 0°, S =0, C = 1. From equation (3.12),
7.1429 x 10° 0
0 60,738.6 2. 551 x 106 (3.20)
0 2.551 x 105 142.86 x 10°

Combining, we find

7. 155 x 10° 0 868,055 us
4227 x 10 2.551 x 100 us (3.21)
144 000 868 055 2551 x 106 226.19 x 10° | \ ug

Solving for the displacements we have
ug = —.000078 in, us = —.000387 in, and ug = .000641 rads.

Now, for member forces, {8} = [B]{u}, {P} = [ke]{d}. Therefore, {P} = [k.1[B){u},
where [k.] and [B] are given by equations (3.9) and (3.10), respectively.
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For member 1,
81 010 O0O00O0 0 0
&2 -1 00 00O 0 0
83 _ 001 000 0 0 (3.22)
84 000 O10 —.000078 —.000387
8s 000 -1 00O —.000387 .000078
86 000 O0O01 .000641 .000641
P - — — —4.166 x 10° 0 0 1612#
Py - - - 0 —12,053.3 868,055 555.5#
pl_|- - - 0 —868,055 41.67 x 10° 26643 in.—#
Pof | - — — 4166 x10° 0 0 000387 —1612#
Ps - - - 0 12,056.3 —868,055 .000078 —555.5
Ps - - - 0 —868,055 83.33 x 10° J .000641 53347in.—#
(3.23)
For member 2, the [B] matrix is an identity matrix since the member is horizontal.
As in the case of member 1, including only the terms needed, we find
Py 7.1428 x 108 0 0 - — =7 ( -.000078 —557 #
Py 0 60,738.6 2551x 100 — — — —.000387 1612 #
P3 0 2551 x 105 14286 x 105 — — — .000642 | _ ) 91374 in—#
Py —7.1428 x 10° 0 0 - - - 0 - 557 #
Ps 0 —60,7386 —2.551x105 — — — 0 —1612 #
Ps 0 2551 x 108 71428 x 10° — — — 0 44798 in.—#
(3.24)
Figure E3-2b shows the member forces and joint moments after converting the bending
moments to units of f¢-k. Allowing for slight round-off error, we see that equilibrium of
the frame is satisfied.
373 ft-k
1612 % 7.61 fk
5574 -~ |
l _1.< i 5574
o 556 4 1612 # 1612 #
4.45 ft-k
12 ft-k
| 7.61 ft-k
\
4.45 ft-k
2.22 fik
556 #
1612 #

Figure E3-2b Member forces.
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3.6 NON-NODAL LOADS

Consider the two-element simply supported beam shown in Figure 3-8.

EI = constant 65¢

/" Figure 3-8 Two-element simply
)'_ 10 ft _+4ﬁ"‘_ 6 ft — supported beam.

Suppose that the joints are locked before the loads are applied. This is what we do
when using the moment distribution method for analyzing beams and frames. The fixed
end forces acting on the members and a sketch of the deflection diagram are shown in
Figure 3-9. Note that the fixed end moments are given by Pab*/L? and Pa’b/L? for a
concentrated load positioned as shown where a and b are the distances to the load from
the left and right ends of the member, respectively.

Figure 3-9 Fixed end forces.

Reversing the forces shown in Figure 3-9 gives us the equivalent nodal loads acting
on the structure. These are shown in Figure 3-10. Note that the joints are again locked
before the application of the loads.

93.6 ft-k 624 ft-k
: : /
'
42.12 l .
22.88 Figure 3-10 Equivalent nodal loads.

If the nodes in Figure 3-10 are now unlocked and the displacements found, they
will be the correct displacements of the original structure since the loads are those applied
to the nodes by the members—the equivalent nodal loads. This must be true since the
superposition of the forces and nodal displacements shown in Figures 3-9 and 3-10 clearly
will represent the original structure of Figure 3-8.

However, to determine the member forces we must add those shown in Figure 3-
9 to those determined from the solution to the problem shown in Figure 3-10. This
procedure is identical to that described for the one-dimensional bar element.
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Of course, for many relatively simple loading conditions, the fixed end forces have
been tabulated. Shown below are the fixed end moments and reactions for a few of the
most common loading conditions.

Pab’/L’ ( - > ) Pa’b/1’

Pb’(3a+b)/L> Pa*(a+3b)/I>

2

Mb(b-2a)/L> C :

6Mab/I° 6Mab/I

Example 3.3

Consider the beam in Figure 3-11.

E=29 x 10° psi
1=300 in* .

Figure 3-11 Structure for
Example 3.3.

10ft —aft+ 6ft /—+

Using equation (3.8) for both members, we find:

Member 1:
P 60,416.66  3.625 x 106  —60,416.66  3.625 x 10° uy
Py | _ | 3.625x10% 290 x 10®  —3.625 x 106 145 x 10° us 3.25
Py [ T | —-60,416.66 —3.625x 10°  60,416.66  —3.625 x 10° uz 3.25)

P4 3.625 x 106 145 x 105 —3.625 x 106 290 x 106 us
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Member 2:
P 60,416.66  3.625 x 106 —60416.66  3.625 x 10° u3
Py | _ | 3.625x% 100 290 x 105 —3.625 x 10° 145 x 10° | J ug (3.26)
Py [ | —-60,416.66 —3.625 x 10° 60,416.66 —3.625 x 100 us ’
Py 3.625 x 106 145 x 106 —3.625 x 10° 290 x 109 ug

Combining, and using the equivalent nodal loads shown in Figure 3-10, we have

F 60,416.66 3.625 x 10°  —60,416.66 3.625 x 108 0 0
P 3.625 x 106 290 x 106 —3.625 x 10° 145 x 108 0 0
—42,120 _ | -60,416.66 —3.625x 106  120,833.3 0 —60,416.66  3.625 x 10°
—1.1232 x 10° 3.625 x 10° 145 x 100 0 580 x 106 —3.625 x 105 145 x 105
Fs 0 0 —60,416.66 —3.625x 105  60,416.66  —3.625 x 10°
748,800 0 0 3.625 x 10° 145 x 105 —3.625 x 10° 290 x 108

(3.27
Since u| = u3 = us = 0, the reduced stiffness matrix becomes

—42,120 120,833.3 0 3.625 x 1057 (u3
—1.1232 x 109 } = 0 580 x 106 145 x 105 | { u4 (3.28)
748,800 3.625 x 10 145 x 106 290 x 106 ] | ug

Solving for the displacements we find

us3 —.823034 in
ug } = { —.005890 rad (3.29)
Ug .015815 rad

Using equations (3.25) and (3.26) to calculate member forces we obtain

Member 1:
Py 0 28.37 k
p\_ 0 _ 177.5 fr-k
Py (TR Z 823034 [ T ) —28.37k (3.30)
Py —.005890 106.3 fi-k
Member 2:
P —.823034 42,120 #
P _ (k] -.005890 | . ) 1.1232 x 108 in-#
N 0 22,880#
Py 015815 —748,800 in-#
—13,747# 42,120 28,373 #
] -2398x10%n | ) 11232 x10°{ _ } -1.275x 108 in-# (.31
= 13,747# 22,880 = 36,627# :

748,802 in-# —748800 2 in-#

uy
uz
u3
us
us
us
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Figure 3-12 shows free-body diagrams of both members. You should verify that
equilibrium of each member is satisfied.

— criﬁ

28.37% 28.37% 28.37% 36.63 Figure 3-12 Final member forces.

Now that the actual directions of the forces have been sketched in Figure 3-12, we
can construct the shearing-force and bending-moment diagrams.

28.37 28.37
[+ V()
-36.63
2198
VA M(ft-k)
1715

When dealing with non-nodal forces for a frame, we have to account for the case
where a frame member is not parallel to either global coordinate direction. This is
illustrated in the following example.

Example 3.4

Consider the frame shown in Figure E3-4a.

For all members
E=29 x 105psi
1=100 in*

A= 20 in®

15 ft

- 4
10 ft Figure E3-4a

Figure E3-4b shows the fixed end forces acting on member 2 after the 20-kip load has
been resolved into components parallel and perpendicular to the member. The equivalent
nodal forces are shown in Figure E3-4c. Note that these equivalent forces are the opposite



300 in -k

17.88%
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Figure E3-4b Fixed end forces for
member 2.

Figure E3-4c Equivalent nodal
forces.

of the fixed end forces acting on a beam that spans 10 ft horizontally. Of course, to obtain
the actual forces on member 2, we will have to add the forces shown in Figure E3-4b to
those found by using the calculated displacements.

Using units of inches and kips, equations (3.32), (3.33), and (3.34) represent the
elemental stiffness matrices for members 1, 2, and 3, respectively, transformed to the global
coordinate system (see equation [3.12]).

r 20.14
0
—1208.33
—20.14
0
L —1208.33

(k]

r 3461.33
1723.46
—432.31
—3461.33
—1723.46
L —432.31

(k]

5.97
0
537.04
-5.97
0
537.04

[k]3=

0
4833.33

0

0
—4833.33

0

1723.46
876.14
864.61

—1723.46
—876.14
864.61

0
3222.22
0
0

—3222.22

0

—1208.33
0
96666.66
1208.33
0
48333.33

—432.31
864.61
86461.3
43231
—864.61
43230.65

537.04
0
64444.45
—537.04
0
32222.22

-20.14
0
1208.33

20.14
0
1208.33

—3461.33
—1723.46
432.31
3461.33
1723.46
432.31

-5.97

0
—537.04
5.97

0
—537.04

0
—4833.33

0

0
4833.33

0

—1723.46
—876.14
—864.61

1723.46
876.14
—864.61

0
—3222.22

0

0
3222.22

0

—1208.33
0]
48333.33
1208.33
0
96666.66 J

(3.32)

—432.31 W
864.61
43230.65
432.31
—864.61
864611.3 J

(3.33)

537.04
0
32222.22
—537.04
0
64444.45

(3.34)
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Equation (3.35) shows the overall reduced structural stiffness equation obtained after elimi-
nating the rows and columns associated with zero support displacements from the combined
equation and applying the equivalent nodal forces.

0
-10
-300
0
-10
300

3481.47 1723.46 776.03 —3461.33 —1723.46 —432.31 ug
172346  5709.48 864.61 —1723.46 —876.14 864.61 us
776.03 864.61 183128.0 43231 —864.61 43230.65 ue
—3461.33 —1723.46 43231 3467.30  1723.46 969.34 u7
—-1723.46 -876.14 —864.61 1723.46  4098.36 —864.61 ug
—432.31 864.61  43230.65 969.34  —864.61 150905.8 ug9

(3.395)
Solving equation (3.35) for the displacements yields
Uy .0747 in
us —.0022 in
ue \ _ ) —.0027 rad
ur | 0746 in (3.36)
ug —.0029 in
ug .0025 rad
Using these displacements the member forces {P}; = [k.];[B)i{u}; become:
Member 1:
Py 10.66 k
P -1.79 k
Py | _ —41.4 in-k
Py —10.66 k (.37
Ps 1.79 k
Pg —173.06 in-k
Member 2:
Py 1.89 k
P -21k
P3| _ ) —12694 in-k
)7 —-1.89 k (3.38)
P5 .21 k \
Pg 98.88 in-k
Member 3:
Py 9.34 k
P 1.79 k
Py \ _ | 201.12 in-k
Py~ | 934k (3.39)
Ps —1.79%
Pg 120.58 in-k

Figure E3-4d shows the combination of the fixed end forces and those from equa-

tion (3.38) for member 2. The moments have been converted from in-k to fr-k.

Again, you should verify that equilibrium for each member is satisfied.
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25 ft-k

8.73k

Figure E3-4d Final forces on member 2.

3.7 THERMAL EFFECTS IN BEAMS AND FRAMES

As in the case of the one-dimensional bar, we want to determine the fixed end forces
attributable to a temperature change. For the bar we used a constant AT over its length
and depth. This resulted in only axial fixed end forces. For the beam or frame element
we must also consider the development of fixed end moments owing to a temperature
variation across the depth of the cross section.

Consider a beam or frame element that is heated along its length and has a linear
temperature variation over its depth.

If T, and T, are the temperatures at the top and bottom of the beam, respectively,
then the temperature distribution is given by T(y) = (I + T1)/2+ (T, — T})y/h, where
T,,. = (T, + T1)/2, y is measured positive up from the centroidal axis of the cross
section, and 4 is the depth of the beam (see Figure 3-13).

T2

h:[ Q Taw | 1Y (
Figure 3-13 Temperature variation

T, over depth of beam.

The strain at any point in the cross section is given by ¢(y) = aT(y), and the
corresponding stress (for fixed end conditions) is 0 = EaT (y). The thermal axial force
P, will be

P, = / odA = / EaT(y)dA (3.40)
A A
If we consider the case of a beam of constant width b, equation (3.40) becomes

h/2
P = / EaT(y)bdy = EaAT,, (3.41)
—h/2
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The thermal moment will be

hy2 _
/ «ET (y)bydy = 2ELTL =TV (3.42)

M{ =
—h/2 h

Assuming that T5 is larger than T, the fixed-end moments will act on the beam in
clockwise and counterclockwise directions at the left and right ends, respectively. The
equivalent nodal forces will act in opposite directions. We now illustrate the solution of
the thermal problem for a frame.

Example 3.5

Consider the frame shown in Figure E3-5. This is the same frame used in Example 3.2.

8

1
g

W

9
v\
y, 7

®

@ 12 ft

For both members
E=30 x 10
1=100 in?

A=20 in2 6
3

«=6.5 x 10"/

Figure E3-5 Frame for Example 3.5.

Assume member 2 has a temperature variation of +70°F over its depth of 10 in.
Equations (3.41) and (3.42) yield:

P, = 6.5 x 1076(30 x 106)(20)(35) = 136,5004#
M; = 65 x 1075(30 x 108)(100)(70)/10 = 136,500"—*

The equivalent forces at the free node are given by
—136,500 #
0
136,500 in-#
Equation (3.21) becomes

Fy —136,500 7.155 x 10° 0 868,055 u4
Fs} = 0 = 0 4227 x 10°  2.551 x 106 us (3.43)

Fes 136,500 868,055  2.551 x 106 226.19 x 10° | | ug
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Solving for the displacements we find ug = —.019160 in, us = —.000411 in, and
ug = .000682 rad. The forces in member 1 become

P 1710 #
P 360 #
Py \ ) 11770 in-#
Py~ -1710#
Ps —360 #
Ps 40170 in-#
The forces in member 2 become
P, —136,860 # 136,500 # -360 #
Py 1710 # 0 1710 #
P _ 96,330 in-# —136,500 in-# _ —40,170 in-# (3.44)
Py 136,860 # —136,500 # 360 # :
Ps —1710 # 0 —1710 #
P 47640 in-# 136,500 in-# 184,140 in-#

Again, an equilibrium check should be made.

3.8 SUPPORT MOVEMENTS FOR BEAMS AND FRAMES

In Chapter 1 we presented two procedures for analyzing structures with support move-
ments: a numerical method and a matrix partitioning method. Naturally, either of these
techniques can be used for any structure; however, in many cases the concept of fixed
end forces and equivalent nodal loads is more convenient. This method is illustrated in
the following example.

Example 3.6

Support b of the beam shown in Figure E3-6a moves down 0.25 in. Determine the
member forces.

For both members:
EI = 2.9 x 10° k-in?

a b c

Figure E3-6a Beam for Example
10 ft. 10 ft. E3.6.

From the slope-deflection equations, the fixed end moments and shears for a beam
with a relative displacement of one end with respect to the other perpendicular to the axis
of the member are given by

Mp =6EIA/L?> Vg =12EIA/L? (3.45)
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These fixed end forces and the equivalent nodal loads are shown in Figure E3-6b.
302.08 in.-# 302.08 in.-# 302.08 in.-#

5.04 k 5.04 k 5.04 k
Fixed-end Forces

C C
room

Equivalent Nodal Forces
(same magnitudes as above)

Figure E3-6b Fixed end and
equivalent nodal forces.

After applying the equivalent nodal loads and solving for the displacements, we find

uj
u ]
u3
Ug - 000893 rad
Uus I
ug 003571 rad
from which the member forces shown in Figure E3-6¢ are obtained.

43.2 in.-k 86.3 in.-k 302.1 in.-k

Figure E3-6¢c Member forces from
1.1k 1.1k 32k 32k nodal displacements.

Superposing the fixed end forces shown in Figure E3-6b yields the final member
forces shown in Figure E3-6d.

258.9 in.-k 215.8 in-k 0 in.-k

395k 1.79 k 1.79k  Figure E3-6d

3.9 COMPUTER FORMULATION FOR THE FRAME

We now consider extension of the truss computer formulation to the frame element. Since
the beam element is a special case of the frame element with no axial deformation, a
frame program can be used to solve beam problems. However, it will not be as efficient as
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a separately written beam program since the number of degrees of freedom per element is
larger (six instead of four). In addition, area properties of the beam elements will have to
be entered, and calculations of sines, cosines, and lengths of members will be performed,
even though not required for a beam. Memory requirements will also increase, since
two coordinates per node must be entered for a frame element, and the size of the global
matrix will be three times the number of nodes rather than twice the number of nodes.
However, once the frame program is written, it can be quickly reduced to that of a beam
program.

For the truss, the global displacement numbers were related to the left and right
node numbers of the members. We extend this numbering scheme to the frame. If
ML(I) and MR(J) store the left and right node numbers for element I, then the global x
and y translations and the z rotation at both ends of the member will be designated as
3*ML(I)-2, 3*ML(I)-1, 3*ML(I), 3*MR(I)-2, 3*MR(I)-1, and 3*MR(I).

As for the case of the truss, after all geometric and material data have been entered
we proceed to compute the elements of each member stiffness matrix and place them
in the appropriate locations in the global structural stiffness matrix. As in the case of
the truss element, we calculate the elemental stiffnesses in terms of global coordinates
directly. The following code fragment illustrates the creation of the global stiffness
matrix.

Assuming that AK(I)=A(I)*E(I)/L(I), and that S(I) (sine) and C(I) (cosine) for
each member have been computed and stored, and letting EIL(I)=E(I)*I(I)/L(I), EIL2(I)=
EILI)/L(I), and EIL3(I)=EIL2(I)/L(I),

FOR I=1 TO NM [loop on number of members]

EKT (1,1)=AK(I)*C(I)"2+12*EIL3(I)*S(I)"2

EKT (2,1)=AK(I)*S(I)*C(I)-12*EIL3(I)*S(I)*C(I)
. other stiffness terms

IJ(1)=3*ML(I)-2

I1J(2)=3*ML(I)-1

IJ(3)=3*ML(I)

IJ(4)=3*MR(I)-2

IJ(5)=3*MR(I)-1

IJ(6)=3*MR(I)

FOR IR=1] TO 6

FOR IC=1] TO 6

KR=IJ (IR)

KC=IJ(IC)

SK (KR, KC) =SK (KR, KC) +EKT (IR, IC)

NEXT IC: NEXT IR: NEXT I

The global stiffness matrix is now filled.

Since we must next construct the reduced stiffness matrix by using the nodal
restraint codes (in the case of the frame element we will have KXRES(I), KYRES(]),
and KZRES(I) (rotation) entered for each node), we determine the order of the reduced
stiffness matrix with the following code fragment:
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KSUM=0

FOR I=1 TO NN [loop on number of nodes]
KSUM=KSUM+KXRES (I) +KYRES (I) +KZRES (I)

NEXT I

NKR=3*NN-KSUM [compute order of reduced stiffness matrix]

Making use of the restraint codes, we construct the KEPT() matrix as for the truss.
We have a third comparison to make for the frame element.

J=0

FOR I=1 TO NN [loop on nodes]
590 IF(KXRES(I)>0) THEN GOTO 610
600 J=J+1:KEPT (J)=3*I-2

610 IF (KYRES(I)>0) THEN GOTO 630
620 J=J+1:KEPT(J)=3*I-1

630 IF (KZRES(I)>0) THEN GOTO 650
640 J=J+1:KEPT (J)=3*1

650 NEXT I

Storing the reduced force and stiffness matrices we have

FOR I=1 TO NKR
N=KEPT (I)
FR(I)=F (N)

FOR J=1 TO NKR
M=KEPT (J)

SKR (I, J)=SK(N,M)
NEXT J: NEXT I

We are now ready to invert the reduced stiffness matrix. The balance of the
procedure, discussed in detail for the truss, is easily extended for the frame. In the case
of the frame, however, al/l member forces must be calculated. Naturally, we use

{P} = [K]{8} and {8} = [B){u}.

The reactions are calculated from either the original structural stiffness equation or
from the member forces at the nodes corresponding to the reactions.

3.10 SUMMARY

In this chapter we have developed the elemental stiffnesses for both the beam and frame
elements. For the frame element it was necessary to generate the beta transformation
matrix, which, as in the case of the truss formulation, is used to transform the elemental
stiffness matrices to the global coordinate system.
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We determined equivalent nodal forces for non-nodal loads applied to beams and
frames. Thermal effects in beams and frames were discussed, and support movements
were addressed using the concept of equivalent nodal loads. Finally, we outlined the
steps necessary to formulate a frame computer program. The basic procedures for the
frame program are, of course, identical to those for the bar and truss programs. Only
the detailed implementation changes. In the next chapter we will consider the grid
element.

PROBLEMS

For the following problems, solve for all nodal displacements and member forces. £ =
29 x 10 psi for all members.

3.1
Figure P3-1
32
x I =100 in*
Figure P3-2
33

Figure P3-3
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34
6 = .005 rad. I=120in*

Figure P3-4

35
I =88 in*
o o
A=2 in l

15 ft 10 ft 8 ft Figure P3-5

3.6

2 W

For both members:
I =80 in?
@

A =10 in2

T
16 ft

2f | @
I

l'_ 8 ft —'I Figure P3-6

3.7

Figure P3-7



82 Analysis of Two-Dimensional Beams and Frames

38

A.I 6t |‘_ Figure P3-8

Chap. 3

3.9 The beam shown has a rectangular cross section with a depth of 8 in. Element 1 has a
temperature gradient that varies linearly from 120°F at the top of the beam to 40°F at the

bottom. Find all member forces.

I=88 in4 6
«=6.6 x 10™"//°F

3 ® @

8 ft 8 ft Figure P3-9

3.10 Member 1 in the frame shown in Figure 3.10 has a linear temperature gradient. The temper-
atures at the top and bottom of the beam are 100°F and 50°F, respectively. The top side of

member 1 is on the left of the member. Find all member forces.

1=98 in*

A=8 in2

«=6.5 x 10°%"/°F @
E=29 x 10°psi

NX

© o f

L4t ‘L‘ 9 ft _—J Figure P3-10

3.11 Using the code fragments included in this chapter as a guide, write a computer program
to analyze two-dimensional rigid frames. Consider only nodal forces. The program should
have the capability to solve problems with 20 nodes and 25 members. (Hint: Modify your

two-dimensional truss program.)
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3.12 Reduce the program written in problem 3.11 to solve two-dimensional beam problems.

For the following problems, use your computer programs written in problems 3.11 and 3.12
as the basis for solution. E =29 x 10? ksi.

3.13

15 ft 20 ft Figure P3-13

3.14

All members:
I=140 in*

3E A=12 in2

12 ft

1

¥ Figure P3-14

2k/ft

3.15

Members 1 and 3:
I=80 in4
A=20 in2

1° g @ © Member 2:
1=200 in4
A=40 in2

Figure P3-15
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Members 1 and 3:
I=100 in*
A=10 in2

S5k

Member 2:
I=300 in*
A=30in2

Figure P3-16
3.17

1=300 in4
20k A=30 inz

20 ft
= 1=100 in*

A=10 in?
=200 in* 10 ft

[=20040™ | 50

A=20 in2

Figure P3-17
3.18

Sk =120 i1214
A=8 i
i 4 ft 10 ft in

® ®
0f1® @)| 10 ft

Figure P3-18
3.19

2 kit All Members:

[T~ 1-100 i

10 @

A=10 in®
10 ft

©

Figure P3-19

Chap. 3
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3.20 Refer to the two-story frame shown in Figure P3-20.

13 ft

13 ft

25 ft 25 ft Figure P3-20

Lower story girders: / = 230 in*, A = 24 in?
Upper story girder: [ = 180 in%, A = 14 in?
Lower story columns: I = 103 in*, A = 9.6 in?
Upper story columns: / = 88 in*, A = 7.6 in?
Solve for all member forces.
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4.1 INTRODUCTION

A grid is a structure that has loads applied perpendicular to its plane. The members are
assumed to be rigidly connected at the joints. The floor system shown in Figure 4-1 is
an example of a very common grid structure.

Floor Beams

RN
M M b/ l Columns
7 7 =

Girder Figure 4-1 Typical floor system.

As in the case of the beam element, we assume that axial deformation is neglected.
However, in addition to bending about the horizontal axis of the cross section, the mem-
bers will also resist the loads by twisting about the axis of the member, thus developing
torsional moments. Therefore, at each joint we will have a vertical displacement, a ro-
tation about the horizontal axis of the cross section due to bending, and a rotation about
the axis of the member due to torsion. There are three degrees of freedom at each node.

We will use a coordinate system that places the grid in the x-y plane. Vertical
loads will therefore act in the z direction and applied nodal moments act in the plane of
the grid as shown in Figure 4-2. Figure 4-3 shows the elemental coordinate system we

shall use.
7z Y
/ ’
Mx [/
M/ Figure 4-2 Positive coordinate and
X  force directions.
X
z
y

Figure 4-3 Elemental coordinate
system.
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Bending will occur about the elemental y axis, and twisting occurs about the
member x axis. The nodal displacements and forces will be taken as positive when
acting in the positive coordinate directions. Naturally, we use the right-hand rule for the
direction of the bending and torsional effects. Figure 4-4 shows the positive directions
for the elemental forces and displacements.

z

Ly
P3’ 63
/ Ps, 86

P4’ 64

P,, —x
2, O2 P, 3,

Pl, 61

Figure 4-4 Positive elemental forces and displacements.

Note that §;, 82, 84, and Js are rotations and §; and ¢ are translations.

4.2 DEVELOPMENT OF THE GRID ELEMENTAL STIFFNESS
MATRIX

Referring to section 3.2 we can write four of the required six sets of relationships directly
from the beam elemental force-displacement equations. For example, referring to the
coordinates shown above, with §3 = 1 we find:

Py = —6EI/L? = ky3, P3=12EI/L® = k33, Ps= —6EI/L? = ks,

and Ps = —12E1/L? = kgs.
Similarly,
8y =1,kxo =4EI/L ks = 2EI/L ks = —6EI/L?* key = 6EI/L?
86 = 1,kes = 12E1/L> ks¢ = 6EI/L? ksg = —12EI/L?, kog = 6EI/L?
8s=1,kss=4EI/L, kys = 2EI/L, ks = 6EI/L? kss = —6EI/L?

Recall from your Strength of Materials coursework that the relative angle of rotation
of one end of a member of circular cross section with respect to the other when subjected
to a torsional moment applied at the centroid of the cross section is given by 6 =
TL/GJ as shown in the figure below, where G is the shear modulus and J the polar
moment of inertia of the cross section for members with circular cross sections, and the
cross sectional torsion constant for other cross sections. Thus, the torsional stiffness is
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GJ/L. This elemental stiffness relates the torsional moments P; and P, to the torsional
displacements §; and 4.
T /[
T

&

| L
|

Remember that the circular cross section is the only one for which plane sections remain
plane when a torque is applied. That is, there are no displacements parallel to the axis
of the bar (perpendicular to the cross section). For cross sections other than circular
ones there is some “warping” of the cross section. Some portions of the cross section
will have axial displacements in the positive x-axis direction and some portions that will
displace in the negative x-axis direction. This warping torsion is generally neglected for
most common structures, and we will neglect it in this chapter.
The final elemental force-displacement relationship becomes

Py GJ/L 0 0 -GJ/L 0 0 5
P, 0 4EI/L —6EI/L? 0 2EI/L 6EI/L? 8
12 O 0 —6EI/L? 12E1/L3 0 —6EI/L* -12EI/L? 53 41
Ps(~ | -Gi/L 0 0 GJ/L 0 0 F) @.n
Ps 0 2EI/L —6EI/L? 0 4EI/L 6EI/L? 85
Ps 0 6EI/L* —12EI/L? 0 6EI/L* 12EI/L? 36

The cross sectional constant for open cross sections made up of thin rectangular
shapes is given approximately by J = >_"_, b,'t,.3 /3 where n is the number of rectangles
that make up the cross section. Expressions for J for several common shapes are given
in Figure 4-5.

2a
b
J=ab¥[16/3-3.36(b/a)(1-b*/12a%)] J=bt3/3

b

b
4 IR t
bs ble b1 t
— t2 o
[ b, |

- 3
J=(b,t? +b,t2 )3 J=(b;t} +2b,t;)/3

Figure 4-5 Cross-sectional torsional constants.
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4.3 COORDINATE TRANSFORMATION

As in the case of the truss and frame elements, we must transform the elemental stiffness
matrices with respect to elemental coordinates to the global coordinate system. The
global x and y axes will lie in the plane of the structure and are therefore in the same
plane as the elemental x and y axes. Elemental and global z axes are parallel to each
other.

As shown in Figure 4-6, we must transform the displacements by rotating about
the z axis. Defining 6 as the angle between the elemental x axis and the global x axis,
taken positive counterclockwise, we see that the transformation is identical to that for
the frame element (compare Figure 3-7 and Figure 4-4).

Y

y
\4
Figure 4-6 Global and elemental

= X coordinate axes.

We can therefore write

cos@ sin6 O 0 0 0

—sin@ cosf® O 0 0 0

0 0 1 0 0 0
[Bl=| 0 0 cosé sing O (4.2)

0 0 0 —sin® cosé O

0 0 0 0 0 1

Also,

Cke Yetobat = LB [ke Jetement [ B) 4.3)

Expanding equation (4.3), we obtain the elemental stiffness matrix in terms of the
global coordinate system.

- (GJ/L)C? (GJ/L)SC  (6EI/L®S (—=GJ/L)C?® (-GJ/L)SC (—6EI/L*)SA
+(4EI/L)S* —(4EI/L)SC +(2EI/L)S* —QEI/L)SC

(GJ/L)S* —(6EI/L*)C —(GJ/L)SC —(GJ/L)S* (6EI/L*C
+(4E1/L)C? —(Q2EI/L)SC +QEI/L)C?

12E1/L3 (6EI/LYHS (—6EI/L}C (—12EI/L?)
(GJ/L)C? (GJ/L)SC (—6EI/L®»S (44)
+(4EI/L)S* —(4EI/L)SC

symmetric (GJ/L)S*  (6EI/L)C
+@AEI/L)C?

12EI/L?
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4.4 NON-NODAL LOADS

Non-nodal loads are treated in the same way we dealt with them for the beam and frame
elements. That is, we will calculate fixed end forces and reverse their directions so as to
obtain equivalent nodal forces. After member forces have been found from the calculated
displacements, we will add the fixed end forces to obtain the true member forces. This
is illustrated in Example 4.2.

4.5 EXAMPLE GRID PROBLEMS

Example 4.1

Consider the grid shown in Figure E4-1a. The member and material properties are indicated
to the right of the figure. Note that nodes 2 and 3 are fixed.

z For both members:
G=11.2 x 103ksi
E=29 x 10°ksi
1=1200 in*
J=400 in*

Figure E4-1a Grid for Example 4.1.

For this two-member grid we will assume that node number 1 is the left node of each
member. Thus, for member 1, § = 270°, S = —1 and C = 0. For member 2, 6 = 180°,
S =0, C = —1 (see section 4.3). We next use equation (4.3) to transform each elemental
stiffness to the global coordinate system and combine to form the structural stiffness matrix.
The individual stiffness matrices using equation (4.4) become:

Member 1:
580,000 0 —-3625 290,000 0 3625
- 18,666.7 0 0 -—18,666.7 0
k] = — 30.21 —3625 0 -30.21
sym. - 580,000 0 3625
- - - — 18,666.7 0
— - - - — 30.21
Member 2:
24,888.9 0 0 —24,888.9 0 0
— 773,333 6444.4 0 386,667 —6444.4
k] = - 71.61 0 6444.4 -71.61
sym. - 24,888.9 0 0

- - - - 773,333 —6444.4
— — — — - 71.61
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Since only u), u2, and u3 have non-zero values, we need the top left 3 x 3 portion of the
structural stiffness matrix. Our reduced equation becomes

0 604,889 0 —3625 u
0 = 0 792,000 6444 ua (4.5)
—100* —3625 6444 101.8 us

Solving equation (4.5) for the unknown displacements, we find;
uy = —.0217 rad, up = .0294 rad, and u3 = —3.616 in

We next find the elemental forces by forming {P} = (k){8)} = [k][B){u}. Since the
right nodes of each member have zero displacements, {#} for each member is

—.0217 rad
.0294 rad
(u) = —3.61(6)m “6)
0
0
The elemental forces become
—549.3 539.4
539.4 549.3
-30.7 —69.32
{(Ph=[kh[BLi{u)= 5493 {(Plha=[k)2[Blaiu)= ~539.4] 4.7
6824.6 11927.7
30.7 69.32

In general,

GJ/L(Cuy + Suz) — GJ/L(Cua + Sus)
4EI/L(—Suy + Cuz) + 6EI/L*(ug — u3) + 2E1 /L(—Sus + Cus)
—6E1/L(—Su) + Cuz) + 12E1/L3(u3 — ug) — 6E1/L*(—Sus + Cus)
—P,
2EI/L(—Su\ + Cuz) + 6EI/L%(ug — u3) + 4E1/L(—Sus + Cus)
—P3

Free-body diagrams of both members are shown in Figure E4-1b with the forces
acting in the actual directions.
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539.4 in-k 11928 in-k

y 69.3 k

T 549.3 in-k
69.3 k 539.4 in-k
- 5493ink

6824.6 ink “~ 5394 ink

|
549.3 in-k 30.7 k

30.7 k Figure E4-1b Final member forces.

Example 4.2

Consider the grid structure shown in Figure E4-2a.

For all members:
E=29 x 10°ksi
G=11.2 x 10°ksi
1=700 in4
J=200 in4

Figure E4-2a Grid for Example 4.2.

Figure E4-2b shows the equivalent nodal forces acting on node 1. These, of course,
are the opposite of the fixed end forces.

z

1125 in-k
2000 m-k

x # 375k Figure E4-2b Equivalent nodal
50 k forces.

Treating node 1 as the left end of each member and noting that node 1 is the only
node with non-zero displacements, the top left 3 x 3 matrix is calculated for each member
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from equation (4.4). After combining, the reduced structural force-displacement equation

becomes
—1125 in-k 911,556 0 0 u
2000 in-k } = 0 363,222 -2114.6 ) 4.8)
—-87.5k 0 —2114.6 101.2 u3
Solving for the displacements we find
uj —.001234 rad
uy ) = .000536 rad 4.9)
u3 —.853759 in

Figures E4-2c, E4-2d, and E4-2e show the superposition of the fixed end forces to
those obtained by using the calculated displacements ({P) = [k][B]{u)).

Member 1:

6.67 in-k 1125 in-k

<

-~ / 3766.2 in-k
Nsm ink N;n;k
+

403 k ~ L 375k
I 667ink !
403 k 375k
6.67 in'k 2641.2 in‘k
T
- /]\4612.9 in-k
28k
/ T~ 6.67ink
778 k

Figure E4-2c Member 1 final forces.
Member 2:
6.67in-k  2931.1 in-k

31.0 k 2652.8 in-k

310k Figure E4-2d Member 2 final forces.
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Member 3:

19867 in k 11. 52 ink 2000 in-k

1896 in-k 16 18 k + 50 k
2000 in-k

16.18 k 11.52 in-k 50 k

11.52 ink
| 133 ink
3896 in-k 338k

11.52ink ~ 66,18 k

Figure E4-2¢ Member 3 final forces.

4.6 COMPUTER FORMULATION

Since the [8] matrix for the grid element is exactly the same as that for the frame element,
and since the displacements at the ends of the grid member are numbered in the same
order as those of the frame member, modification of the frame program is relatively
simple. Clearly, the elements of the member stiffness matrix must be changed as well
as the expressions for member forces. Values for the shear modulus G and the cross
sectional torsional constant J must also be entered.

4.7 SUMMARY

The grid element has been addressed in this chapter. It was found that the coordinate
transformations required were the same as the frame element transformations. This was
due to the selection of the coordinate axes directions and the numbering scheme for the
forces and displacements in the elemental coordinate system. Sample problems were
presented, including a structure with non-nodal loads applied.

PROBLEMS

For all problems, E = 29 x 103 ksi and G = 11.2 x 103 ksi.

4.1. A vertical load of —10 k is applied at node 1 of the structure shown in Figure P4-1. Find
nodal displacements and member forces. / = 285 in*, J = 0.74 in*
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Plan View

O
=4

®

y

L.
®

@
"— 12 ft Figure P4-1

4.2. Verify J for the following cross sections:
W12 x 58 :d = 12.19",  twep = 360", wWhange = 10.01”,  tfange = .640", J =2.10in*
Angle 5 x 3-1/2 x 3/4” : J = 1.11 in*
WT9 x 35.5: d = 9.235", tgem = 495", Whange = 7.635”, thange = 81", J = 1.74 in*

4.3. Develop a computer program to analyze grids. Modify your frame program to accomplish this
task.

Use the grid program of problem 4.3 as the basis for solution of the following problems:

4.4. The members of the structure shown in Figure P4-4 are 8 x 6 x 9/16 structural tubing with
1 =112 in* and J = 147 in®. Find all displacements and member forces.

2 k/ft

Figure P4-4

4.5. For the structure shown in Figure P4-5, find all member forces. The members are structural

tubes 14 x 10 x 5/8 with / = 728 in* and J = 885 in*. The supports prevent vertical
displacements.

4.6. Solve for the displacements and member forces for the cantilevered grid shown in Figure P4-6.
The members are 8 x 8 x 5/8 structural tubing with / = 153 in* and J = 258 in*.
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p ®. "~ 1 Kft

Figure P4-§

x Figure P4-6

4.7. The members of the floor system shown in Figure P4-7 consist of 10 x 8 x 5/8 structural
tubing. / = 266 in* and J = 367 in* for all members. Find the displacements and member

forces. The supports prevent vertical displacement.

Figure P4-7

4.8. Replace the members in problem 4.7 with W 10x49 having an / = 272 in* anda J = 1.39 in®.
Compare the results with those of problem 4.7.

4.9. Solve problem 4.8 with complete constraint at the corner nodes. Compare with the results of
problem 4.8.
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5.1 INTRODUCTION

Many structures lend themselves to modeling as a combination of two-dimensional struc-
tures. For example, the bridge truss shown in Figure 5-1 could be analyzed for vertical
loads by considering each side of the bridge as a two-dimensional truss. The loads are
delivered to the joints of the truss by floor beams and floor girders.

Elevation

Plan Section  Figure 5-1 Bridge truss.

Other structures, such as domes, aircraft structures, and guyed towers are inherently
three-dimensional. They depend on their three-dimensional geometry to support and
transfer loads that are applied to them.

For a three-dimensional truss, we make the same assumptions as we made in
Chapter 2 for the two-dimensional truss. That is, the members are straight, loads are
applied only to the joints, and the members are connected at the joints with frictionless
ball joints. These assumptions result in each member acting as a two-force member with
either tensile or compressive forces acting along its axis.

The primary difference between the two-dimensional and three-dimensional truss
elements is the number of degrees of freedom per node. Since there are three translations
possible at each node for the three-dimensional case, each member has six degrees
of freedom. We therefore need to expand our elemental stiffness matrix to a 6 x 6
size. The [B] coordinate transformation matrix, which relates the elemental and global
displacements, will also increase in size to a 6 x 6 matrix. The process for formulating
and solving a three-dimensional truss problem remains conceptually the same as for the
elements previously considered.
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5.2 ELEMENTAL STIFFNESS MATRIX

As for all elements discussed earlier, the elemental stiffness matrix will first be expressed
in terms of the elemental coordinate system. The transformation to the global coordinate
system will then be performed.

Figure 5-2 shows the positive directions of the member axes and forces that we
will use for the elemental stiffness.

z

y
|
P3 ’53T / [
P35, P, .8,
— N — x
{ </
P, 6/' d Figure 5-2 Elemental forces and
2:72 B ,0s displacements.

Using the axis of the member as the elemental x direction as shown in Figure 5-2,
and assuming the positive direction is from the left node toward the right node, we find,
by expanding the two-dimensional truss stiffness to three dimensions by adding two zero
rows and columns corresponding to F3, Fg, 83, and ¢ to represent displacements and
forces in the third direction, that

[ k. ]element =EA/L

é.n

SO = OO =
(=Nl NeNe Nl
[=NeNelNeNe Nl
SO = OO =
SO OO OO
[=NeNe NN Nl

5.3 COORDINATE TRANSFORMATION

For the two-dimensional truss element we found that the [8] transformation matrix was
given by equation (5.2).

cosf sinf 0 0
—sinf@ cosé 0 0
(B]= 0 0 cos6 sinf G2
0 0 —sinf@ cos@

The 2 x 2 submatrices consisting of sines and cosines are matrices of direction
cosines. That is, each element of this matrix represents the cosine of the angle between
the local (elemental) and global coordinate axes. We designate these elements as /;;,
where i and j correspond to the elemental displacement § and the global displacement
u, respectively. For example, in the two-dimensional case (refer to Figure 5-3),
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l11 = cosine of the angle between §; and u; = cos 6
l12 = cosine of the angle between §; and u; = sin 6
I;1 = cosine of the angle between §, and u; = —sin 6
I» = cosine of the angle between §, and u; = cos 6
y
u,
62 61

A u;

Expanding to three dimensions, we have for each 3 x 3 submatrix,

h Ly I
[L]1= |l I I3

B3 Ly 33

101

Figure 5-3 Elemental and global
X  displacements.

(5.3)

Since the transformations required are the same at each end of the member, the

required 6 x 6 [8] matrix becomes

I hn L3 O

by Ip by O

[ﬂ]=[[L] [01]= by Iy Iy 0
[0] [L] 0 0 0 Iy

0 0 0 Iy

0 0 0 Iy

As previously derived,

(ke Jgtobar = [B1T (ke Jetement [ B ]
Using equations (5.1) and (5.4) in equation (5.5) we find
A il Inlis -1,
il 2 lihis =l
Il hisl % —lihs
= —lnhy —lnls 2

~lnly =8, —lphs Il

[k ]global = EA/L

|~y =l =% lilis

0 O
0 0
0 0
lia i3
ln In
I3 I3

=lnl
-1
=halis
Il
It

lialp

tUEN

=lali3
1
Inls

lial13

2
113

5.4)

5.5)

(5.6)

Note that in the above equation only the direction cosines /}, /12, and /;3 appear. These
represent the cosines of the angles between the §, axis (along the length of the member)
and the u;, u>, and u3 directions. We next determine expressions for these three direction

cosines.
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Consider the vector A_ﬁ directed along the member axis as shown in Figure 5-4.
This vector could represent either a force or displacement directed along the axis of the
member. The global coordinate axes and a unit vector A in the AB direction are also
shown.

u .
M member axis

B/

>

> X ,U0
zZ.u / Figure 5-4 Vector along member
axis.

From vector algebra we can write

AB = ABX = AB(\ i + Ay] + A.F) (5.7

where Ay, Ay, and A, are L1, L2, and ;3 (the direction cosines of the angles between the
vector and the coordinate axes). Now,

AB = (x5 — x)i + (y5 — ya)J + (z5 — za)k = ABX (5.8)

where the difference in coordinates between points A and B have been used to compute

the components of the vector Xﬁ, and the magnitude of Xﬁ is designated as AB (the
length of the vector).

AB = \/(xp — xa)? + (y8 — ya)? + (28 — 24)? (5.9
From equation (5.8) we can see that
% = (xg — x4)i/AB + (y5 — ya)J/AB + (z5 — 24)k/AB (5.10)
Identifying terms with those of equation (5.7) we have
liy = Ax = (xp — xa)/AB

ha=%y,=(ys—ya)/AB (5.11)
113 = )»z = (ZB - ZA)/AB
We see that by calculating differences in coordinates of the two points and the length of

the vector, we easily determine the direction cosines needed for our coordinate transfor-
mation.
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5.4 EXAMPLES OF THREE-DIMENSIONAL TRUSS PROBLEMS

Example 5-1
Consider the three-dimensional truss shown in Figure ES-1.

@ y
I s
12 ft - 1
| e
st D@ @0

= .

<Dl+6ft IOﬁ——i@

@

EA=constant
Figure E5-1 Truss for Example 5-1.

Assume that all supports (nodes 1 through 4) are ball joints and therefore prevent any
translations. We first compute the direction cosines of each member, treating node number
5 as the left end of each.

Member 5-1:

V62 +824+52=11.18 ft

l11 = —6/11.18 = —.5366 ;3 = —8/11.18 = —.7155 l13 = 5/11.18 = .4472

Member 5-2:
V102 + 82 4+ 52 = 13.75 fit

l11 = 10/13.75 = .7274 113 = —8/13.75 = —.5819 I13 = 5/13.75 = .3637

Member 5-3:
V102 + 82 4122 = 17.55 ft

111 =10/17.55 = .5698 I, = —8/17.55 = —.4558 ;3 = —12/17.55 = —.6838

Member 5-4:
V62 + 82+ 122 = 15.62 ft

l11 = —6/15.62 = —.3841 I3 = —8/15.62 = —.5121 I13 = —12/15.62 = —.7682

Note that since node S is the left end of each member and is also the only node with
non-zero displacements, only the upper left 3 x 3 matrix for each member will contribute
to the global structural stiffness matrix. Using equation (5.6), the top left 3 x 3 for each
of the members becomes

Member 5-1:

.02575 03434 —.02147
EA | .03434  .04579 —.02862 (5.12)
—.02147 -—.02862  .01789
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Member 5-2:

—.03079  .02463 —.01539 (5.13)

03849 —.03079  .019247
£ [
.01924 —.01539  .00962 .

Member 5-3:

—.01480 .01184 .01776 (5.14)
—.02222 .01776 .02664 |

.01850 —.01480 —.022227
£A [

Member 5-4:

.01260 .01680 .02520
.01890 .02520 .03780

.00944 .01260 .01890
EA [ ] (5.15)

The x, y, and z translations at each joint are labeled in a manner similar to the
two-dimensional truss. These displacements are 3 x NN —2,3x NN —1,and 3x NN,
where N N is the node number. Thus for node 5 the displacement subscripts are 13, 14,
and 15.

Combining the above matrices we have

Fi3 .09218  .00135 -—.00553 U3
{ Fia } =FEA [ 00135  .09906 —.00105] {u14 } (5.16)
Fis —.00553 -.00105 09195 uis

Let us assume that there is a force applied at node 5, which has components F, = 1
kip, F, = 2 kips, F, = 3 kips. Using E = 30 x 10> ksi and A = 4 in? for all members,
solving equation (5.16) for the unknown displacements yields u;3 = u, = .0001047 ft,
w4 = uy, = .0001698 ft, and u;5s = u, = .0002802 ft.

We next calculate the member forces using (P} = [k]etement[Bl{1}-

As in the case of the two-dimensional truss, we need to compute only one force.
In the three-dimensional case this is P4 (see Figure 5-2). In general,

Py = EA/L 1 (us — uy) + ha(us — up) + li3(ue — u3)l 5.17)
Using equation (5.17) we find,
Ps.y = .5626 k, Ps., =—.6918 k, Ps-3 = 1.4315 k, and Ps-4 = 2.6310 k.

We now perform an equilibrium check in the x-direction at node 5. For each
member the component in the x-direction is P/y;. Thus,

T F, = .5625(—.5366)—.6918(.7274)+1.4315(.5698)+2.6310(—.3841)+1% = O(check)

You should perform equilibrium checks in the y and z directions as an exercise.
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Example 5-2

In addition to the applied load at node 1 of the truss shown in Figure E5-2, members

1-3 and 1-4 are subjected to a temperature rise of S0°F. Using £ = 29 x 103 ksi and

a = 6.5 x 1075”/"/°F, find the ﬁnal bar forces. The area of members 1-3 and 1-4 is 2
. Member 1-2 has an area of 5 in®. Nodes 2, 3, and 4 are ball- -joint supports.

z
y\[—
x Figure ES-2

Letting node 1 be the left end of each member, the direction cosines are found to be
the following:

Member 1-2: 111 = -.3714, 112 =0, 113 = —.9285
Member 1-3: /;; = —.7066, I} = —.3925, I;3 = —.5888
Member 1-4: /1 = —.7066, I12 = .3925, I;3 = —.5888

As in the previous example, we calculate the upper left 3 x 3 matrix for each member.
After combining, we obtain the following reduced structural stiffness equation:

121 1 0 1721
.0242 (5.18)
1721 0 3214

We need to find the equivalent nodal loads due to the temperature changes in members
1-3 and 1-4. Each member fixed end force is given by EAx(At) = 18.85 kips (compres-
sion). Reversing these forces and using the direction cosines for each member to calculate
the components in the global coordinate directions, we find

F; = 12%sin30° + .7066(18.850)F + .7066(18.850)% = 32.64F
F> = 0+ .3925(18.850)F — .3925(18.850) = 0 (5.19)
F3 = — 12co0s30° + .5888(18.850)% + .5888(18.850)F = 11.81F

Using equation (5.18) in equation (5.19) and solving for the displacements, we have

Ui 03 136
- 01553
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Remembering that we must add the fixed end forces to those computed using these
displacements, we find

P, =-2483k%k
Py.3 =29.57 - 18.85=10.72 k
P14 =29.57 - 1885=10.72 k

Again, checking equilibrium in the x-direction at node 1 we have:
X Fy = —24.83(—.3714) + 10.72(—.7066) + 10.72(—.7066) + 12 sin 30° = .07 ~ 0

Equilibrium checks with some round-off error. As an exercise you should check equilibrium
in the other coordinate directions.

5.5 COMPUTER FORMULATION FOR THE THREE-DIMENSIONAL
TRUSS

There are very few changes that need to be made to the two-dimensional truss program to
convert it to a three-dimensional program. Additional input data includes the z-coordinate
of each node and a third restraint code, say KZRES(I). The number of degrees of freedom
is three times the number of nodes. Of course, a statement incorporating KZRES(I) will
have to be added when calculating the number of constraints for determining the size of
the reduced structural stiffness matrix. The elements of the elemental stiffness matrices
in global coordinates will have to be rewritten in terms of the direction cosines of each
member. Loop indices will expand to those of the two-dimensional frame since the
number of degrees of freedom is identical. For determination of the member forces, only
P4 will need to be computed. Having completed this much of the text, you should have
little difficulty in quickly completing a three-dimensional truss program.

5.6 SUMMARY

In this chapter we developed the necessary transformation matrix for the three-dimensional
truss element and expressed the elemental stiffness matrix transformed to the global co-
ordinates in terms of the direction cosines between the member axis and the global
coordinate axes. We solved two simple truss problems, including one involving thermal
strains, and we discussed the changes that will have to be made to the two-dimensional
truss program in order to expand its capability to three dimensions.

PROBLEMS

5.1 A guyed transmission tower is shown in Figure P5-1. If the area of the cross section of
the tower is 4 in? and the guy wires 1 in?, find the member forces for the loading shown.
E =29 x 10° ksi.
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z
® _ pe2oki
0,0,40), =~ . F=20"1i All supports are
ball joints
y
(0,20,0)
® & x
© \o
(-20,-5,0)
(20,-5,0) Figure P5-1
5.2 For the structure shown in Figure P5-2, find all bar forces. All areas are 2 in? and E = 29x 10
ksi.
z
{ y
® / (15,15,0)
0,0,0)

( 15 ’0’09) T X
20k

" (22,7,-15)
(15,0,-15) Figure P5-2

5.3 A balcony extension is to be framed as shown in Figure P5-3. Find all bar forces. The areas
of the bars are shown in () and E = 29 x 10° ksi.

All supports are ball joints
z y F=48k

@4,8',0) .
)
2 M
®‘ @) 6,8,0)

0,0,0) @(

(0,4,-10) Figure P5-3
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5.4 Referring to example problem ES-2, assume that member 1-3 is the only member subjected
to the temperature change. Solve for all bar forces.

5.5 Modify your two-dimensional truss program to create a three-dimensional truss program. Use
the suggestions in section 5.5 as a guide.

Solve the following problems for nodal displacements and member forces using your three-
dimensional truss program as an aid.

5.6 The aircraft engine mount shown in Figure P5-6 is subjected to a torque that results in F = 800
Ib. If all areas are 1 in? and E = 10 x 10 ksi, find the bar forces.

F
F—”t-ﬂ ® ®
DD 4

T
3

i F
@

_

wn
=3
=3

L

®

@ .

Elevation Plan Figure P5-6

5.7 The areas of all bars in the square cross-sectional truss shown in Figure P5-7 are 1 in2. Find
all bar forces. E = 29 x 10 ksi.

y
P
2 All supports are ball joints

15k Figure P5-7
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6.1 INTRODUCTION

The three-dimensional frame element is the most complex element that we can treat
using strength of materials and standard structural theory. As was the case for the
two-dimensional frame element, we assume that the members are connected together
with moment-resisting joints. We will also assume that the members are bi-symmetric.
That is, the cross section is symmetric about both the local y and z axes. The three-
dimensional frame element is an essential element for analysis and design of three-
dimensional moment-resisting frames.

To describe the displacements of a node of a three-dimensional frame member, we
need to specify three rotations (two bending rotations and a torsional rotation) and three
translations (x, y, and z). Thus the frame member will have six degrees of freedom per
node, resulting in an elemental stiffness matrix that is of order 12 x 12. Extending the
force and displacement numbering method used for the elements previously considered,
we shall number the forces and displacements from 1 to 6 at the left end of the member
and from 7 to 12 at the right end.

6.2 DEVELOPMENT OF THE ELEMENTAL STIFFNESS MATRIX

Since we have previously developed the two-dimensional frame element and the grid
element, we can easily combine the elemental stiffnesses of these elements to obtain the
stiffness matrix for the three-dimensional frame element. If we assume that the elemental
coordinate system is oriented as shown in Figure 6-1, note that we will have bending
about the y-axis in addition to bending about the z-axis. Twisting about the x-axis and
translations in all three coordinate directions will also take place. The positive directions
of these displacements and the corresponding forces are shown in Figure 6-1.

Note that subscripts 1, 2, 3, 7, 8, and 9 refer to linear forces and translations, and
that subscripts 4, 5, 6, 10, 11, and 12 refer to moments and rotations.

T y

$ Ps,85 Rvauf
P2’62 K
Pode Puds | 851 5o Boby x
— y ——
“Py,8
P,,8
s Bydn
. Pe8s Figure 6-1 Positive directions of
z elemental forces and displacements.
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As with all the previous elements, the elemental stiffness matrix is developed by
introducing a unit displacement corresponding to one degree of freedom at a time. The
axial and torsional effects are uncoupled from the bending effects as they were for the
two-dimensional frame and grid elements. Noting that we have bending about the y
and z axes and twisting about the x-axis, we can use the results obtained previously to
construct the three-dimensional frame elemental stiffness matrix. Note that we must be
careful to subscript the moments of inertia about the y and z axes properly. The resulting
elemental stiffness matrix is shown below.

rEA/L 0
— 12EL/L?

0
0

0
0

GJy/L

- - 12EL,/L* 0 -6EIl,/L? 0

0 0 —EA/L 0 0 0 0 0
0 6ELJ/L* 0 -12EL/L® 0O 0 0 6El,/L?
0 0 —-12EI,/L> 0 —6El,/L* 0O
0 0 0 0 0 -GJLJ/L 0 0
4EI,JL 0 0 0 6EI,/L> 0 2El,/L 0
— 4EILJL 0 —6EIl,JL? 0 0 0 2EL/L
- — EA/L 0 0 0 0 0
- - - 12EL/L3 0 0 0 —6El,/L?*
- - - - 12E1,/L>* 0 6El,/L? 0
_ — - - - GIL/L 0 0
- - - - - —  4ElL/L 0
- - - - - - - 4EIL/L
6.1)

You should note that the elemental stiffness matrices for all elements previously
considered can be obtained by retaining the appropriate rows and columns of equa-

tion (6.1).

Referring to Figure 6-1, if we want to generate the elemental stiffness matrix
for a two-dimensional beam, we would retain only rows and columns corresponding to
coordinates 2, 6, 8, and 12. For the grid element, rows and columns 4, 6, 2, 10, 12,
and 8 would be retained. Care must be taken, however, to account for different local
coordinate labeling and direction.

6.3 TRANSFORMATION OF COORDINATES

As in previous cases, we need to transform the elemental stiffness matrix with respect
to the elemental coordinate system to the global coordinate system before combining the
stiffnesses to create the structural stiffness matrix. The basic form of this transformation
remains the same and is shown in equation (6.2).

[K ]global = [ﬂ ]T [k ]elememal [ﬂ ]

In Chapter 5 we recognized that the elements of the [8] matrix were the direction
cosines of the force and displacement vectors. For the three-dimensional frame element
the [B] matrix expands to that shown in equation (6.3).

(6.2)
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(L] o o O
|0 [L] 0o ©
0 0 0 [L]
where each [L] matrix is the 3 x 3 matrix of direction cosines.
We now proceed to determine expressions for the direction cosines.
The cosines required are generally calculated from the coordinates of three points.
Two of these points are the nodes of the member, and the third point lies in the local x-y
plane and is often called the K node. These points are shown in Figure 6-2. As we have
seen, the direction cosines are the cosines of the angles between the local coordinate
axes and the global axes. For example, /53 is the cosine of the angle between the local
y-axis and the global z-axis. If we designate the nodes at the ends of the member as A
and B we have, as in the case of the three-dimensional truss,
li1=(xg —x4)/AB, L= (ys—ya)/AB,
where AB is the length of the member.

Chap. 6

and /)3 = (zg — z4)/AB

A
P
. \

XY plane
///’ \
¢ \ X
\ 4
\ K |
Loe ’
‘ B
y
z
A

Figure 6-2 Location of K node.

. The direction cosines of the local z-axis can be found by realizing that any vector
Z parallel to the local z-axis must be perpendicular to the plane formed by two vectors in
the local x-y plane. For these two vectors we can use a vector X from point A to point
B and a vector K from point A to point K as shown in Figure 6-3. The cross-product
between these vectors will yield a vector perpendicular to the x-y plane. Dividing this

vector by its length results in a unit vector the components of which are the required
direction cosines between the local z-axis and the global axes.

g | x-y plane
V¢

Figure 6-3 Vector products.
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The vector Z = X x K. The components of the vectors X and K are given by
equation (6.4):

X = (xp — xa)i + (yp — ya)] + (zp — za)k

L, - . . (6.4)
K = (xk —xa)i + (yk — ya)j + (zx — 2a)k
Forming the cross-product yields the following components:
Z, = (yp — ya)zk — za) — (zB — 24)(Yk — Y4a)
Zy, = (zp —zp)(xx — x4) — (xp — x4)(zx — z4) (6.5)

Z,= (xg —xa)(yk — ya) — (yB — ya)xg — Xa)

Thus, I3y = Z,/Z, 13, = Zy/Z, and Is3 = Z,/Z where Z = ,/Z2 + Z% + 22
Similarly, the cross-product between a vector in the z-axis direction and one in
the x-axis direction will yield a vector in the y-axis direction. The z-axis vector is
l}]i + I32§ + l33k and the x-axis vector is I13i + /12j + /33k. Forming the cross-product
Z x X yields the following components:
Y, =lislsy, — a3
Yy = hilz — lislsy (6.6)
Y, =l =il
Thus, I = Y,/Y, 1, =Y,/Y, and I3 = Y,/Y where Y = , /Y2 + sz + Y2,
Note that the positive direction of the local y-axis will always be perpendicular to
the x-axis in the direction of the K node.
Having determined the elements of the [L] matrix, we can transform the elemental
stiffnesses to the global coordinate system by using equation (6.2). We then combine them
into the structural stiffness matrix as before. We next reduce the structural stiffness matrix

by imposing boundary conditions and solve for the unknown displacements. Finally, the
member forces are calculated by using equation (6.7).

{P}=[k]e1emem{8}=[k]elemem[ﬂ]{u} 6.7)

6.4 EXAMPLE OF A THREE-DIMENSIONAL FRAME PROBLEM

Consider the rigid frame shown in Figure E6-1.
All members are W 8 x 24 steel wide flange sections with the following properties:

E=29x10°psi, G=11.15x10°psi, I,=828in*, [,=183in* J =0.35in%
A =708 in’.

The nodal coordinates in inches are:

Node 1: 180,0,180
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All members are 15 ft. long.

©

member 1

member 2

member 3

Figure E6-1 Example frame.

Node 2: 0,0,180
Node 3: 180,180,180
Node 4: 180,0,0

Node number 1 will be considered the left node of each member.
We now must select a K node for each member.
The K node coordinates selected for each member are:

Member 1: 0,0,0
Member 2: 180,0,0
Member 3: 0,0,0

Note that the K nodes are located in the local x-y plane for each member. The
local axes and the K vectors for each member are shown in Figures E6-2a, E6-2b, and
E6-2c.

Member 1

®

Figure E6-2a K vector for
(0,0,0) member 1.

To further explain the K node position, consider member number 1 shown in
Figure E6-2a.

Since node 1 is the left end of this member, the local x-axis lies along the axis of
the member in the direction from node 1 toward node 2. The position of the K node is
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@

z

i

0,0,0)

_47/ ®

/ x
K
(180,0,0)
Figure E6-2b K vector for
y member 2.

Member 3

) @ Figure E6-2c K vector for
X member 3.

selected to lie in the plane of the web of the beam element and is directed from node
1 toward the selected point. In this case, the point at coordinates (0, 0, 0) is chosen as
the K node. The y-axis is always perpendicular to the x-axis, and its positive direction
is toward the K node. This defines the y-axis in Figure E6-2a. The z-axis positive
direction is determined by applying the right-hand rule to the x and y axes.

We next calculate the direction cosines for each member.

The left end of each member is point A for the member. For this example, node
1 is the left end of each member. Thus x4 = x), y4 = y;, and z4 = z,.

Member 1:

x4 =180 xp=0 xg =0
ya=0 yp=0 yx=0
Zp = 180 Zp = 180 ZK=O

AB = /(0 —180)24+0+0 = 180

In=(0-180)/180=—1 lp=03=0
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From equation (6.5),
Z, =(0)(0—-180)— (0)(0)=0
Z, = (0)(180 — 0) — (0 — 180)(0 — 180) = —(180)>
Z,=(0-180)(0) — (0)(0—180) =0

Z = (180)°
Thus,
Li=0, Ip=-1, In=0
From equation (6.6),
Y,=0-0=0
Y,=—100-0=0
Y,=0—(-1)(-1)=-1
Thus,
hi=lp=0, b=-1
The [L] matrix for member 1 becomes
-1 0 0
[L]=[ 0 0 —ll (6.8)
0 -1 o0
Member 2:
x4 =180 x3 =180 xx =180
ya=0  yp=180 yx =0
z4 =180 z3 =180 zx =0

AB =180

I;; = (180 — 180)/180 = 0, /;; = (180 — 0)/180 = 1, /;3 = (180 — 180)/180 = 0

From equation (6.5),
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Thus,
I = —(180)*/(180Y = -1, Il =I3=0

From equation (6.6),

Y,=0-0=0
Y,=0-0=0
Y,=1(-1)-0=-1
Thus,
hi=ly=0, lLs=-1
Therefore, for member 2,
01 O
[L]=[ 00 —ll (6.9)
-1 0 O

Member 3:
xa=180 xp =180 x, =0
ya=0 y8=0 yk =0
z4 =180 zp=0 zg =0
AB =180

1 =0,112=0,/l13=—-180/180 = —1
From equation (6.5),

Z,=0-0=0
Z, = —180(—180) — 0 = (180)>
Z,=0-0=0
Thus,
i=l3=0, Inp=1
From equation (6.6),
YV,=—-1-0=-1
y=0-0=0
Y,=0-0=0
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Thus,
hi=-1, lhp=Il3=0
Therefore, for member 3,
0 0 -1
[L]= [—1 0 Ol (6.10)
01 0

Since node number 1 is the only node with non-zero displacements, and since it
also represents the left node of each member, only the top left 6 x 6 of the transformed
elemental stiffness matrix for each member is required. Using equation (6.2) for each
member we find (for the top left 6 x 6) for each member:

Member 1:
1,140,667 0 0 0 0 0
- 1,092 0 0 0 —98,278
— - 4,941 0 444,667 0
- sym. - 21,681 0 0 (6.11)
- — - - 53,360,000 0
- - — - — 11,793,333
Member 2:
1,092 0 0 0 0 —98,278
— 1,140,667 0 0 0 0
- - 4,941 444,667 0 0
— sym. - 53,360,000 0 0 6.12)
- - - - 21,681 0
- - - - - 11,793,333
Member 3:
4,941 0 0 0 —444,667 0
— 1,092 0 98,278 0 0
- - 1,140,667 0 0 0
- sym. - 11,793,333 0 0 6.13)

- - - - 53,360,000 0
- - - - - 21,681
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Combining the above equations, the overall structural stiffness equation becomes

0 1,146,699 0

0 - 1,142,851

0 _ —_ —_

0 - - sym.
492,000 in-# - -

0 — -

0 0 —444,667 —98,278 uj
0 98,278 0 —98,278 u2
1,150,548 444,667 444,667 0 u3
- 65,175,010 0 0 ug
- - 106,741,700 0 us
- - - 23,608,350 ug

Solving equation (6.14) for the displacements we find

u
uz
us
Uy
us
Ue

001794 in
0in
—.001792 in

= (6.15)

.000012 rad
.004624 rad
.000007 rad

Using equation (6.7) for each member, the member forces become

Member 1:
( Pl )
P,
P;
Py
Ps
Pg
P;
Py
Py
Po
Py
\ Py, )

Member 2:

= 2046 #

\ P12 J

( —2046 # )
—2047 #
T3#
—27 in-#
—88 in-#
—245,950 in-#

a'e

(6.16)

2047 #
—.73#
27 in-#
—44 in-#
\ —122,577 in-# )

( —47#
342 #
—1.23 #
100.3 in-#
88.3 in-#
144.4 in-#
= 4 P 3 (6.17)
—342 #
1.23 #
—100.3 in-#
132.27 in-#
L 470.6 in-# )
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Member 3:

( P ) (2,044 #
P, 2,047 #
P; 1.2 #
Py —.16 in-#
Ps —144.2 in-#
Ps 245,949 in-#

4 Py (= 4 —2,044 # ' (6.18)
Pg —2,047 #
Py —12 #
P]() 16 in-#
Py —72.05 in-#

\ Plz J \ 122,576 in-# )

The forces (in units of pounds and inch-pounds) at the left end of each member are
shown in Figure E6-3. Note that the torsional moments are very small in comparison
to the bending moments. This occurs since the torsional stiffness of these open cross
sections is small compared to the bending stiffness.

- //

245950 s
/ - v 123
S 2046 /(;474
73 \“27 1003 [
f . 342
o8 2044 245949 {
A 883
2047 12
== . —
144.2

f

.16

Figure E6-3 Member forces.

6.5 COMPUTER FORMULATION

Since the matrices we must deal with are quite large (12 x 12), it will be more conve-
nient to perform the necessary matrix multiplications numerically rather than derive the
general case as we did for all previous elements. Of course, this will take considerably
more computer time and require more storage for the intermediate matrices generated
when transforming the elemental stiffnesses to global coordinates. The notation for
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displacements follows the same convention as for the previous elements. That is, the
displacement subscripts will be designated as six times the node number and six times
the node number minus 1, 2, 3, 4, and 5. There will be six restraint codes for each node,
and the order of the reduced structural stiffness matrix will be six times the number of
nodes minus the number of restrained displacements.

Matrix multiplication is defined in Appendix A as

N
Cij = zaikbkj (6.19)
k=1
A code fragment to perform this operation is shown below.

FOR I=1 TO N (N=12 for the three-dimensional frame element)
FOR J=1 TO N

C(I,J)=0

FOR K=1 TO N

C(I,J)=A(I,K)*B(K,J)+C(I,J)

NEXT K: NEXT J: NEXT I

The [B] matrix can be transposed using a code fragment similar to that shown
below.

FOR I=1] TO N
FOR J=I TO N
TEMP=B (I, J)
B(I,J)=B(J,I)
B(J,I)=TEMP
NEXT J: NEXT I

After the reduced stiffness matrix has been inverted and the unknown displacements
found, the member forces are found as usual by using {P} = [k]element[B]1{1}. Remember
that the first six displacements are those of the left end of the member and the last six
are those of the right end of the member. These will be represented by 6*ML(I)-5,
6*ML(I)-4, ... etc., and 6*MR(I)-5, 6*MR()-4 ... etc.

6.6 SUMMARY

In this chapter we investigated the use of a three-dimensional frame element for solving
structural problems. We have seen that the elements of the [8] transformation matrix can
be found using the coordinates of the ends of the member and a third K node that lies in
the local x-y plane of the element. An example frame problem was solved and computer
formulation of a three-dimensional frame program was discussed. Of course, non-nodal
loads are addressed in the same manner as for the previous elements discussed; that is,
by using the concept of equivalent nodal loads. In addition, support settlements are dealt
with by using the same techniques presented earlier in the text.
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In the chapters that follow we shall address additional topics in the stiffness for-
mulation of structural problems and alternate ways of deriving the elemental stiffness
matrices, deriving the overall structural stiffness equation, and treating the topic of non-
nodal loads.

PROBLEMS

E =29 x 10° psi and G = 11.2 x 10° psi for all problems.

6.1 All members of the frame shown in Figure P6-1 are square structural tube with the following
properties: Iy = I, = 27 in*, J, = 46.8 in*, A = 8.36 in>. A moment vector with compo-
nents of —36 ft-k, 0, and 48 ft-k acts at node 1. Find all displacements and member forces.
The coordinates shown are in feet.

(2 0,12,0) (3) (12,12,-12)

(12,12,0)

2

@ (12,0,0) Figure P6-1

6.2 All members of the frame shown in Figure P6-2 have the same properties as those of problem
P6.1. Find all displacements and member forces. The coordinates are given in feet.

(3 0,0,0) (@) (15,0,-10)

@ (15,0,0)
3

2 (15,0,10)
3 (5,100 Figure P6-2

6.3 Using the suggestions given in section 6.5, write a three-dimensional frame computer program.
It should have the capability of solving problems with 25 members and 20 joints. Hint: Modify
your two-dimensional frame program.

Use your computer program from problem 6.3 as the basis for solution of the following
problems.

6.4 All frame members in Figure P6-4 are W 12 x 22 with the following properties: I, = 4.66 in*,
I; = 156 in*, J, = 0.29 in*, A = 6.48 in. Find all displacements and member forces.
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@ 0,120 (2 (15,12,-12)

(5) 0,0,0)
(3 (15,0,0) Figure P6-4

6.5 All members in Figure P6-5 are W 12 x 22 (see problem 6.4 for properties). Find all dis-
placements and member forces.

Figure P6-5

6.6 All members of the frame shown in Figure P6-6 are square tube with A = 27.4 in?, I, =
I, = 580 in*, J, = 943 in*. Find all member forces.

Figure P6-6

6.7 All members of the frame shown in Figure P6-7 are square tube with A = 6.58 in?, Iy=1I=
22.8 in“, « = 38.2 in*. For the two inclined members, the z-axis of the tube cross section
lies in the plane formed by these members. Find all displacements and member forces.
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(-8,8,-20)

@

(-8,8,-12)
(8,8,-20)

X Figure P6-7

6.8 The members of the frame shown in Figure P6-8 are made of square tube with A = 3.11 in?,
Iy =1, =358 in*, J, = 3.32 in*. Each of the four applied moments shown has a magnitude
of 1.6 ft-k. Find all member forces.

@ Figure P6-8
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7.1 DISCUSSION OF BANDWIDTH

We have seen that the global force-displacement equation for the linear-elastic structures
considered in this text contains a stiffness matrix that is symmetric and has positive
terms on the main diagonal. The storage requirements for the global stiffness matrix
could certainly be reduced by taking advantage of this symmetry. That is, we need
to store only the main diagonal and upper or lower portion above or below the main
diagonal. Computational efficiency would also be increased by using an inversion routine
that took account of this symmetry.

We can, however, decrease storage requirements even more by recognizing that
most non-zero elements are clustered around the main diagonal, forming a diagonal
“band” of matrix elements. The width of this band (bandwidth) is dependent on the
nodal numbering scheme chosen. To illustrate this, consider the following frame with
two different nodal numbering methods.

6 7 11 12

5 8 9 10

4 9 7 8

3 10 5 6

2 11 3 4

/17- 77 777 N /17J 77 /7J 772 Figure 7-1 Two frame node
@ ®) numbering schemes.

Since we are dealing with a two-dimensional frame, each node has three degrees of
freedom, two translations and a rotation. Also, each member stiffness matrix is a 6 x 6
matrix with 3 x 3 submatrices associated with the left and right nodal displacements.
That is, the top left and right 3 x 3 submatrices are associated with the left node forces
and left and right nodal displacements, respectively. Similarly, the bottom left and
right 3 x 3 matrices are associated with the right node forces and the left and right
nodal displacements. For example, if we denote these 3 x 3 submatrices with an X,
the member that connects nodes 6 and 7 in Figure 7-1a will contribute to the overall
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structural stiffness matrix in locations (6,6), (7,7), (6,7), and (7,6). Filling in our 12 x 12
matrix of 3 x 3 submatrices X, we find for Figure 7-1a:

X X - - - - - - - - = =7
X X X - - = - = - - X -
- X X X - - - - - X - -
- - X X X - - - X - - -
- - - X X X - X - - - -
- - = - X X X - - - = -
(kl1=({_ = X X X — — — _ (7.1)

- - = - X - X X X - - -
- - =X - - - X X X - -
- - X - - - - - X X X -
- X - - = - - - - X X X

- - - - - - - - - - X X/

For Figure 7-1b we have:
‘X - X — — — — — — o _
- X = X = = - - - - - -
X - X X X - - - - - - =
- X X X - X - - - - - -
- - X - X X X - - - - -
- - - X X X - X - - - -
(k1= _ _ ¥ - X X X — — — (7.2)

- - - - - X X X - X - -
- - - - - - X - X X X -
- - - = - - - X X X - X
- = = = - - - - X - X X
L— - - = = - - - = X X X

Since we have a symmetric matrix, we need to store elements on the main diagonal
and those non-zero terms to the right (or left) of the main diagonal. This total width is
called the “half-bandwidth” or sometimes the “semi-bandwidth.” Note that for Figure 7-
la, the half-bandwidth is 10 x 3 = 30 (remember that each X represents a 3 x 3 matrix),
while for the numbering scheme of Figure 7-1b the half-bandwidth is 3 x 3 = 9. This
means that our storage requirements would be either a 36 x 30 matrix or a 36 x 9 matrix.
Clearly, we can reduce our storage needs by more than a factor of three simply by
carefully numbering the nodes.

We want to minimize the maximum difference in node numbers between connected
nodes. This generally means numbering the nodes across the short direction of the
structure as in Figure 7-1b.
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The general expression for half-bandwidth is given by

bw = dof (maxdiff + 1) (7.3)

where

bw = half-bandwidth
dof = number of degrees of freedom per node
maxdiff = maximum difference in node numbers between connected nodes.

The half-bandwidths for the elements considered in this text are listed below:

One-dimensional bar bw = 1(maxdiff) + 1
Two-dimensional truss bw = 2(maxdiff) + 2
Two-dimensional frame bw = 3(maxdiff) + 3
Grid bw = 3(maxdiff) + 3
Three-dimensional truss bw = 3(maxdiff) + 3
Three-dimensional frame bw = 6(maxdiff) + 6

There are matrix inversion routines that operate on symmetric matrices stored in
half-bandwidth form. Not only are storage requirements reduced, but because there are
many fewer numbers to manipulate, the inversion process occurs much more quickly.

It is a simple task to build the structural stiffness matrix in half-bandwidth form.
The following code segment does this for the two-dimensional frame. We assume that
the elemental stiffness matrices have been transformed to global coordinates.

FOR I=1 to NM [loop on number of members]
IJ(1)=3*ML(I)-2:IJ(2)=3*ML(I)-1:1IJ(3)=3*ML(I)
IJ(4)=3*MR(I)-2:IJ(5)=3*MR(I)-1:1IJ(6)=3*MR(I)
FOR IR=1 TO 6 [row index]

FOR IC=1 TO 6 [col index]

IF(IJ(IC)<IJ(IR)) THEN 200

CC=IJ(IC)-IJ(IR)+1
SK(IJ(IR),CC)=SK(IJ(IR),CC)+EKT (IR, IC)

200 NEXT IC:NEXT IR: NEXT I

Since the column order is not maintained when we store the matrix in half-
bandwidth form, we must use a different technique to account for displacement boundary
conditions. A simple way to deal with the boundary conditions is to multiply the first
element in the row associated with the displacement boundary condition, which is the
main diagonal element, by a large number and set the force associated with the dis-
placement equal to the displacement multiplied by the resulting product of the main
diagonal element and the large number. This is exactly the same technique as presented
in section 1.7 of Chapter 1. This procedure also works with zero displacement boundary
conditions.
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7.2 COMBINING DIFFERENT ELEMENTS TO MODEL A STRUCTURE

Often it is necessary to use more than one type of element in order to analyze a structure.
An example is shown in Figure 7-2 where a rigid frame is braced by truss members.

Us Ug
o
Ue

Figure 7-2 Structure with frame and
truss members.

Considering joint 2, we notice that there will be contributions to the global stiffness
matrix from frame members 1 and 2 and the truss element, member 3. Since we have
three degrees of freedom at each node for the frame members (two translations and one
rotation) and only two for the truss element (two translations), we must take care to
ensure that the elements of the truss stiffness matrix are placed in the correct locations
in the global structural stiffness matrix. This is illustrated in the following example.

Example 7.1

Y Tt
10" <—@ @ Frame Members:
E= 29 x 10° psi
A= 20 in?
\3
1 .

12 ft I= 100 in*

Truss Element:

E= 29 x 10 psi

\\ @ A=2 i.llz

7 Figure 7-3 Example 7.1.

The stiffness matrices of members 1, 2, and 3 shown in Figure 7-3, with respect to the
global coordinate system, are given below:

Member 1:

® @ ® ® ® ®

11.65 0 —839.12 —11.65 0 -839.12 | ®
- 4027.78 0 0 —4027.78 0 ®
- - 80555.55 839.12 0 4027.78 | ® (1.4)
- - - 11.65 0 839.12 | @ ’
- sym. - - 4027.78 0 ®
- - — — — 8055555 | ®
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Member 2:
@ ® ® @ ®
690476 0 0  —690476 0 0 ®
— 5871 246599 0 5871 246599 | ®
- — 1380952 0 —246599 6904762 | ® 1
- - - 690476 0 0 @ 73
- sym. - - 5871  —2465.99
- _ - - - 1380952 | ©
Member 3:
@ ® © @
8833 —15142 —8833 151427 @
~ 25958 15142 —25958 | 16
- - 8833 —15142 | @ 7.6

- sym. - 25958 ] @

Note that the global displacement numbers corresponding to the elements of the above
matrices are shown above the columns and to the right of the rows.

Also note that the truss elemental stiffness will contribute to the rows and columns
corresponding to 3*node number —2 and 3*node number —1; that is, the translational
components of the nodal displacements.

Proceeding to formulate the reduced structural stiffness matrix by adding appropriate
elemental stiffness terms and removing rows and columns associated with zero displacement
boundary conditions, we obtain:

700475 —15142 839.12 —-6904.76 0

— 4346.07 2465.99 0 246599
— - 218650.75 0 69047.62 a7
- sym. - 6904.76 0
- - - - 138095.2
Inverting and solving for displacements with F4 = —10% as the only applied force,
we find
Uy —.110592 in
us —.004045 in
ug ) = .000531 rad (7.8)
uy —.110592 rad
Ug —.000193 rad

For the truss element {8} = [B81{u}

&) = .50387(—.110592) — .86378(—.004045) = —.05223 in
85=0
{P} = [k].{38)

Py = 34791(=8;) = 347.91(05223) = 18.17%
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One way to automate the above process in a computer program would be to accumulate
elements of the overall global stiff ness matrix in separate subroutines for each type of element
used to model the structure. Of course, the loop indices used would have to reflect the
appropriate global displacement number. In this example, in the truss member subroutine,
1J(1)=3*ML(I)-2, J(2)=3*ML(I)-1, 1J(3)=3*MR(I)-2, and 1J(4)=3*MR(I)-1.

An alternative to the procedure just described is to treat all members as frame members
but to use a very small moment of inertia for the truss member in comparison to those of
the frame members. Although this technique results in an approximate solution, it generally
is a very good one. For the above example, using a moment of inertia for the truss member
of 1 in* and treating it as a frame member yields the following solution for truss member

forces:
P, —18 17 k
P
P; - 03 ft-k
Py 18 17 k (7.9)
Ps
Ps 0 ft-k

Notice that the axial force is the same as that of the previous solution and that the shear
forces and bending moments are effectively zero, as they should be.

7.3 ELASTIC SUPPORTS

The simplest procedure for treating linearly elastic supports, whether axial or torsional,
is to introduce an additional element at the support that has the required spring constant
or constants.

Example 7.2

Consider the beam shown in Figure 7-4. The member force-displacement relationships are
given by equations (7.10) and (7.11). The spring relationship is given by equation (7.12).

Figure 7-4 Beam with an elastic
support.

Member 1
F 20.14  1208.33 —-20.14  1208.33 uj
i —  96666.66 —1208.33 48333.33 U (1.10)
F| 7| sym. - 20.14 —-1208.33 us3 ’

Fy — - - 96666.66 us
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Member 2:
F3 20.14  1208.33 -20.14 1208.33 us
Fy | _ - 96666.66 —1208.33 48333.33 ug .11
Fs |~ | sym. - 20.14 —1208.33 Us ’
Fg - - - 96666.66 ue

Spring

F3 = kspringtt3 (7.12)

Combining to generate the reduced stiffness matrix we find

k‘gl; k(2l) kft” k(2) .

—  Numerically we have

6028 0 us
[ l [0 193333.3][:44} (7.14)

The equivalent nodal forces at node 2, F3 and Fjy, are —5k and —100"~*,
Solving for the displacements we find

{ l [01659 0 ]{ —.082949 7.15)
5.1724 x 1076 —100 —.000517 :

An alternate method of solution treats the structure as a frame and defines the
spring as an additional member where its properties are adjusted to approximate a one-
dimensional member.

In the previous example we want EA/L = 20 kfin. Using E = 29 x 10° ksi
and L = 120 in, the area A must equal .08276 in? in order to meet the axial stiffness
requirement. By using a very small moment of inertia / of .01 in®, the bending stiffness
is negligible in comparison to those of the beam elements. After solution, the moments
and shears in the member representing the spring are found to be zero to two decimal
places. The displacements are identical to those of equation (7.15).

Naturally, these techniques can also be used to model torsional springs or a com-
bination of axial and torsional springs. For example, if the beam shown in Figure 7-4
had a torsional spring at node 2, the Fy = k,,5iontt4 Would replace equation (7.12). The
torsional spring stiffness would be added to the element of the overall stiffness matrix
that related F4 to u4.

If the frame approximation is used to represent a torsional spring, two vertical
members can be added as shown in Figure 7-5. The torsional stiffness of these two
members in this case is given by ky.5i0n = 8E1/L. Two members are used instead of
one so as to have the net shear in these members add to zero at the support. The areas
selected for these members would be large in comparison to those of the actual frame
members to approximate zero vertical displacement at this node.
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Yy

Beam Element 1 M, = (8EIN)0

\ 2 ke = SEI

Figure 7-5 Torsional spring
777 approximation.

7.4 INCLINED SUPPORTS

Up to this point in the text we have dealt with support conditions that restrict or specify
motion in the global coordinate directions only. However, situations arise similar to the
one shown in Figure 7-6.

Figure 7-6 Inclined support.

The reaction at node 3 must be perpendicular to the support, and the displacement
in that direction is zero. We want to modify our force-displacement relationships to
use forces and displacements parallel and perpendicular to the support; that is, in the
directions of a local coordinate system.

Consider Figure 7-7, which shows the global and local displacements at node 3.

Figure 7-7 Global and local
Us  displacements of node 3.

Just as {8} = [Bl{u}, we can write

ds| _ | cosf sinf us
{d6}_[—5in6 cos€]{u6} (7.16)

us | _ |cosf® —sind ds | _ r [ ds
{uc,}_ [sine cos b ]{d6}’[ﬁ] {do} (7.17)

Thus,
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Since both u, and u, are zero for the structure, we can write

usz 1 0 O 0 uz u3
Uy _ 0 1 0 0 Uy _ [ﬂl] Uy
us [~ |0 O cosf® —sinf ds ( ds
Ug 0 O sin@ cosf ds ds
Now,
F; u3 u3
Fa | _ us | _ )1 ) Ua
p (=LK1 = (KB
F6 Ug d6
The forces are also vectors and we can write
F3 1 0 0 0 2 F;
7 U 0 0 Fl (8] Fy
Fs[{ [0 O cos§ —sinf Rs Rs
Fg 0 0 sinf cosé R¢ R¢

where Rs and Rg are forces corresponding to the displacements ds and dg.
From equation (7.20),

F3 F3

Fo\ _pqr ) Fa

R5 - [ﬂ ] FS

Re Fe

Using equation (7.19) in equation (7.21) we have

F; u3
Pl ke
R5 d5
Re ds

Chap. 7

(7.18)

(7.19)

(7.20)

(7.21)

(7.22)

At this point we can enforce the condition that d¢ = 0, reduce the equation, and

solve for the unknown displacements.

Example 7.3

Consider the truss shown in Figure 7-8.

O 20 ft
EA/L = constant A Figure 7-8 Example 7.3.
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The structural stiffness matrix, reduced by using the zero displacement conditions
at node 1, but not yet accounting for the support at node 3, is

1 0 -5 5
0 1 S5 =5

[KI=EA/L) _s s 15 -5 (7.23)
S -5 -5 5
For the support at node 3, 8 = 60° and [B'] from equation (7.18) becomes
1 0 O 0
,4_ |0 1 0 0
F1=10 0 5 —866 729
0 0 .866 5
Using equation (7.24) in equation (7.22) yields
F 1 0 183 .683 us3
Fy | _ 0 1 —.183 —.683 Us
Re (=EAM | 183 —183 317 —.a83 |\ ds (7.25)
Re .683 —.683 —.183 1.683 dg
We now enforce the condition dg = 0 by eliminating the fourth row and column.
Thus,
10 1 0 .183 U3
{ 5 }:EA/I[ 0 1 —.183] {m} (7.26)
0 .183 —.183 317 ds
Solving equation (7.26) for the displacements yields
u3 10.67
{ ug } =1/EA { 4.33 } (7.27)
ds —3.64
The global displacements are found by using equation (7.18).
us 10.67
Ua _ 4.33
us (= I/EA _183 (7.28)
Ue -3.17

Another approach to solving problems with inclined supports is to replace the
support with an inclined axial force member that is very stiff in comparison to the other
members of the structure.

In the previous example, if the axial stiffness EA/L for each member is taken as
241.66 k/in, equation (7.28) yields

us .0442
Ug _ 0179 .
us (=) —.0076 " (7.29)

Ue —-.0131
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By adding a member in the direction perpendicular to the support, which has an
axial stiffness of 29 x 10° k/in, the following displacements are found:

s 0443

Usg _ .0178 .

us [ =\ —.0076 (" (7.30)
us 0135

Equations (7.29) and (7.30) compare very favorably.

7.5 HINGES IN BEAM AND FRAME ELEMENTS

Recall from your basic structural analysis coursework that when a hinge is inserted into a
beam or frame structure you have introduced a “release” of a force at the location of the
hinge. The bending moment is zero at that point. Remember also that the knowledge of
the value of a force at a specific location in a member of a structure yields an “equation
of condition.” By considering a portion of the structure as a free body by isolating
at the hinge, the equation of condition can be used to generate an additional equation
that is independent of the overall equilibrium equations. Consider the frame shown in
Figure 7-9.

Figure 7-9 Frame with internal
R; R4 hinge.

The frame has four possible reactions and, of course, there are only three overall
equilibrium equations available for this two-dimensional structure.

Owing to the presence of the hinge, however, we have an equation of condition
available; specifically, the bending moment at the hinge is zero. By disconnecting the
structure at the hinge, we obtain the free-body diagrams shown in Figure 7-10.

By using free-body diagrams obtained by isolating the structure at the points where
these moments are known, we can write equations that are independent of the overall
equilibrium equations of the structure. These independent equations are used in conjunc-
tion with the overall equilibrium equations to find the reactions of the structure. Since
these bending moments are known forces at specific points in the structure, equations of
equilibrium written at these points constitute equations of condition.

The fact that there is no bending moment at the hinge allows us to write an equation
of moment equilibrium for either of the free bodies, thus determining that R} = 0 or
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F1 Fl P
—_— F2 Fz l l
Rl | R3
I Figure 7-10 Free-body diagrams
R; R4 obtained by disconnecting at hinge.

obtaining a relationship among P, Rs3, and R4. This equation, when used with the overall
equilibrium equations, allows us to find all reactions.

We use this technique frequently when solving problems by slope-deflection or
moment distribution since we obtain values of the bending moments at the supports using
these techniques. Since these bending moments are known forces at specific points of
the structure, they can be used to generate equations of condition.

Let us now derive the elemental stiffness matrix for a beam element with a pin at
its left end. We will do this directly in this section and by using the technique of static
condensation in section 7.6.

The force-displacement relationship for the beam element was derived in sec-
tion 3.2. It is repeated here for convenience.

P 12E1/L3 6EI/L* —12EI/L® 6EI/L? u
P, _ | 6EI/L> 4EI/L —6EI/L* 2EI/L us
Py~ | —12EI/L® —-6EI/L* 12EI/L>* —6EI/L?| ) us (7.31)
Py 6EI/L?> 2EI/L —6EI/L*> 4EI/L us

With a pin at the left node, the bending moment P, = 0. Expanding the second
row of equation (7.31) we have

6E1 4E1 6E1 2E1
1—2u1+Tu2—1—2u3+Tu4=0 (732)
We next solve this equation for u; in terms of the other displacements and find

-3 3 Uy
U; = Eu; + §u3 - E (7.33)

Substituting u#, from equation (7.33) into equation (7.31) and expanding the first
row, we obtain

2=

3E] 3E] 3E]
P] =1—3u1—1—3u3+1—2u4 (734)

Similarly, for the third and fourth rows we find

-3E1I 3E1I 3E1I
P3=1—3u1+1—3u3—1—2u4 (7.35)
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3EI 3EI 3EI
= —U| — —U3+ — Uy (7.36)
2 /
Writing the above equations in matrix form yields the following force-displacement
relationship for a beam element with a pin at the left node:

P 3EI/3 0 =3EI/P 3EI/I? U
P\ _ 0 0 0 0 Uy
Py~ |=3E1/® 0 3EI/IP -3EI/I? us3 (7.37)
Py 3EI/I? 0 =3EI/I? 3EI/I Ug

In equation (7.37), the second row is zero since P, = 0 and the second column is
zero since the effects of u, have been incorporated into the other stiffness elements. In
other words, the effects of u, are implicitly contained in equation (7.37).

Because the axial and bending effects in the frame element are uncoupled, we can
modify equation (7.37) by adding the two rows and columns corresponding to the axial
effects to obtain the equation for a frame element with a pin at its left end. We have

Py EA/I 0 0 —EA/I 0 0 81
P, 0 3EI/P 0 0 —3E1/® 3EII? 8
P 0 0 0 0 0 0 83
P |-EA/ 0 0 EA/ 0 0 84 (7.38)
Ps 0 —3EI/® 0 0 3EI/I? —3EI/? 85
Ps 0 3EI/NI? 0 0 —3EI/I*> 3El)jI 86

For a pin at the right end, P4 = O for the beam element. Proceeding in the same
fashion as for the case with the pin at the left end, we find

Py 3EI/P 3EI/? -3EI/P 0] (w
P\ _ | 3EI/? 3EI/l -3EI/P Of ) u 739
Py (= | =361/ —3E1/2  3EIP 0| us (7.39)
P, 0 0 0 0J \u
For the frame element we obtain
P, EA/I 0 0 —EA/l 0 07 (&
P, 0 3EI/IP  3EI/P? 0 —3EI/ 0] |é
Py 0 3EI/I> 3EI]I 0 —3EI/? 0] )& (7.40)
Ps | | -EAJI 0 0 EA/ 0 0] )& :
Ps 0 =3EI/? -3EI]I’ 0 3EI/P 0f | &8s
Ps 0 0 0 0 0 0] Ug

Consider the case of a pin at some interior point of a beam element as shown in
Figure 7-11.

a b Figure 7-11 Pin at interior of beam
4 element.
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Figure 7-12 shows free-body diagrams considering each portion as a separate beam
element.

P Py
D

a T Figure 7-12 Free-body diagrams of
P, Py Ps T P,

left and right segments of beam.

In Figure 7-12, P4 and Pg are zero. Vertical equilibrium of the pin requires P3 +
Ps = 0. In addition, 83 = §s for displacement compatibility at the pin.

Treating the left element of Figure 7-12 as a beam with the pin at the right node,
and the right element as a beam with the pin at the left, we have

P r 3EI/a® 3Elja® -3El/a® 071 (6

P, _ | 3El/a* 3El/a -3EI/a® 0| )& (7.41)
Py~ | -3ElI/a® -3El/a® 3Elja® 0] )& )
P, i 0 0 0 0J \s

Ps r 3EI/b® 0 —3EI/b® 3EI/b* (65

P6 _ 0 0 0 0 86

P, [~ |-3E1/p® O 3EI/B® -3EI/p?| ) & (7.42)
Pg L 3EI/p> 0 -3EI/b* 3EI/b 8g

By expanding the rows corresponding to P3 and Ps, using the equations P3+Ps = 0
and 83 = §s, and solving for 83 in terms of the other displacements, we find

(7.43)

a3b3 81 32 87 68:|
3 = 55

B VA S

Using equation (7.43) in equations (7.41) and (7.42), we find, after expanding and
collecting terms,

P, 1 a -1 b 8
P, 3EI a a* -a ab 8

=== 4
Py ad+bpd | -1 -—a 1 —-b &7 (7.44)
P b ab —b b2] s

By replacing Py, Pg, 87, and 83 in equation (7.44) by P3, P4, 83, and 84, respectively,
we have the force-displacement relationship for a beam element with an interior pin or
hinge.
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Example 7.4

Consider the frame shown in Figure 7-13.

hinge For All Members:
@ E= 29 x 10° psi
| L @ I= 100 in®
104 A= 10 in?
10 ft. 10 ft

) @

Iy_‘ |
x Figure 7-13 Example 7.4.

We shall consider the hinge to be at the left end of member 2-3. Thus, the stiffness
matrix in equation (7.38) is used for this member.

After transforming the stiffness of the vertical members to the global coordinate
system, combining the three elemental stiffnesses, and accounting for the zero displacement
support conditions, our reduced structural stiffness equation becomes

0 4E1]1 6EI/I? 0 2E1/1
1 —  12EI/P 4+ EA/I 0 6E1/12
0 - - 3EI/P + EAJI 0
g = : : : 4E_l/ ! continues
0 - sym. - -
0 — - — —
0 - - — _
0 0 0 0 us
—EA/l 0 0 ] us
0 —3E1/P 3EI/I? 0 us
0 0 0 0 ug
12E1/1> + EA/l 0 6EI/I? 6EI/1? u7 (7.45)
- 3EI/IP + EA/l —3El/I? 0 ug
- - 7EI/I  2EI)I ug
_ - - 4E1/I uiz

Note that F4 is the only non-zero applied load.
After evaluating the elements of equation (7.45) numerically, inverting the matrix,
and solving for the displacements, we find

[ u3 —.0033
Uy .3985
us .00041
ug —.0033
u; [T .3981 (7.46)
ug —.00041
Ug —.00166
U2 —.00414
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Note that ug is the rotation at node 2 of member 1-2. To obtain the rotation of member
2-3 at the pin we must use equation (7.33), treating #; and u3 as the vertical displacements
at the ends of the member, and u4 as the rotation at the right end.

Thus, for the rotation at the pin we have

-3 3
0= 7(.0004) + ﬁ(—.0004) - (—

.0017

> ) = .0008 rad (7.47)

An approximate solution to the problem presented can be obtained by introducing a
very short horizontal member at node 2, which has very little bending stiffness. We then
use our original frame program for analyzing the structure. For example, introducing a
member with a length of 0.1 ft, a cross-sectional area of 10 in%, and a moment of inertia
of 0.001 in*, as shown in Figure 7-14, yields the following displacements:

u; | [-.0033)
Uy 396
us 0
Us -.0033
ur .396
Jug 004 (7.48)
Uy .0008
Ulo .396
Uy 0
u,| |-.0017
Us —-.0041
@ 3 @
\ ~ Small I

®

Figure 7-14 Approximation for a
hinge.

The displacements u7, ug, and ug are associated with the added node, node 3.
Comparison of equations (7.48) and (7.46) shows very good agreement. Displacement
ug is the rotation at node 3 and is the same value as the previously calculated value of

the rotation at the pin (equation [7.47]).

7.6 STATIC CONDENSATION

In the previous section we obtained the force-displacement relationship for beam and
frame members with hinges present. This was accomplished by expressing one or more
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displacements in terms of the others. The solution of a set of simultaneous equations is
found using the same procedure. We reduce, or condense, the number of simultaneous
equations that need to be solved. The procedure termed static condensation does exactly
this.

Consider the matrix equation (7.49):

Fpol _ | Kpp Kps Up
ey=le @) 09

Note that we have partitioned this global equation to separate “primary” quantities
(designated with a “p” subscript) from “secondary” quantities (designated with an “s”
subscript). What we plan to do is eliminate the secondary displacements from this
matrix equation. The secondary displacements will be those associated with the equation
of condition introduced by the presence of the hinge.

Expanding equation (7.49) we have

Fy = Kppup + Kpsug (7.50)
Fy = Kgpup + Kgsu, (7.51)
We next solve equation (7.51) for u; giving
us = K;'[F — Kspup ] (7.52)
Substituting equation (7.52) into equation (7.50) we find
Fp = Kppup + Kps K3 [ Fs — Kpup ] (7.53)
which can be written
F, — KpsK'Fy = (Kpp — Kps K Kop)u (7.54)
or
Feondensed = Kcondenseap (7.55)

After solving equation (7.55) for u,, equation (7.52) is used to determine u;.

Note that we are inverting matrices that are smaller than the original structural
stiffness matrix. There are, however, a large number of matrix multiplications to perform.
The size of the problem to be solved will determine the advantage or disadvantage of
using the method.

Example 7.5

Consider a beam with a pin at the right node. For this case, P4 = 0 and we will treat
u4 as a secondary quantity. We therefore partition the original beam force-displacement
relationship as shown in equation (7.56).

P 12E1/L>  6EI/L*> —12EI/L3> | 6EI/L*7 (u,
Py 6EI/L> 4EI/L  —6EI/L®> | 2EI/L uy
Py (= | —12E1/L} —6EI/L? 12EI/L3 | —6EI/L? |\ 4y (7.56)

Ps 6EI/L? 2EI/JL  —6EI/L®* |\ 4EI/L ug
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Note that F; in equation (7.49) is P4 in equation (7.56), which is zero (zero moment
at the hinge). The condensed force matrix is simply Fp. Thus, from equations (7.54) and

(7.55),
P
F. = I P, l (1.57)

P3

Since K = 4EI /L, a single element, Kx‘xl = L/4EI. Performing the operations
indicated on the right-hand side of equation (7.54) we find the condensed stiffness matrix,
equation (7.58).

3EI/I2  3EI/l  -3EI/]I?
—3EI/® =3EI/I*? 3EI/P

K. =

3EI/P 3EI/IZ —3E[/
] (7.58)

Thus, the condensed force-displacement relationship for a beam element with a hinge
at the right node becomes

P 3EI/P 3EI/I? =3EI/P (u
Py =| 3E1/2 3EIN =3EI)R |{u (7.59)
P3 =3EI1/3 -3EIN?  3EI/B ] | uz

Equation (7.59) is identical to equation (7.39).

Example 7.6

Solve Example problem 3.3 by using static condensation to treat u3 as a secondary quantity.
Reordering equation (3.28) to place the terms in the form of equation (7.49), we have

—1.1232 x 10° 580 x 10° 145 x 10° 0 us
748,800 =|145x 105 290 x 10° 3.625 x 10° | { ug (7.60)
—42,120 0 3.625 x 106 120,833 u3

From equation (7.54),

~1.123 x 108 (—42,120) _ [ -1.1232 x 106]

0
F“l 748,800 ]‘l3.625><106] 120,833 | 2.0124 x 108 (7.61)
and

580 x 10 145 x 10°

0 1 ]
Ke= [145 x 106 290 x 106] - l3.625 X 106] 120833 [0 3625 x10°]

_[580x106 145x106]
T [145x 10 181.25 x 109

Thus, equation (7.55), Fcondensed = Kcondensedip, becomes

—1.1232 x 106] [580x 105 145 x 10° ]lu4]
2.0124 x 10° 145 x 10°  181.25 x 10° | | ug

Solving equation (7.63) for u4 and ue we find

us | _ [ —.005890
lu(,]_l .015815 (7.64)

(7.62)

(7.63)



144 Additional Topics in the Stiffness Method Chap. 7

From equation (7.52) we have

1
~ 120,833

The results are identical to Example 3.3.

Note that no information is lost in this process. Eventually, all displacements are
obtained and all member forces can be determined. We have simply reduced the order of
the matrices to be inverted.

[-42120 — [0 3.625x 10°] [ *'g(l’gg?g

u3 ] = —.82303 (7.65)

7.7 AXIAL DEFORMATION IN FRAMES

You will recall from your structural analysis courses that axial deformation, as well as
shear deformation, is generally neglected when solving frame problems using such tech-
niques as slope-deflection and moment distribution. The neglect of these deformations
can be justified by including them in some typical frames by using a solution technique
such as virtual work, and then comparing their contributions to the total displacements
with those of only the flexural terms. For the large majority of frame geometries the
contributions are very small in comparison to those of bending.

We can formulate our structural stiffness equations in a way that neglects axial
deformation by introducing constraint equations that will be developed in this section.
However, before generating these equations formally, let us impose the necessary con-
straints directly on the frame shown in Figure 7-13. Equation (7.45), which is the reduced
structural stiffness equation for this frame, is repeated here for convenience.

0 4E1/I 6EI/I? 0 2EI]I
1 —  12EI/P +EAJI 0 6E1/1%
0 - - 3EIJP + EAJI 0
0 - - - 4EI]I .
0 = _ _ _ _ continues
0 - sym - -
0 — - — -
0 — — — —
0 0 0 0 u3
—EA/I 0 0 0 us
0 —3E1/P 3EI/I? 0 us
0 0 0 0 ug
12E1/P + EAJI 0 6EI/I? 6E1/1? us (7.45)
- 3EI/P + EAJl —3EII? 0 ug
- - 7EI/l  2EIJI us
- - - 4EI/l Uiz

If we neglect axial deformation of the two columns, then us = u; = 0 and ug =
u1; = 0, and rows 5 and 8 and columns 5 and 8 can be eliminated from equation (7.45).

Neglecting axial deformation in the horizontal girder implies that u; = us. We
therefore add the elements in the column that multiplies u7 to the column that multiplies
u4 and eliminate the u; column.
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These operations yield

F3 4EIJl 6EI)I> 2EI/I 0 0

Fs 6EI/I> 12EI/® 6EI/I? 0 0 “3

Fs 2EI/l 6EIJI* 4EI/I 0 0 “a

FE (= o 12E1/2 0  6EIN 6EIN|) Y (7.66)
Fo 0  6EI/P o 7EI) 2EIN ||

Fi» 0  6EI/P 0  2EI)l 4EIjI] “*R

The total horizontal force at the girder level is F4 + F7. We therefore take the row
corresponding to F; and add its elements to the row corresponding to F4. We obtain

F3 AEIJl  6EIJI* 2EI)I 0 0 u3
Fy+ F; 6EI/I> 24EI/I® 6EI/I* 6EIJI* 6EI/I? us

Fs = |2EI/l 6EIJI* 4EI/I 0 0 Us (7.67)
Fy 0 6E1/I? 0 TEIJl  2EI] uo

Fia 0 6EI/1? 0 2EIJ)l 4EI]l Uy

Equation (7.67) represents the structural stiffness equation for the frame when axial
deformation is neglected. Solution for the displacements yields (with Fy + F7 = P),

u3 -2/3
Uy P 12 21 / 3
Ug = E —2/ 3
Uy -1/3
Uiz -5/6
We now proceed to formalize the process of imposing constraints on certain dis-
placements.
First, we partition the structural stiffness matrix as shown in equation (7.68).

Fe | _ | Kys Kpe| Juy
VAR AL gz

In the above equation, the forces and displacements corresponding to the constraints
to be imposed are subscripted with a “c.” In the previous example, neglecting axial
deformation,

F3 us
Fy Fs Uy us
{Fr} =4 Fs .{Fc}={F7}{Mf}=i us {Mc}={u7}
Fg Fg Ug Ug
Fiz U
Expanding equation (7.68), we have
Fr = Kfrur + Kfcue (7.69)

F. = chuf + K cu. (7.70)
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We next write a constraint equation that relates the constrained displacement to
those that are unconstrained.

{uc} =[C1{us} (7.71)
or, for this example,
us
Us 0 0 0 0 O Uy
{u7}=l0 1 00 O:I Ue (7.72)
us 0 0 0 0O Uog
L3V

Note that the above equation expresses the relationships us = 0, u7 = u4, and
ug = 0.
Using equation (7.71) in equations (7.69) and (7.70) we have

Ff = Kffuf+Kchuf (7.73)

Foe= K pur + K“Cuf (7.74)

Of course, we could solve equation (7.73) for uy; however, the matrix to be
inverted, Kys + K;.C, is generally not symmetric. It would be more efficient from a
numerical point of view to deal with a symmetric matrix. This can be accomplished by
multiplying equation (7.74) by CT and adding both equations.

Performing these operations we have

Ff + CTF, = (Kfs + KyeC + CT Ky + CT Ko Cug (7.75)
For this frame example, the left-hand side of equation (7.75) is
F; 000 F3
Fy 010 Fs Fs+ Fy
Fr+C'F,={ Fs )+ |0 0 0 {F7} = Fs (7.76)
Fo 000 F3 Fy
Fip 00O Fi2

This is exactly the same as the left-hand side of equation (7.67).

After performing the operations indicated on the right-hand side of equation (7.75)
we obtain the right-hand side of equation (7.67). Thus, equation (7.75) is identical to
equation (7.67).

Approximate solutions can be obtained for problems where axial deformation is
neglected by using a standard frame program and specifying large values for the cross-
sectional areas of the members. Of course, this requires the inversion of a larger matrix.
In the above example it would be necessary to invert an 8 x 8 rather than a 5 x 5
matrix. However, to obtain the smaller matrix there are a number of multiplications and
additions to be performed, and the original reduced stiffness matrix must be reordered.
Thus, computational efficiency is not as great as might be expected.
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7.8 SUBSTRUCTURING

Often the designer is required to analyze a very large structure, perhaps involving thou-
sands of nodes that are required to model the geometry accurately. Examples of this
type of structure are large high-rise buildings, domes, and aircraft, to mention a few.
Since there are very large numbers of degrees of freedom associated with the structure,
computer facilities that are available may be inadequate to analyze the structure as a
single unit. In addition, it is generally convenient to distribute the work involved in the
project among several designers or design teams.

One procedure for accomplishing this is to divide the structure into smaller sub-
structures, each of which can be assigned to a team for analysis.

Consider the frame shown in Figure 7-15.

—

/J7 /J7 /L /77 /77 /77 Figure 7-15 Two-dimensional frame.

For purposes of illustration, we divide this structure into three substructures as
shown in Figure 7-16 where the connected nodes are emphasized.

Substructure 3
/7L J7 /—J7 77 /77 /77
Substructure 1 Substructure 2 Figure 7-16 Substructures.

In the previous section, we used static condensation to reduce the order of our
structural stiffness matrix. The effects of the degrees of freedom eliminated by this
process were implicitly included in our final reduced set of equations.

Suppose we select the degrees of freedom at the interface nodes of each sub-
structure as our primary quantities and apply the static condensation procedures to each
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substructure. The resulting condensed stiffness matrices will be much smaller than the
stiffness matrices obtained considering all non-zero degrees of freedom. For example,
the stiffness matrix for substructure 1 will reduce in size from a 12 x 12 to a 3 x 3
matrix. Similarly, substructures 2 and 3 reduce from an 18 x 18 to a 12 x 12 and from
an 18 x 18 to a 9 x 9, respectively.

We can then combine the reduced force and stiffness matrices as before by enforcing
equilibrium at the interface nodes. In effect, we have reduced the original structure to
three large elements. For this example, if we treated the original structure as a single
unit, we would have a 36 x 36 matrix to invert. Using the substructuring procedure
described, we have a 12 x 12 matrix to invert in order to find the displacements at the
interface nodes.

After finding these displacements, the force-displacement relationships for each
substructure (equation [7.52]) are used to determine the interior displacements. Member
forces are found as before.

Example 7.7
Consider the frame shown in Figure 7-17. We wish to analyze the frame by substructuring.
For all members:
lok_’ I =100 in*
A =10 in?

10 ft
10 ft 10 ft Figure 7-17 Example 7.7.

We shall divide the structure into two substructures as shown in Figure 7-18. The
connecting node is emphasized.

. @ @ @ o
©) ’ ’@ ‘@
Figure 7-18 Division into

Substructure 1 Substructure 2 substructures.

10

The force-displacement relationship for substructure 1 is

0 2436.81 0 1208.33 —2416.67 0 0 u
0 0 2436.81 —1208.33 0 —20.14 —1208.33 w
o._ 1208.33 —1208.33 193333 0 1208.33 48333 u3
10 —2416.67 0 0 2436.81 0 1208.33 ug
0 0 -20.14  1208.33 0 2436.81 1208.33 us
0 0 —1208.33 48333 1208.33  1208.33 193333 ueg
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We want to use u), uz, and u3 as primary quantities. In this case the stiffness matrix in
equation (7.66) is partioned into four 3 x 3 matrices in accordance with equation (7.49).
The force matrix is partioned into two 3 x 1 matrices.

Performing the operations indicated by equation (7.54) we find for substructure 1

9.95 32.71 7.47 910.6 U
—.031 = 747 2429.2 -900.6 uz (7.78)
1.232 910.6 —-900.6 180,875 u3

For substructure 2 the force-displacement relationship is

0 2416.67 0 0 —2416.67 0 0 uj

0 0 20.14  1208.33 0 —20.14  1208.33 u

0 0 1208.33 96666 0 —1208.33 48333 u3

0 —2416.67 0 0 2436.81 0 1208.33 U

0 0 -20.14 -1208.33 0 2436.81 —1208.33 us

0 0 1208.33 48333  1208.33 —1208.33 193333 ug
(7.79)

As in the case of substructure 1, the partitioning necessary to retain u, 4, and u3
as primary quantities results in 3 x 3 and 3 x 1 matrices.
Equation (7.54) yields

0 12.50 -7.47 -297.7 u
0)p= -747 12.50 900.6 uy (7.80)
0 —297.7 900.6 84208.4 us3

Combining equations (7.78) and (7.80) in the usual fashion we obtain

9.95 452 0 612.9 U
—-.031 } = 0 2441.7 0 Uy (7.81)
1.232 612.9 0 265083.4 us
Solving equation (7.81) for the displacements we obtain:
uj 2275 in
uy y = { —.000013 in (7.82)
us3 —.00052 rad
We next use equation (7.52) for each substructure to determine the remaining dis-
placements.
For substructure 1:
Uy 2221 in
us ) = 00088 in (7.83)
ug —.001264 rad
For substructure 2:
Ug 2263 in
Uus = —.00090 in (7.84)
ug —.00129 rad

Note that the displacement subscripts refer to the individual substructure nodal num-
bers indicated in Figure 7-18.
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7.9 NON-UNIFORM MEMBERS

There are some structures whose analysis could benefit by modeling them using elements
other than those considered up to this point in the text. Some of these include curved
members and beams where shear deformation is important. Others include tapered bars or
beams, haunched members, and one-way slabs with drop panels as shown in Figure 7-19.

Centerline
/ of Columns -

Tapered Bar Haunched Beam ;Drop Panel Slab
or Beam Figure 7-19 Non-uniform members.

We can model the members shown in Figure 7-19 with a number of uniform cross-
sectional members, although doing this results in an approximate solution. In fact, one
of the problems in Chapter 1 dealt with modeling a tapered one-dimensional rod element
with a varying number of uniform elements. Naturally, the storage requirements and time
of solution will increase owing to the larger number of members required to reasonably
model the structure and the resultant increase in the number of degrees of freedom. For
smaller structures, the trade-off between the use of a simpler computer program and an
increase in storage requirements and solution time is generally acceptable. However, if
very accurate solutions are required, or if it is necessary to analyze very large structures
or ones that incorporate many special elements, then it is more efficient to develop the
force-displacement relationships for these less common elements.

7.9a Linearly Tapered Bar

As one example of a special element, consider the linearly tapered one-dimensional bar
shown in Figure 7-20. We want to determine the stiffness matrix for this element.

A, Ao

® o
1 Figure 7-20 Linearly tapered bar.

As in the case of the uniform rod, there are two degrees of freedom that will result
in a 2 x 2 stiffness matrix.
The cross-sectional area of the rod as a function of position x is given by

A) = A + <#> x (1.85)
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We fix node 1, apply a force P to node 2, and determine the displacement of
node 2.

The unit strain at any point in the rod is P/AE, where P and E are constant and
A is given by equation (7.85). The integral of this strain taken over the length of the
rod yields the displacement at node 2, u,. We have

! P [ dx
u =u(l)=/ de=—/ _— (7.86)
’ 0 E Jo A+ (PA) x

After integrating we find

P I A,
up=—|——Jm=2 (7.87)
E\A,— A1) A

Solving for the force P due to a unit displacement of u, yields the stiffness coef-
ficient k3.

kyy = E(A, — Ay)
lln (%.L)

The force at node 1 corresponding to this displacement is equal to the negative of
the previous value, thus kj, = —kj).

Fixing node 2 and applying a load P to node 1 will yield u, = us = —kj;2 = —ka.
Thus, our force-displacement relationship for the linearly tapered rod becomes

Fy _E(AO—AI)[ 1 —1]{141}
{F2}_ (&) L=t e .89

Keep in mind that for more complicated cross-sectional variations it may be nec-
essary to resort to numerical integration of equation (7.86).

(7.88)

7.9b Stepped bar

Consider the stepped bar shown in Figure 7-21.

A, Ap
j}:l
® ~ ®
1 Ig Figure 7-21 Stepped bar.

Naturally, we could treat this member as two separate elements, each having a
constant cross-sectional area. Suppose, however, that we wish to determine the force-
displacement relationship for the entire member. That is, we want to generate the equation

Fi| _ ui
(7} taf®) -
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Although we could use the same procedure as we used for the tapered bar—that
is, fix node 1, apply a force to node 3, and determine the resulting displacement—we
choose to use static condensation to illustrate an alternative approach when sections of
the element have constant areas.

Designating EA4/l4 and EAp/lp as k4 and kp respectively, and treating u, as
the secondary quantity, the overall structural stiffness equation becomes

Fy ka 0 —ka Uy
{ F } = l 0 kg —kp {u3 } (7.91)
F2 —kA —kB kA +k3 Uuj

Note that these equations have been rearranged to conform with equation (7.49).
Equation (7.54) yields the required force-displacement relationship:

F] kAkB I—I:I{ln}
- 92
(hy-nem (o s @

This is simply the combination of stiffnesses of two axial springs connected in
series. Notice, however, that we have generated a “superelement.” This is exactly what
was accomplished by substructuring in section 7.8. This produces an exact representation
of the behavior of the member.

7.9¢ Linearly Tapered Beam

Consider a constant width, linearly tapered beam as shown in Figure 7-22.

@ @
ST=s i

L J

. Figure 7-22 Linearly tapered beam.

The depth of the beam can be written

X
h(x) = hy [1 +m— 1)2] (1.93)
Letting n = m — 1, the moment of inertia becomes
1 x173
= —bh? [1 ~] 7.94
TR +nL (7.94)

To illustrate one procedure that can be used, we will determine the stiffness ele-
ments k1 and k21 by using the basic definition of k;;.

We introduce a vertical deflection at node 1 keeping all other displacements zero
as shown in Figure 7-23.
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P,
u, T Pl
Figure 7-23 Vertical deflection at
node 1.

The moment-curvature relationship can be written

d?y
EIE =Pix— P, (7.95)
Using equation (7.94) for I and integrating once we find
-2
dy P L [ nx1-2 P (1+%) 1 nx
= = 1 ———] — L |- _{14+= Cc 7.96
ax 2 U YT YEL T |2 (+L)+ Lo (796)
Integrating once again, we have
P,L? nxy -1 Py nxy -!
= - l+—) ————(14+—
Y= T2k ( + L) 2ELn/ L3 ( + L)
Py nx
————In({14+— .
TRTTE n(1+5) +Cix+C (7.97)

The constants of integration C; and C, are found by applying the boundary conditions
y'(L) = 0 and y(L) = 0. We obtain

AL L, P A+m7?1
Ci=- 1 — - |5 7.98
: 2E1|n( +n) +E11 n2/L? [2 n] ( )
PL? Py Py
Cy, = 1 = -1 _ '
2 2E11n2( +n) +2E11n3/L3(1+n) +———————Elln3/L31n(1+n) CiL (7.99)

We next determine the forces P, and P, by using the boundary conditions at node
1; namely, y'(0) = 0 and y(0) = u; = 1.

These forces are those at node 1 corresponding to a unit vertical displacement of
node 1. They are, therefore, k;; and k3.

To illustrate, let m = 2. Thenn = 1.

Evaluating C; and C; (equations [7.98] and [7.99]), applying the boundary condi-
tions at node 1, and solving for P, and P,, we obtain

ElL

Pi=ki=3776 — (7.100)
El
Py = ky = 12.59 ?l (7.101)

The other stiffness elements are obtained in a similar way.
We will develop another method for obtaining elemental stiffnesses in Chapter 8.
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7.10 SUMMARY

In this chapter we investigated several additional topics in the stiffness formulation of
matrix structural analysis. These included a discussion of bandwidth, combination of
different elements, elastic supports, inclined supports, internal hinges, static condensation,
axial deformation in frames, substructuring, and non-prismatic members.

Some of the techniques developed are used often and others less frequently. How-
ever, all contribute to our ability to analyze complex structures by the matrix method.

PROBLEMS

Determine the bandwidth for the problems indicated below. Try to minimize the band-
width by efficient node numbering.
7.1 Problem 2.2
7.2 Problem 2.3
7.3 Problem 2.11
7.4 Problem 3.17
7.5 Problem 3.18
7.6 Problem 3.20
7.7 Problem 4.5
7.8 Problem 4.6
7.9 Problem 5.1
7.10 Problem 5.3
7.11 Problem 5.6
7.12 Problem 6.1
7.13 Problem 6.2
7.14 Problem 6.6
7.15 Problem 6.8

7.16 Generate the reduced structural stiffness matrix for the frame shown in Figure P7-16. For the
frame members, £ = 29 x 10° psi, / = 100 in*, and A = 10 in®. For the truss member,
E =29 x 10° psi, and A = 2 in2.

20° @ 20ft

5 ®
3| 10 ft
0|t 47 ®
@) “— Truss member

Figure P7-16
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7.17 Generate the reduced stiffness matrix for the frame shown in Figure P7-17. For the frame
members, E = 29 x 100psi, I = 120 in*, and A = 2 in®. For the truss members, E = 29 x 10°
psi, and A = 1 in2.

1 10 ft

® ®

Truss members  Figure P7-17

7.18 Verify the alternative solution to Example 7.2.

7.19 Solve for nodal displacements and member forces of the truss shown in Figure P7-19. For all
members, E =29 x 10° psi, and A = 2 in?.

5 ®
3
10ft |1
®
@ 2
158 % Figure P7-19

7.20 Solve problem 7.19 by placing a very stiff member perpendicular to the inclined support in
Figure P7-19. Compare your results with those of problem 7.19.

7.21 Generate the reduced stiffness matrix for the frame shown in Figure P7-21 by
(a) considering the hinge to be at the left end of member 2;
(b) considering the hinge to be at the right end of member 1
(E =29 x 106 psi, A = 10 in?, and I = 100 in* for both members).

Figure P7-21

7.22 Consider the stepped beam shown in Figure P7-22.
(a) Treating the beam as two members, generate the overall stiffness equation.

(b) Treating the displacements at node 2 as secondary quantities, use static condensation to
generate a set of force-displacement relationships. E = 29 x 109 psi.
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A= 2 in?
/ I= 30 in*
@ A= 10 in? | 3
I= 100 in*
L ]

It @ @ Sft Figure P7-22

7.23 Use the method of substructuring to analyze the truss shown in Figure P7-23.

For all members:
E= 29 x 10° psi
A= 2 in2
]@ 3 ® 7
J

®
2 4 6 g 10 ft
1 5
D) ) ® ) .
10 ft 10 ft 10 Figure P7-23

7.24 Use the method of substructuring to analyze the frame shown in Figure P7-24.

@ 1 @ 10 OA
e 1 3 -

For all members: 2 | 10 ft 10 ft
E= 29 x 10° psi
I= 100 in*

Mo S 77(3) 773

Figure P7-24

7.25 Analyze the linearly tapered bar shown in Figure P7-25 by
(a) treating it as a single element

(b) treating it as two elements of equal length.

A= 6 in?

E = 29 x 10° psi Figure P7-25

7.26 Determine the elements k77 and k), for the linearly tapered beam shown in Figure 7-22. Use
m=2.
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8.1 INTRODUCTION

Up to this point in the text we have used the relationships of basic strength of materials
and elementary structural analysis to derive elemental stiffnesses and to determine the
effects of non-nodal loads. Equilibrium considerations were then used to generate the
global structural stiffness equations.

In this chapter we present alternative methods of deriving elemental stiffnesses,
equivalent nodal forces, and the structural stiffness equation. The techniques we shall
use are based on work and energy principles. We shall also find that the techniques
presented are very useful in finding approximate solutions to structural problems.

When it is desired to formulate stiffnesses for more complicated elements such
as plate and shell elements, in most cases we must resort to these alternative work and
energy methods since basic structural theory does not allow us to use a direct method;
namely exact force-displacement relationships for these elements are not known. For
example, suppose we wanted to formulate the stiffness matrix for a triangular plate
element loaded in its plane. Fig. 8-1 shows such an element.

Figure 8-1 Triangular plate element.

In Fig. 8-1, we have shown a three-node triangular plate element. Since this element
lies in the x-y plane, we have two possible translations in the coordinate directions at
each node. Thus, this element has six degrees of freedom.

To generate the stiffness matrix from the basic definition of k;;, we would have
to determine the force-displacement relationships by individually introducing six unit
displacements and finding the nodal forces corresponding to each of these displacements.
Basic structural theory does not allow us to do this directly, and we therefore must resort
to other techniques. These techniques are generally based on work and energy methods.
This type of element is typically treated in a study of finite elements, and this chapter
should give you a beginning background for a following course in the finite-element
method.
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8.2 THE PRINCIPLE OF VIRTUAL WORK
8.2a Rigid Bodies

Consider a rigid body in equilibrium under a set of Q forces as shown in Figure 8-2.

Rigid Body
Q
Q4 )

Q;  Figure 8-2 Rigid body in
Qs equilibrium.

Note that the Q system is an equilibrium force system and therefore includes the
reactions as well as applied forces.

Suppose some external effect causes a displacement of this rigid body. For small
displacements we can represent this displacement as a sum of a translation and a rotation.
Note that the Q-force system will do work acting through the imposed displacement.
This displacement is called a “virtual displacement” and the work “virtual work.” Let
us now calculate the virtual work done by the Q forces acting through the translation
(Figure 8-3).

Q, Figure 8-3 Translation of rigid body.

Since the Q forces are at full value when the translation occurs, and since the work
of a constant force acting through a vector translation § is the dot product of the force
and the translation, we have, for N forces

N
Virtual work in translation = Ql &+ (32 &+ ...+QN &= (ZQ,) & (8.1
i=1

since 8 is the same for all forces.
Remember, however, that the Q system is an equilibrium force system, thus the
sum of the Q forces is zero. We can therefore state:

The work done by an equilibrium force system acting through a virtual translation is
zero.
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Figure 8-4 Rotation of rigid body.

Next consider a small rotation 6.

In Figure 8-4, the position vector from point A to point B, which is the point of
application of the force Qi, is designated as I;. Of course, moments do work acting
through rotations, thus

Work done by Qi = (F; x Q,-) ¥ 8.2)
For any applied moments l\-'ij
Work done by M; = M; - § (8.3)

Adding the work from all applied forces and moments we have
N M

Virtual work through rotation = Z(ﬁ X Qi) 6+ 1\71,' -6
i=l1 j=1
(8.4)
N K
={> @ExQ)+DY M, -0
i=1 j

Jj=1

where K is the number of applied moments in the Q system.
The term in parentheses is simply a moment equilibrium equation and must equal
zero since the Q system is in equilibrium. Thus,

The work done by an equilibrium force system acting through a virtual rotation is
zero.

The principle of virtual work for rigid bodies can therefore be stated:

The total work done by an equilibrium force system acting through a virtual displace-
ment is zero.

This principle is often used to find reactions and internal forces for any determinate
structure. As an example, consider the beam shown in Figure 8-5.

Since the applied loads cause very small elastic displacements of the beam, we
shall consider the structure as a rigid body. We replace the supports with the reactions
corresponding to them.
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Pl Pz
7 st l 4 ft.

-
. b\ ‘[l ¢
hinge R:

R,

Figure 8-5 Example beam.

To determine R;, introduce the virtual displacement shown in Figure 8-6.

)

M.C/a /2R2

Figure 8-6 Virtual displacement for
R, hinge finding R;.

Next, we calculate the virtual work and equate it to zero.
Ry — P5/2 =0 8.5)
Ry, = P/2 8.6)

To find M,, use the virtual displacement shown in Figure 8-7.

T “
= Figure 8-7 Virtual displacement for
R, «=8/10 R, finding M,.

For small displacements, ¢ is approximately equal to tan o = §/10.

Virtual work = 0 = M,48/10 — P18/2 — P,8/2 8.7
M, =10 (P/2 + P»/2) (8.8)
For R), introduce the virtual displacement shown in Figure 8-8.
Virtual work = R16 — P16 — P,§/2=0 8.9)
Ri=P+ P)/2 (8.10)

Note that we have introduced virtual displacements that allow only one unknown
force at a time to do work. This is not necessary, but it avoids having to solve simulta-
neous equations. Keep in mind that we have actually written equilibrium equations but
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R Figure 8-8 Virtual displacement for
2 finding R;.

used virtual work to do it. Equation (8.5), for example, is simply a moment equilibrium
equation written about point b for member bc as a free body. We next consider the
principle of virtual work for deformable bodies.

8.2b Deformable Bodies

We shall now use the principle of virtual work for rigid bodies to develop the method
of virtual work for deformable bodies.

Consider a deformable body in equilibrium under a set of Q forces. As in the case
of a rigid body, this set of forces includes reactions as well as applied forces. These
Q forces develop stresses throughout the body. Since the entire body is in equilibrium,
then any portion of the body we wish to consider in a free-body diagram must also be
in equilibrium. Consider the small elements shown in Figure 8-9a.

Q, External / »

AL

Q,

o 4k

(a) (b) Figure 8-9 Elastic body.

Two types of elements are present as shown in Figure 8-9b: (1) internal elements
that have faces in common with adjacent elements, and (2) elements that have external
boundaries that have Q forces acting on them. On faces of internal elements, there are
stresses on common faces equal in magnitude but opposite in direction to those on the
adjacent element.

The body is now subjected to a distortion from some external P effect, a “virtual
distortion.” The elements of the body will, in general, be distorted as well as displaced
as a rigid body. Since the element faces will displace, the stresses acting on these faces
will do work. Let the total work done by the Q forces and Q-induced stresses on all
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elements be designated by W.ss. Part of this work is due to the distortion of the element
faces. Call this Wy. The balance of the total work, Wy — Wy, is due to work done
by the stresses acting through a rigid body motion. We have seen, however, that work
done by an equilibrium system acting through a rigid body motion is zero. Thus,

Witress = Wy 8.11)

Remember that Wy, represents the total work done by the boundary stresses and exter-
nal boundary loads acting on the elements of the body. On internal element boundaries,
equal and opposite stresses act on common faces of adjacent elements. Since the face
is common and undergoes some distortion, the equal but opposite stresses do equal but
opposite work. Thus, the net work done by internal boundary stresses is zero. Therefore
the total work Wy,.ss is equal only to the work done by external forces that act on external
element boundaries. We call this “external virtual work.”

In equation (8.11), Wy is the work done by the Q-induced stresses acting through
the distortion caused by some external P effect. This is called “internal virtual work.”

We can now state the principle of virtual work for deformable bodies:

The external work done by the Q equilibrium force system acting through the virtual
displacements induced by the P system is equal to the internal virtual work done by
the Q-induced stresses acting through the admissible virtual displacements caused by
the P effect.

We have used the term “admissible” in the statement of the principle of virtual
work for deformable bodies. This means that the P effect cannot create displacements
of the elastic body which would violate support conditions or create discontinuities of
displacements in the body.

Thus far we have not been concerned about the form of the P effect that causes the
distortion of the elastic body. The P effect could be, but is not limited to, a second force
system. It could also be a system involving temperature changes, incorrect bar lengths,
etc. Recall from your basic structural analysis courses that the principle of virtual work
was used in the formulation of the “dummy unit load” method for finding displacements
of a structure.

Since external virtual work is equal to the work done by the external Q, forces
acting through the imposed displacements, the general expression for this work is

N
External virtual work = ) 0,8/ (8.12)

n=1

where 8 is the displacement at point n corresponding to Q, but caused by the P effect.
That is, if Q, is a linear force, then 8,‘: is the displacement at point n along the line of
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action of Q,. If Q, is a couple, then 8,‘: is a vector rotation in the same direction as the
moment vector Q.

The internal virtual work (IVW) is the work done by the Q-induced stresses acting
through the displacement imposed and will depend on the type of stress and the specific
P effect causing the displacement. We now derive the expressions for internal virtual
work for axial stress and bending stress.

8.2c Expressions for Internal Virtual Work
Consider the case when the Q-force system results in axial stresses in the body. Naturally,
a truss is an example of this type of structure.

Figure 8-10 shows a member subjected to a Q-force-system-induced axial stress.
Also shown is the displacement corresponding to the axial force induced by the P effect.

dodp

H

OQA Figure 8-10 Axial force member.

The internal virtual work for this element is Foddp. Suppose that dép is due to a
second system of forces. Then for this element,

Fp
= 8.1
dap EAdx ( 3)
For the entire bar,
"'FpF,
8p = / 2P0 gy (8.14)
o EA

For the entire truss,

Total IVW XN: /1 Fép;’d (8.15)
ola = X .
| )y EA

where N is the total number of axial force members in the truss, and i represents the jth
member.

If all members have constant forces and areas throughout their lengths, equa-
tion (8.15) becomes

FLFLl
Q Ph (8.16)

IVW = z
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If §p was due to a temperature change of one or more members, then

b = a;(AT)il; (8.17)
and
K .
IVW =" Fhoi(AT); (8.18)

i=1
where the summation is taken over K members having temperature changes.
If §p was due to an incorrect bar length of one or more members, say A;, then

M
1VW=ZF&A,~ (8.19)
i=1
where M represents the number of members with incorrect lengths.
Of course, since we are dealing with a linear-elastic system, superposition is valid
and the effects of all of these P systems can be added.
Next consider the case where both the O and P systems are load systems that cause
bending stresses and displacements in a beam or frame element. Figure 8-11 depicts this

case.
dy
| e dF
il

Figure 8-11 Bending stress.

Now,

Moy
1
Since the P effect is a second force system

dFQ =0’QdA = dA (8.20)

_ Mpy
El

! !
MoMp ] / MoMp
IVW = ——"ydA|dx= [ ——d 8.22
/o[/A Erz hTE Y ©22

As an example of the use of the method of virtual work to obtain displacements
of a structure, consider the frame shown in the accompanying figure where the reactions
are also shown.

dsp = epdx = %‘”dx dx (8.21)

Thus,
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EI = constant for all members

X
P b- c
1
1 1
X2
" e, »
LT

Chap. 8

Let us find the horizontal displacement at point b. The first step is to select a
Q-force system that will do work acting through the displacement we want to find. The
next figure shows such a force system. Note that the computed reactions are part of the

Q system since it must be an equilibrium force system.

x
x b__’ '
1
1 1
X2
a J G
1 k 1 x
1 1 Q-force system.

The external virtual work, that is, the work done by the Q-force system acting
through displacements caused by the P effect (the actual force system), is (1¢)(5,),
where a positive 8, acts in the direction of the 1¢ load since the work is considered

positive.

If we consider only bending effects, the internal virtual work is given by equa-
tion (8.22). This equation requires the bending-moment expressions for each member

for each loading system. These expressions are summarized below.
Member ab:

Member bc:

Mp=—-Px My=-1x
Member cd:

Mp =—Px; Mop=—-1x

From equation (8.22), the internal virtual work becomes

Px} Px? 2 PP
IVW = / d1+/ —=dx; = 3E1
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Equating external and internal virtual work we have
(1%)(8) = 2PP*/3EI
Thus,
8oz — 2 PP /3E ]

We next derive the elemental stiffness matrices for an axial force element and a
beam element using the principle of virtual work.

8.3 ELEMENTAL STIFFNESS USING THE PRINCIPLE OF VIRTUAL
WORK

8.3a Shape Functions and Elemental Stiffness
for an Axially Loaded Bar

Consider the bar shown in Figure 8-12a, which is subjected to axial forces F) and F; at
its ends and a distributed axial force p(x) along its length. Figure 8-12b shows a small
segment of the bar.

p(x) p(x) dx
- — —_—
F, F, F & F+(dF/dx)dx
@) ®) Figure 8-12 Axial force member.

Equilibrium for the segment requires that

dF
—— +px)=0 (8.23)
dx
Now, F = 0 A = E Ae. Also, from strength of materials, € = du/dx . Thus,
d du
— EAZ== =0 8.24
P ( dx) + p(x) (8.24)
If there is no distributed load applied to the bar, then
d du
—|EA— ) =0 8.25
dx ( dx) (8:25)
Assuming that the area of the bar, A, is constant, integration of equation (8.25)
yields
EAu=Cix+C, (8.26)

We want to express the displacement of the bar in terms of the nodal displacements
at its left and right ends, #; and u,. With the origin of the coordinate system at the left
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end of the rod, #(0) = u, and u(L) = u,. Applying these conditions to our displacement
expression, equation (8.26), we find

EAu, = C) and Eau; = C\L + C,, from which C; = (—EA/L)u; + (EA/L)u;.

Substituting for C; and C; in our displacement equation, we find

ulx) = (1 - %) u; + (%) Uz (8.27)

The above equation gives the displacement u at any point along the length of the bar
in terms of the nodal displacements #; and u,. The expressions 1 — x/L and x/L are
called shape or basis functions and will be notated as N; and N,. Note that at the nodes,
one shape function is unity and the other zero. These shape functions are plotted in
Figure 8-13.

N,(®) N,(x)

Figure 8-13 Shape functions for
@ ®) axial bar element.

In this case we were able to generate the shape functions by solving by exact
means the differential equation governing the one-dimensional rod. For more complicated
elements such as the triangular plate element, we will not be able to do this. The
procedure we follow, which most often results in approximate shape functions, is to
assume a displacement function containing as many unknown coefficients as we have
degrees of freedom for the element. We then evaluate the coefficients in terms of the
nodal displacements.

To illustrate for the one-dimensional rod, assume a displacement function contain-
ing two coefficients. Let us use a polynomial and assume

u(x)=ax+>b (8.28)

Now, at x = 0, u(0) = u, and at x = L, u(L) = u,. Using these conditions in
equation (8.28) we find

u® =u; =>b
(8.29)
u(lly=up =aL+b=alL +u,
Thus, b = u;, a = (u2 — u;)/L and
Uy —u x x
u(x)=< 2L l)x+u1=(l—z)u1+zu2 (8.30)

In this case we generated the same shape functions as we did by solving the
differential equation. This occurred since the assumed polynomial was of the same
form as the exact solution. Had we assumed a different displacement variation, say a
sine function, the shape functions would have a different form. We now illustrate how
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the shape functions can be used in conjunction with the principle of virtual work for
deformable bodies to derive the elemental stiffness matrix.
The expression for external virtual work is simply

> o’
i=1

For axial stresses, if the P system was a second force system then

L
FpFg
IVW = 3
b () o

Consider the displacement function when #; = 1 and u; = 0. In this case the
displacement of the bar is Nj(x). The forces required to maintain this displaced configu-
ration are shown in Figure 8-14a. From the definition of stiffness, the forces at the ends
of the member are actually elements of the stiffness matrix (forces corresponding to a
unit displacement of one node and only one node). Similarly, Figure 8-14b illustrates
the forces for the case where u; = 0 and u, = 1. The shape of the axial displacement
curve is Np(x) in this case.

ki Ni) ka ki No() k2
— "} —_ 1}

u; =1 u =0 u =0 u,=1
€)) (®) Figure 8-14

In applying the principle of virtual work, consider the bar of Figure 8-14a as the
“P system” and that of Figure 8-14b as the “Q system.” The external virtual work, that
is the work done by the Q system acting through displacements caused by the P system,
can be written:

External virtual work = EVW = kyuy + kpuz = ki2(1) + k22(0) = k12

Since u(x) = Nyuy +Nyup and F = EAe = EA du/dx, then Fp = EA dN,/dx
and Fp = EA dN,/dx. Therefore,

dNy\ (dN, _ Lr-1\ /1 _ EA
IVW = /EA( )(d )dx EA/O (T)(Z)dx——T (8.32)

Equating external and internal virtual work gives
EA
kip = — A (8.33)

Considering Figure 8-14a as both the P and Q systems we find

L dN, dN, L/ _EA
ki = EA — )dx = EA dx 8.34
n /0 (dx)(dx)" /0<L2> T @39
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With Figure 8-14b as both P and Q systems we have

L
1 EA
kyy = EA — |dx = — .
n=EA | (Lz) x== (835)

Finally, using Figure 8-14b as the P system and Figure 8-14a as the Q system
yields
EA
kyy =k = I (8.36)

In general, we can write

L dN;\ [dN;
o= Al— ) =2 37
kij /OE <dx>(dx>dx (8.37)

The final elemental stiffness matrix becomes

EA[ 1 -1
[K]=T[—1 1] (8.38)

Equation (8.38) is identical to that derived from strength of materials concepts.

8.3b Shape Functions and Elemental Stiffness for a Beam
Element

Consider the beam element shown in Figure 8-15.

uz Uy
u L us .
1 Figure 8-15 Beam element.

For a constant moment of inertia, the differential equation governing the displace-
ment of the beam, assuming no applied distributed load, is

d*y
— =0 839
dx* 8.39)
Integrating, we have
d3
d—xﬁ =C (8.40)
Pt 8.4
i 1x+ G (8.41)
d 2
Y _ ¢ (x—) + Cox + Cs (8.42)
dx 2

x3 x2
y(x) =G (—) + G (7) + C3x + Cy (843)
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Now,

4 0 = Yoy
Tx 0) = uy o (L) =us4 (8.44)
y(0) = u y(L) = u3

Applying the conditions specified in equation (8.44), solving for the constants C,
through C,, and back-substituting into equation (8.43), we find

2 3 1 2
y(x) = (———x3 - =x2+ 1) u + (———x3 - Zx? +x) U

L3 L? L? L
3., 2 4 15 1,
+ <ﬁx — Ex ) us + (Ex - Zx Us (8.45)
or
y (x) = Njuy + Nauy + N3us + Nauy (8.46)

These shape functions are plotted in Figure 8-16.

~ //

g N

0.2
] N2 /7\\ P, |
,——”“.’/ \
0 = T ——
S -
T— N 4 /
-0.2 T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 8-16 Shape functions for a beam element.
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Next we consider the determination of k;; by using virtual work and the shape
functions. Figure 8-17 will be used for both the Q and P systems.

kay Ni(®)

u1=1 )

ks, Figure 8-17 P and Q systems for
k1.

k41

kll

The moment-curvature relationship is

d?y
M=E]— 8.47
72 (8.47)
Thus,
d2N1
Mp=My,=El—— 8.48
P 0 P (8.48)
and

L d2N1 d2N1
ki1(1) = El| — — |d 8.49
u(h) /O (dx2)<dx2)x (8.49)

Integrating equation (8.49) we find k;;, = 12E1/L>.
Consider the stiffness coefficient k,;. We shall use the shape functions N; and N,
as shown in Figure 8-18.

L d*N, d%N,
EVW =k =ky = El| — —\|d 8.50
21Uz =k /0 (dx2 ) (dx2> x (8.50)
k
21 N, N,
( ka kyp >k42
ky ka 'k kz
u =1 u,=1

Figure 8-18 P and Q systems for
Q p k1.

Performing the indicated operations in equation (8.50) we find k»; = 6E1/L?.

In general,
L d?N;\ [ d*N;
= EI|—)[— .
kij /0 (dx2><dx2>dx (8.51)

Of course, we could assume a displacement function as we did in the case of the
axial force member. If we assume

y(x)=ax> +bx*+cx +d (8.52)
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and apply the conditions indicated by equation (8.42), we will generate the same shape
functions as those in equation (8.43). This occurs because the form of our assumed
displacement variation is identical to the form generated by the solution to the differential
equation.

8.3c Shape Functions and Elemental Stiffness
for a Three-Node Axial Element

We can develop elemental stiffnesses for many different elements by the use of shape
functions. In fact, this is exactly what is done in finite element analysis. As an example,
consider the three-node bar element shown in Figure 8-19.

L2 L2 Figure 8-19 Three-node bar element.

We assume the form for the displacement function shown in equation (8.53).
u(x) = a, + aix + ax* (8.53)

Equations (8.54) indicate the conditions we impose in order to solve for the three
unknown coefficients in terms of the nodal displacements.

u) =u; =ag

u(ly =us =u; +a;L +aL? (8.54)
all  aL?
L/2)=u, = -
u(L/2) =u, =u; + ) + 3

Solving (8.54) for the constants ag, a;, and a,, and then substituting the results
into equation (8.53), we find

) : 3x_|_2x2 + 4x  4x? N 2% x 8.55)
u(x) =u -— 4+ — U | — - — Uz | — — — .

: L 12 L L2 12 7L

The coefficients of the u; displacements are the shape functions N, N,, and Ns.

Since we are dealing with an axial force member, equation (8.37) for the &;;’s
is still valid. The i and j subscripts will take on values of 1, 2, and 3 in this case.

Performing the operations required by equation (8.37) we find for the stiffness matrix
for the three node bar element

7 -8 1

EA

[k]=—Ll—8 16 —8} (8.56)
3 1 -8 7
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8.4 NON-NODAL FORCES USING THE CONCEPT OF EQUIVALENT
WORK

When we dealt with non-nodal forces earlier in the text we found “fixed end” forces
corresponding to the applied loads and then reversed their direction. These forces were
used as nodal loads and resulted in the true nodal displacements. Of course, after finding
the member forces using the calculated displacements, we applied the fixed end forces
to the nodal points to determine the actual member forces at the nodes. We shall now
use shape functions and the concept of equivalent work to determine equivalent nodal
forces.

We will define an equivalent force as one that does work equal to the work done
by the original force when acting through the same imposed displacement. We shall use
the shape functions as a convenient set of displacements through which these forces act.

Figure 8-20 shows an axial force member loaded with a distributed load p(x). Also
shown are equivalent nodal forces, F), and F,., and the two shape functions, N;(x) and

N 2 (X )
p) u; =1 u; =1
B, =B [—~~ _—]
— — [ ] L |
b— L — Ni(x) Nz(x) Figure 8-20 Non-nodal load,
equivalent nodal forces (a), and shape
(@) ®) © functions (b,c).

The work done by the equivalent nodal forces in Figure 8-20a acting through the
displacements of Figure 8-20b, that is, N, (x), is simply Fieu; = Fie.

The actual force acting on a dx length of the bar is p(x)dx. The work done by
this force is p(x)dxN,(x). The total work is therefore the integral of this quantity taken
over the loaded length of the bar; in this example, the total length of the element L.

Equating the work done by the equivalent nodal forces to that of the applied load
p(x), we have.

L
Fo= [ pGom s 357
0
Using Figure 8-20c as the displacement we find
L
Fe = / p(x)N2(x)dx (8.58)
0
In general,

L
Fie = / p(x)N;(x)dx (8.59)
0
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To illustrate, assume that p(x) is uniform over the length of the bar. That is,
p(x) = po. Then,

L L x POL
Fi. = / polN (x)dx = po/ 1——)dx=— (8.60)
o : 0 ( L) 2
Also,
L L x POL
F, = / oN2(x)dx = / —)dx = — (8.61)
2e o PoiN2 Po A (L) )

As you would expect intuitively, half the load acts at each node.
As a second example, consider the triangular load shown in Figure 8-21.

p(x)=pox
. L— poL
(
|I= L _! Figure 8-21
Equation (8.59) yields
L L X p0L2
F1e=/ poxN (x)dx=p0/ x(1—=)dx =—— (8.62)
[ poxi [ ( =) :
and
L L X poL2
Fe=/pr(x)dx=p/x —)dx = (8.63)
2 A 0X V2 0 A (L> 3

Since the total load applied to the bar is pgL2/2, we see that the equivalent forces
F\e and F,, are one-third and two-thirds of the total load, respectively.

As another example consider the beam shown in Figure 8-22, which is subjected
to a positive (upward) uniformly distributed load.

/
Fk( I [ 1 )F4e

L

w k/ft

F, E,

€

Figure 8-22

Using the shape functions in equation (8.45) we find

Lrax3 342 wL
F|e=w/0 (F—F+l>dx=—2—- (864)

Lr3xr  2x3 wL
F3e = w/o\ <F - F) d.x = —2— (8.65)
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Lorx3  2x? wlL?
F2e=w/ (——— —+x> dx = — (8.66)
o \L? L 12
L /.3 2 2
X X wlL
Fye = — - — ]dx = ———— 8.67
4 w/o (L2 L) T (8.67)

Next consider the case of a beam with a concentrated force applied as shown in
Figure 8-23. Note that the load is acting down and is therefore negative.

Fu( >F4e

Fle F3e Figure 8-23

In this case, the integral in equation (8.59) becomes an evaluation at the point of
application of the force P.

22> 3a® Pb?
F1e=—PN1(a)=—P (F_F-'-l) =—F(3a+b) (868)
a®  2a® Pab?
er = —PNz(a) =—P <L—2- — T +a> = — L2 (8.69)

The other equivalent nodal forces are found in a similar manner. Note that equations
(8.68) and (8.69) are identical in magnitude to the fixed end forces and moments that
were presented in Chapter 3 for this loading condition.

8.5 STRAIN ENERGY AND FORCE POTENTIAL
8.5a Strain Energy

Consider the axially loaded bar shown in Figure 8-24.

X

—

10
L u Figure 8-24 Axially loaded bar.

As the force is slowly increased to its full value (static loading), the bar continues
to change in length. Since we are dealing with a linear system, the force-displacement
relationship for the bar is as shown in Figure 8-25.

The work done by the force acting through the displacement it causes is equal
to the area under the force-displacement curve. For the linear system shown, the work
equals (1/2)Fu.
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Figure 8-25 Force-displacement
relationship.

Since work has been performed on the bar, its internal energy must increase.
Assuming no energy losses such as heat dissipation, this increase in internal energy must
be equal to the work done by the force. This internal energy is called strain energy since
it is due to deformation of the bar, and is fully recoverable. Thus, it is potential energy
stored in the bar. We generally call it strain energy, however, to distinguish it from the
potential energy of other forces acting on the body.

We can rewrite the strain energy in terms of strain energy per unit volume by using
relationships between force and stress, and between displacements and strain. For the
bar shown in Figure 8-24, the force is constant throughout the member. Assuming the
area is also constant, then F =0 A and u = €L. Thus, (1/2)Fu = (1/2)0 A€L.

The volume of the bar is A x L. Thus the strain energy per unit volume is (1/2)oe€.
For an infinitesimal element with volume dV, the strain energy U stored is given by

1
dU = EaedV (8.70)

For this one-dimensional state of stress in the x direction, this expression is gen-
erally written

1
dUu = -2-axede 8.71)

Naturally, the expression for strain energy can be extended to two- and three-
dimensional states of stress. For a general two-dimensional state of stress we find

1 1 1
dUu = [Eaxex + 207y + 3 Ty Yay dv (8.72)

The total strain energy is found by integrating equation (8.72) over the volume of
the body. Considering the two-dimensional case we have

U=/l{€}r {o}dV 8.73)
v2

€ oy
(e} = { €, } and (o} = { oy } (8.74)
Vxy Txy

where
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Note that €7 is used in equation (8.73) to make the matrix multiplication con-
formable. That is,

{e}] = [ex €y vy (8.75)
and
(€} {0} = €,0, + €0y + ViyTxy (8.76)
For the one-dimensional element,
or=Ee and U= /0 ’ i—Ae} €xdx = /0 ’ Ez—Aefdx (8.77)

since €, is the only non-zero strain.

8.5b Force Potential

The work done by a force vector F acting through a displacement is given by

-

2
W= / F.dr (8.78)
1

where points 1 and 2 are the beginning and ending points on the displacement curve (see
Figure 8-26).

Figure 8-26

In general, the work depends on the path of integration as well as the end points.
However, there are forces for which the work integral does not depend on the path
of integration. These forces are called conservative forces, and the work done can
be determined by the difference of a scalar function evaluated at the end points of the
integration path. Also, if the magnitude of the force is not dependent on its displacement,
the potential energy is the negative of the dot product between the force and displacement
vectors—that is, the opposite of the work done by the force as it is moved through the
displacement. Thus, we have

V=-Fu-Fyv-Fuw (8.79)

For nodal forces of constant magnitude F;, the nodal force potential at node i for
the one-dimensional rod becomes V; = —F;u; and at node j is V; = —Fju;. Thus, for
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nodal forces acting on the bar element,

Viodal force = — [F Fj] { Z‘ } (880)
J

Next, consider a distributed force applied to the element as shown in Figure 8-27.

Xi | || ] xj
i —f dxj— j Figure 8-27

For element dx, d F = p(x)dx and dVgg = —p(x)u(x)dx. Remembering that

uz[l—% %]{ZI} (8.81)

then the total potential energy of the distributed load becomes

vdfs,.=—/Xi P [1- 7 %]{:Z}"":“/x, P [Ny NZ]{Z;}dx

(8.82)
As an example, consider the bar loaded as shown in Figure 8-28.
y
1 — 2
|————> X Figure 8-28 Linearly distributed bar
= L - loading.

Equation (8.82) becomes

L x  x7 [ u kL2 [1 2] [uy
vd,-x,.=—/0 kx[l—z Z]{uz}dx————z— [3 5]{u2} (8.83)

Note that the total load applied to the bar is kL?/2. Since the potential energy is
the negative of the work done, then the equivalent nodal loads are F; = 1/3 x (total load)
and F, = 2/3 x (total load). Since

L'EA
U= / Te} €:dx (8.84)
0
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and €, = du/dx, and using

u=[1—% %}{Z,} (8.85)

we have the strain-displacement relationship

_du [0 I fw)_1 u;
GX_E_[ L L]{uj}_L[—l ll{uj} (8.86)

The strain energy becomes

L L
EA ; EA 1 -111 u;
U—-/O Texe,dx- A Tz[u, u,]{ 1}z[—l 1]{uj}dx
L

_ [FEA S0 -1 S
“/0 TR “’][—1 IJ{u,-}d"

_EA 1 -1 w, | _ 1, 1
=5 Lu uj][_l IJ{uj}_E{u} (K] {u} (8.87)
where
EA 1 -1
[K] = T [_1 1] (8.88)

Note that we could have obtained this general form using U = (1/2) Fu. In matrix
form U = 1/2{F}"{u} = 1/2{F}{u}". Also, {F} = [K]{u} and {F}T = {u}7[K]" =
{u}7[K] since [K] is symmetric. Thus,

U= ) K (8.89)

8.6 THE PRINCIPLE OF MINIMUM POTENTIAL ENERGY

The total potential energy II is equal to the sum of the strain energy, nodal force potential,
distributed force potential, and body force potential. Body forces are forces per unit
volume acting on a body. Gravity is an example of a body force. Considering only the
nodal and distributed surface forces we have

I =U+ Visdat + Vdist.

1 U; Uu;
= Sl uj][K]{uj}—[Fi m{uj}

—/IP(X)[Nl Nz]{:;}dx (8.90)

where N; and N, are the shape functions.
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We now state the principle of minimum potential energy.

Of all possible displacement fields which satisfy the specified geometric constraints,
the true one, which corresponds to a stable equilibrium state, minimizes the potential
energy II.

This principle can be used to obtain approximate solutions to many types of prob-
lems and can also be used to derive the force-displacement relationships for a single
element or a system containing many elements. We first illustrate its use in approximate
analysis.

8.7 APPROXIMATE SOLUTIONS USING MINIMUM POTENTIAL
ENERGY

We now outline the procedure for solving problems approximately, using the principle
of minimum potential energy.

(1) Select a displacement function that satisfies the geometric boundary conditions.
This function must contain some arbitrary constants that will be determined after
application of the minimization process.

(2) Determine the expression for the potential energy (/7) using the assumed dis-
placement function.

(3) Minimize the potential energy by differentiating with respect to each constant and
solve the resulting equations for these constants.

Example 8.1

Suppose we would like to find a solution for the displacement as a function of position for
the tapered bar shown in Figure 8-29.

Figure 8-29
Of course, for this problem the exact solution can be found as follows:
F/E

F
- = 8.91
€(x) EAG) (2_ ﬁj) 8.91)
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F
u(x) = /e(x)dx = F/—de =-—10—=In (2 - i) + C (8.92)
(2 - 17"5) E 10
Applying the condition u(0) = 0 yields C; = 10(F/E)1n 2. Thus,
10F x
Uexact (X) = ——E-;— [1[‘!2 —In (2 - E)] (8.93)

Now let us find an approximate solution to this problem by using the principle of
minimum potential energy.

Step 1: Assume a displacement function that satisfies the geometric boundary
conditions.

Assume

u(x) = a + bx + cx* (8.94)
For
u(0)=0,a =0. Thus u(x) = bx + cx?.

Step 2: Determine the total potential energy using the assumed displacement func-

tion.
The strain is given by equation (8.95), and the strain energy by equation (8.96).
d
€)= — =b+2x (8.95)
dx
E (t, E 8c2L3  b?L?  4bcL®  4c*L*
== A(x)dx = — ( 2b*L + 4bcL? - - -
v 2/06*(")" 2( Fabelt+ 3 20 30 40)

(8.96)
The force potential V = —Fu(10) = —F(10b + 100c)
The total potential energy is Il = U + V.
Step 3: Differentiate the potential energy with respect to each of the arbitrary
constants, setting the resulting equations equal to zero to minimize, and solve for the
values of the constants.

% — 0= g (30b + 26666¢) — 10F = 0
pat - 8.97)
&5 = 0= £ (266.66b+3333.33) — 100F = 0

Solving equations (8.97) for the values of b and c yields b = 0.461541 F/E and
¢ =0.023077 F/E. Thus,
F
— (0.461541x + 0.023077x?) (8.98)

Uapprox. =
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A comparison of the exact and approximate solutions for displacements is shown
in Figure 8-30.

Displacement Comparison
(exact and approx.)

1
£ 6 —
& 5 =
g . /Ej/
g
g 3 =
=
2 2 £ [ o EBxact — Approx.
S 1 ] = L —
s

0 1 2 3 4 5 6 7 8 9 10

x (inches)
Figure 8-30

The axial strains €, = du/dx, thus

F/E
€exact (X) = (—2_/_L)
10 (8.99)
F
approx. = 7 (0461541 + 0.046154x)

Comparison of the strains is shown in Figure 8-31.

As can be seen from the comparison graphs, the exact and approximate displace-
ments are very close to each other. The maximum displacements differ by less than
0.2%. However, the strains do not compare as well, the maximum difference being
about 8%. This is to be expected given the form of the displacement function. The
approximate expression for strain is a linear function of x and cannot accurately repre-
sent the exact strain variation. If more terms of the polynomial in x were added to the
assumed displacement function, a better approximation of strain would result.
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Strain Comparison
(exact and approx.)

i =
9 3/ﬁ
g 08 -
S /ED
0 06 o l O Exact — ApproxJ_
0.58——
0.4
0 1 2 3 4 5 6 7 8 9 10
x (inches)
Figure 8-31

8.8 DETERMINATION OF THE STRUCTURAL STIFFNESS
EQUATION USING MINIMUM POTENTIAL ENERGY

The total potential energy of a structure is simply the sum of potential energies of the
individual elements of that structure. Consider the two-element axial structure shown in
Figure 8-32.

p(x)

Fl — —_—

— »— F3

)__ x Figure 8-32 Two-element axial

structure.

The potential energy of the structure can be written

1 1
=§[u1 uz][kll{Z;}'FE[uz u3][k2]{zz}

X3
— Fiu; — Fsus —/ p(x) [ Ny N2]{Z§ }dx (8.100)

2
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Defining the global displacement matrix {u} as
uj
{u} = { uz } (8.101)
us

O=—-[F 0 Fl{u+= {u}’["‘ ]{u}

equation (8.100) can be written

—[0 [2px)Nidx [ p(x)Nadx ] {u) (8.102)

We now minimize the potential energy with respect to each of the unknown nodal
displacements. For example:

1 uy

?E=—[F. 0 F1<0 +1[1 0 0]| K uz

ouy 0 2 us

1
(o)

0

1
-0 [Zp)Nidx [ p(x)Nadx] { 0} =0 (8.103)
0

1
+§[u| up u3][ K

where
k(l) k(l) 0
K1= | k3 &) +k2 (2 (8.104)
0 k(2) k(2)
Expanding and collecting terms we find
—F+kPu +kPu —0=0 (8.105)

Differentiating the potential energy with respect to u, and then with respect to u;
yields equations (8.106) and (8.107).

X3
0+k“)u, + (kg'z) + (2)) " +k{2 U3 _/ p(x)N1dx =0 (8.106)

X2
2 2 w
— B+ kDuy + kDus — / p(xX)Nadx =0 (8.107)
X2

Writing equations (8.105), (8.106), and (8.107) in matrix form gives
(K] {u} = {F}nodal + {F}equiv. nodal (8.108)

Of course, this equation is identical to that obtained previously by direct combina-
tion.
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8.9 SUMMARY

In this chapter we introduced important work and energy concepts and demonstrated
how their use results in the determination of equivalent nodal forces and the structural
stiffness equation, both of which were derived by direct means in earlier chapters. The
methods presented represent an alternative approach for deriving the quantities needed
and the equations used in matrix analysis of structures. Energy methods and minimization
principles are used extensively in the development of the finite element method. This
brief introduction to the use of these methods should begin to prepare you for a more
advanced course in the finite element method.

PROBLEMS

8.1 Determine the shape functions for a one-dimensional rod by assuming the following expres-
sions for the displacement field:
(a) u(x)=a sin x+»
(b) u(x) =a sin(wx/2L)+ b

8.2 Determine the remaining elements of the stiffness matrix for a beam using the shape functions
of equation (8.45) and the principle of virtual work.

8.3 Verify the stiffness terms in equation (8.56) for the three-node bar element.

For the following problems, verify the equivalent nodal forces using the methods of section 8.4.
8.4 Problem 1-5a
8.5 Problem 1-5¢
8.6 Problem 1-5d
8.7 Problem 1-5e
8.8 Problem 1-5f
8.9 Find the equivalent nodal forces for the beam loaded as shown in Figure P8-9.

a M b

[
N
L L

=|| Figure P8-9

8.10 Show that the strain energy U for a beam is given by

L 2 2
El (d
U= 242 ax
o 2 \dx?
Consider only bending effects.

8.11 Find the exact solution for the displacements and strains for the tapered bar shown in Fig-
ure P8-11.
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A =2 in?

10 in.

-

F Figure P8-11

8.12 Find an approximate solution to problem 8.11 by using the principle of minimum potential
energy. Graphically compare your results with the exact solution.

8.13 Use the expression for strain energy for a beam as given in problem 8.10 to find an approximate
solution for the deflection of a simply supported beam with a concentrated load applied at the
midpoint. Use minimum potential energy and compare your result for deflection at the midpoint
with the exact solution of PL3/48EI. Assume y = a sin(wx/L) for the displacement
function.

8.14 Find an approximate solution for the deflection at the end of a cantilever beam with a con-
centrated load P applied at the end. Assume a fourth-order polynomial for the displacement
function. Compare with the exact solution of PL3/3E]1.

8.15 Verify equations (8.106) and (8.107).
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9.1 INTRODUCTION

In Chapter 8 we introduced the concepts of shape functions, virtual work, and minimum
potential energy, and we used these concepts to derive the elemental stiffness matrix,
equivalent nodal forces, and the structural stiffness equation. Of course, the results
obtained were identical to those found in earlier chapters by direct means.

It was also noted that for more complicated elements, use of the techniques pre-
sented were necessary to develop the elemental stiffness matrix and the structural stiffness
equation. The simplest element requiring the use of these techniques is the three-node
triangular element subjected to loads in its plane. Figure 9-1 shows such an element.

F; V3
\ T_’u?:

y ’ Vi
V2
F T
X u,

—-

Figure 9-1 Three-node triangular
F2 element.

Also shown in Figure 9-1 are the nodal displacements u, through u3 and v, through
v3, where the u and v displacements are in the global x and y directions, respectively.

Figure 9-2 shows how this element could be used to model two-dimensional plate
structures.

Axial Load

Soil Pressure Distribution  Figure 9-2
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The basic procedures for combining elemental stiffnesses to create the global struc-
tural stiffness matrix, and then solving for nodal displacements and elemental stresses, are
identical to those used for the elements discussed previously in this text. However, the
derivation of the elemental stiffness matrix will make use of work and energy principles.
Note that we will be using global coordinates, and as a result, coordinate transformation
will be unnecessary.

9.2 PLANE STRESS AND PLANE STRAIN

There are two types of two-dimensional formulations for solving plane elasticity prob-
lems: plane stress and plane strain. To illustrate the assumptions associated with each
formulation, consider Figure 9-3. We have assumed that the major dimensions of the
thin elements lie in the x-y plane.

Oy
. <
Ty
o, ay
Tox
Txy
0! Ox
(a) Plane Stress (b) Plane Strain

Figure 9-3 Plane stress and plane strain.

For the state of plane stress shown in Figure 9-3a, we consider a “free slice.” That
is, we assume that no stresses act in the z-direction, which is perpendicular to the plate.
Thus, 0; = 7y, = 17, = 0.

The stress-strain relationships, or constitutive equations for plane stress assuming
a linear, elastic, homogeneous, isotropic material, become (refer to your strength of
materials text)

E
Oy = T—_—";f(ex'FUGy) ©.1)

E
oy = 1_—‘)2(6): + ve,) 9.2)

Ty = Gyyy 9.3)
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where
_ E
T 2(14v)

Writing the above equations in matrix form, we have
o E 1 v O €
o (=T ,2 |V 1 0 ] €y } 9.5)
Tyy V"lo 0o L Vxy

{0} =[Clsress L€} (9.6

where [Cl,.ss is the constitutive matrix for plane stress.

For the state of plane strain shown in Figure 9-3b, we consider a “constrained
slice.” That is, the strain in the z-direction is considered zero. Thus, o, # 0.

The stress-strain relationships for plane strain become

G 94)

or

= E 1 9.7
0X_(1_+;)—(1—_2v)[( —V)€x+v€y] ()
E
oy = AT 9a=5 [ver + (1 —v)e,] (9.8)
Txy = nyy (99)
Also,
vE
o, (€x + €y) =v(ox +0y) (9.10)

T U+vd=2v)

Writing the plane strain equations in matrix form yields

{ax} E [l—v v 0 €
oy p=—— v 1-v O }{ey} 9.11)
Ty A+v)(1-2v) 0 0 1-2v Yy

2
or

{0} =1[Clsrain €} 9.12)

We will use the stress-strain relationships presented above later in this development
to formulate the strain energy in terms of strain and, ultimately, displacements.

9.3 SHAPE FUNCTIONS FOR THE THREE-NODE TRIANGULAR
ELEMENT

Since we will be deriving the structural stiffness equation by using the principle of min-
imum potential energy, we need to determine shape functions for the triangular element.
Recall from Chapter 8 that the first step in this process is to assume a displacement
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function. Although several coordinate systems can be used, we shall use the global co-
ordinate system shown in Figure 9-1. Note that we must assume a displacement function
in this case since no closed-form force-displacement relationships can be derived directly
from strength of materials and/or elementary structural theory.

Remember that the displacement field assumption we make must contain as many
coefficients as degrees of freedom of the element. These coefficients will be expressed
in terms of the nodal displacements, thus defining our shape functions. Since we have
a three-node element with three degrees of freedom in each coordinate direction, we
assume the following form for the displacement functions:

u(x,y) = ay + ayx +azy (9.13)
v(x,y) = by + bax + b3y 9.14)

The above assumptions represent the simplest displacement functions possible for
this element.
We next evaluate equation (9.13) at the nodal locations, giving

up = a + axx; + asy (9.15)
uz = a) +axxz +azy; 9.16)
u3 = a; +axx3 +asys 9.17)

The above equations can be written

u I xi n] (&
Uz =11 X2 Y2 a (918)
u3 1 x3 y3l \a;

Similarly, equation (9.14) yields

v 1 x1 y1] (b
Vy p = [ 1 x2 » b, 9.19)
U3 1 x3 y3d \Ubs

We must now solve equations (9.18) and (9.19) for the coefficients a; through a3 and b,
through b3 in terms of the nodal displacements.

After performing this task and back-substituting into equations (9.13) and (9.14)
we find

uy
u=[N| N2 N3]{u2} (920)
us
and
U
‘U=[N| Nz N3]{v2} (9.21)
U3

where the shape functions N, N,, and N5 are given below.

1
N = D [(x2y3 — x3y2) + (y2 — y3)x + (x3 — x2)y] (9.22)



Sec. 9.4 Strain-Displacement Relationships and Strain Energy 193

1
N, = D [(x3yr — x1y3) + (y3 — y)x + (x1 — x3)y] (9.23)
1
N3 = -D— [(X|y2 — XZ_Y|) + (yl - y2)x + (x2 - xl))’] (9.24)
where
D = x2y3 — x3y2 + x1(y2 — y3) + y1(x3 — x2) (9:25)

The expression for D is equal to twice the area of the triangular element.
Combining equations (9.20) and (9.21) into a single matrix equation, we have

uj

)1

u _ Nl 0 N2 0 N3 0 U
{v} - [ 0 Nl 0 Nz 0 N3 1) (9.26)

us

U3

or

{u}=[N1{q}) 9:27)

9.4 STRAIN-DISPLACEMENT RELATIONSHIPS AND STRAIN
ENERGY

From strength of materials, recall that the strain-displacement relationships for small
strain can be written

_au e_av _au ov
T ax’ Y7 ay’ ””_ay dx

u
{ v } (9.29)
8 3
dy Ix

Using equation (9.26) in equation (9.29) and performing the indicated differentia-
tions, we obtain

& (9.28)

or, in matrix form,

——
AN
——
I
o Fle
@ Q’lm o

VYxy

U
& L [O2=y») 0 Gs=y) 0  i-y) O Z;
€ p = = 0 (x3 — x2) 0 (x1 — x3) 0 (x2 = xy) vy
Yxy (x3—x2) (y2—y3) (xi—x3) (y3—y1) (2—x1) (y1—y2) us
v3

(9.30)
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or

{e}=[Bl{q} 9.31)

where D is again given by equation (9.25).

Note that the three-node triangular element is a constant strain element. This is a
direct result of the assumed displacement fields and the strain-displacement relationships.

We next formulate the expression for strain energy.

In Chapter 8 we expressed the strain energy in equation (8.73), which is repeated
here for convenience.

1
U= / —{e)T {o}aV (8.73)
v?2
Using equation (9.6) or (9.12) in the above equation yields
U= / % {€)T [Cl{e}dV 9.32)
1
From equation (9.31),
()" ={q)" [BY (9.33)

Thus, equation (9.32) becomes

1
u=/5mﬁmﬁammuv (9.34)
v

Assuming the element has constant thickness 7, then dV =t dA. Also note that
{g}, [B], and [C] contain elements that are constants.
Thus,

1
U=5mﬂwﬂwnmmnAdA

1
=§4qV[BF[annan 9.35)

where A is the area of the element and equals D/2 (equation [9.25]).

9.5 FORCE POTENTIAL

We shall consider only applied nodal forces in this brief introduction to the finite element
method. Distributed forces (tractions) on the edges of the element and body forces would
need to be included for completeness. These are left for a later course in the finite element
method.

The force potential of nodal forces was presented in Chapter 8. For a force at node
1 with components Fj, and Fy,, the force potential is

Vl = —leul - Flyvl (936)



Sec. 9.6

For forces at all three nodes,

Viodal forces = — {q}T Py

=—[uy v uz vy wuz w3l

Application of the Principle of Minimum Potential Energy

9.6 APPLICATION OF THE PRINCIPLE OF MINIMUM POTENTIAL

ENERGY

195

9.37)

Summing the strain energy from equation (9.34) and the nodal force potential from

equation (9.37), we find the total potential energy to be
n=0U+ Viodal forces

1
=/V§{q}f[31’ [C1(B1{g}dV — (g}

(9.38)

We next differentiate the potential energy with respect to each displacement, which
is equivalent to differentiating with respect to the nodal displacements {g}. Thus, we

find
Uy Fix
V) Fly
F:
BIT[C1[B]dV{ ¥\ = { ™
[mricisav =4
u3 Fs,
V3 F3y
or

k1{q} = {F}uoda forces
For this element,

[k]1 = [BI" [C1[B]tA

since [B], [C], and ¢ are constant.

9.39)

(9.40)

(9.41)
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We next consider a structure modeled with three-node triangular elements as an
example problem.

9.7 EXAMPLE PLANE STRESS PROBLEM

A shearwall is modeled as shown in Figure 9-4.

1500# 2 3
@ t =4.5"
96" E=17x10%si
Y] ) v=.25
I — 4
60" Figure 9-4 Example problem.

Aﬁsuming plane stress, solve for the nodal displacements and stresses. The nodes
of each element are numbered in sequence counterclockwise.
Element 1:

x1=y=0
x2 = 60", y2 = 96"
x3=0, y3 = 96"
From equation (9.25),
D =60(96) — 0+ 0+ 0 = 5760 in? = 2 x Area
From equation (9.30),

1 0 0 9% 0 -96 0
[B] = 5760 [ 0 -60 0 O 0 60] (9.42)
—-60 0 0 9% 60 -96
From equation (9.5),
1 25 0
1.7 x 106
[Clstress = _'6;75_ [2 0 ] (9.43)
: 0 0 .37
Equation (9.41) yields
0) ® ® ® ® ®
1350 0 0 -2160 —-1350 2160] (@
0 3600 —1440 0 1440 -3600 | @
_ 0 -—1440 9216 0 -9216 1440 | ®
(k) =708.333 | 5160 0 0 3456 2160 -3456 |@ O
—-1350 1440 -9216 2160 10566 —3600 |(®
| 2160 —3600 1440 -3456 -3600 7056 | @®
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Element 2:
X1 =y1 = 0
x, = 60", ¥y =0
X3 = 60", Y3 = 96"

From equation (9.25)

D = 60(96) — 0+ 0 + 0 = 5760 in®

From equation (9.30),

1 [—96 0 96 0O 0 O
[B] = — 0 0 0 -60 O 60]
5760 [ o _96 —60 96 60 0
From equation (9.5),
17x100 [} B
[C]xtrexx = _9'37—5— .
: 0 0 .375
Equation (9.41) yields
® @ Q) ® ®
[ 9216 0 —9216 1440 0 —1440
0 3456 2160 —-3456 -2160 0
—-9216 2160 10566 —3600 —1350 1440
(klo =708.333 | 1440 _3456 —3600 7056 2160 —3600
0 -=2160 -1350 2160 1350 0
= 1440 0 1440 -3600 0 3600 ]
Combining, accounting for zero boundary conditions,
® @ ® ®
10566 —-3600 —-9216 2160 | ®
_ —-3600 7056 1440 -3456 | @
[K]=708.333 | _gy16 1440 10566 ol®
2160 —3456 0 7056 | ®
Our overall structural stiffness equation becomes
u3 1500#
Uy _ 0
[K] us [ = 0
Ue 0
Inverting [K] and solving for displacements, we find
us .001370
ug \ _ .000341 in
Us - 001148

Ueg —.000252

QJOICIOICLS;
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(9.45)

(9.46)

9.47)

(9.48)

(9.49)

(9.50)
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The strains are given by equation (9.30).

Element 1:
0
€ 0 0 9% O 96 0 0
x 1 -
{5)-g| 0@ 000 60} oot
Vxy —-60 0 0 9 60 —-96 001370
.000341
-3.70 x 1078 in/in
= { 3.55 x 1076 in/in} (9.51)
33.41 x 1076 rad
Element 2:

0

0

€ 1 —96 0 96 0O 0 o 0

€ = 5 0 0 0 -60 0 60 0
Yy 0 -96 -60 9% 60 O 001148
—.000252

Oinfin
= { —2.63 x 1078 in/in } (9.52)
11.96 x 1076 rad

The stresses are next calculated using equation (9.5).

Element 1:

{ Ox } 1.7 x 106 [ 1 .25 0 —3.70 x 10~¢ in/in
Oy ( = — 25 1 0 } { 3.55x 1078 in/in }
9375 0

Txy 0 375 33.41 x 1075 rad

-5.10
{ 12.87 } psi (9.53)

22.72

Element 2:

o 1 25 O Oin/in
* 1.7 x 106
{ay } = %750 [.25 10 } {—2.63 x 107 in/in}
Txy : 0O 0 375 11.96 x 1076 rad
-1.19
{ —4.77 } psi
8.13

Keep in mind that modeling the shearwall with only two elements will not result
in an accurate solution. Many more elements would have to be used to obtain a realistic

(9.54)
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solution. Naturally, the problem will then become algebraically intractable for hand
solution, and a computer solution will be required.

9.8 SUMMARY

In this chapter we briefly presented an introduction to the finite element method. In doing
so, we used the simplest element that requires work and energy principles for formulation
of the elemental stiffness equation. Because of the simplicity of the three-node triangular
element we were able to integrate the required stiffness equation in closed form. With
more complicated elements such as the four-node quadrilateral and the six-node triangle,
numerical integration is generally used to determine the elemental stiffnesses.

It is hoped that this chapter has kindled your interest in pursuing further study of
the finite element method.

PROBLEMS

9.1 Solve explicitly for the a; through a3 coefficients in equation (9.18).
9.2 Verify the expressions for the shape functions presented in equations (9.22) through (9.24).

9.3 Find the displacements and stresses for the plate shown in Figure P9-3. Assume a state of
plane stress.

6 . 3 . 100,000#
E =10 x 10 psi

5011

1 2
50" Figure P9-3

9.4 The plate in problem 9.3 is modeled with two elements as shown in Figure P9-4. Find the
displacements and stresses.

E = 10 x 10%si 3 100,

t=.5"
v=.33
—_ 4 @ 50"
—
2511
@
1 2
B i

50" Figure P9-4
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9.5 An axially loaded member is modeled as shown in Figure P9-5. Find displacements and
stresses. Compare your results with the strength of materials solution for a concentrically
loaded axial force member with the same total axial force.

E = 30 x 10%si
t=1"
v=.30 4
3 . 120"
@ @ 6”
k
1 12" 2 120 Figure P9-5

9.6 Solve for stresses and displacements of the plane strain structure shown in Figure P9-6.

12,500# 12,500#

4
3 E-20x10%si

@ t=25"

5" v=.30

5" Figure P9-6
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A.1 BASIC OPERATIONS

The four basic operations of matrix algebra are

(1) Addition

(2) Subtraction

(3) Multiplication

(4) Inversion (analogous to division)

A.2 BASIC DEFINITIONS

If m equals the number of rows and n equals the number of columns of a matrix, and if
aj; is the element of the matrix in row i and column j, we define the following types of
matrices:

(a) Square Matrix: m = n

(b) Symmetric Matrix: a;; = a;;

(¢) Diagonal Matrix: A square matrix with a;; = 0 fori # j, a;; # 0 fori = j
(d) Unit Matrix: A diagonal matrix witha;; = 1,i =1,2,3...n

(e) Column Matrix: An m x 1 matrix designated by {}

(f) Row Matrix: A 1 x n matrix designated by [ ]

Transpose of a matrix The transpose of a matrix [A] is a matrix [A]T that is
obtained by interchanging the rows and columns of the original matrix [A]. The matrix
[A] can be of any order.

For example:

1 -4
If [A] = [_‘1‘ 3 g] then [A) = l3 0}
2 5

T —q.:
Thus, a;; = aji
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A.3 EXAMPLES OF OPERATIONS

Addition:

The matrices [a] and [b] must be of the same order m x n (same number of rows and

same number of columns).
Then, the elements of the resulting matrix [c] = [a] + [b] are as follows:

Cij = ajj + b,'j

Subtraction:
As in addition,

[c]=[a] — [b] and ¢;; = ai; — by;

Scalar Multiplication:
If [c] = K[a] where K is a scalar constant, then ¢;; = Ka;;

Matrix Multiplication:
The matrices being multiplied must be conformable. That is, the number of columns of
the first matrix must be equal to the number of rows of the second matrix.

If [a] is of order m x r, and [b] of order r x n, the resulting product [c] will be of
order m x n where the elements are given by

;
Cij = E aixby;
k=1

Example:
[2 3 6][5 ; 3]_[8 23 33]
a1t of|22 T 9 2

Note that [a][b] # [b][a] (not commutative) even in the case of two square matrices.
Therefore we must differentiate between pre- and postmultiplication.

Inversion:
We define the inverse [a]~! of a matrix [a] to have the following property:

[a]"'[a] = [a]la]~" = [U] where [U] is a unit matrix.

Thus, the matrix to be inverted must be a square matrix. The rows and columns must
also be independent—that is, the determinant of the matrix [a] must not be zero.
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The cofactor of an element of a matrix is defined as the signed minor of the
element—that is, (—1)’*/ times the minor. The minor of an element is obtained by
evaluating the determinant that results from removing the row and column corresponding
to that element.

If [A] is the matrix of cofactors of [a], then the adjoint of [a] = [A]”.

The inverse of [a] is given by [a]™! = adjoint of [a]/|a].
Example:
1 -2 3
[a] = [2 0 —3]
1 1 1

lal = 1(3) — 2(=5) + 1(6) = 19 # 0, thus the inverse exists.
3 -5 2

cofactor [a] = [A] = lS -2 3]
6 9 4

3 56
adjoint [a] = [A)T = l—s -2 9]
2

-3 4
Thus,
1 3 56
[a]":l—[—s -2 9]
91l 2 -3 4
Check:
L[t -2 3 3567 19 0 o0 1 00
[a][a]_'=1—9[2 0 —3] [—5 -2 9]:—[0 19 0]:[0 1 0}
1 1 1 2 -3 4 0 0 19 0 0 1

Many methods can be used to invert matrices, of which the previous procedure is just
one. For most computer work, a modified Gauss-Jordan method is often used.

EXERCISES

#1) Evaluate
[(X]={[A]""[B] - [E]"'(D]}~'[A]!
[Y1={[DI"'[E]1- [B]"'[A]}~'[D]"

[A1=[‘1’ Z][B]=[; g][01=[2 ﬂm:[g f]

where
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#2) Given
[Al{x} = [Bl{y} + {C} and [DI{y} = [El{z} + {F};
find and evaluate {x} = [G]{z} 4+ {H} where

6 3 3.1 1
et m= Jer=(1)

4 3 7 8 8
or=[s Hhor=[z Hon- )
[Q] = [Bi\{[/]1+ [B2 — B\]"'[B1]}[P] and

[@1] = [BI{[B: — B,]"'[B,]}[P], prove that
[Q]1=1[Q1]

#3) Given
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Appendix B presents two matrix inversion routines. The first will invert any matrix,
symmetric or not. The second requires the matrix to be symmetric and stored in half-
bandwidth form. The force and restraint code matrices are also required in the second
listing since this routine calculates displacements directly.

Routine 1:

‘Matrix inversion routine

‘skr is the matrix to be inverted

‘and is destroyed in the process.
'After inversion skr contains the inverse,
'so make sure you save skr in a different array before
’calling this routine if you need it later.
‘nkr is the order of the matrix.

FOR K=1 TO NKR

AM=0

100 FOR I=K TO NKR

FOR J=K TO NKR

IF (ABS (AM) ) >ABS (SKR(I,J)) THEN GOTO 160
AM=SKR(I, J)

IK(K)=I

JK(K)=J

160 NEXT J:NEXT I

IF AM<>0 THEN GOTO 190

PRINT ‘‘zero MATRIX***ABORT":END

190 I=IK(K)

IF I=K THEN GOTO 260

IF I<K THEN GOTO 100

FOR J=1 TO NKR

ST=SKR(K, J)

SKR (K, J)=SKR (I, J)

SKR(I,J)=-ST:NEXT J

260 J=JK(K)

IF J<K THEN GOTO 100

IF J=K THEN GOTO 330

FOR I=1 TO NKR

ST=SKR(I,K)

SKR(I,K)=SKR(I,J)

SKR(I,J)=-ST:NEXT I

330 FOR I=1 TO NKR
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IF I=K THEN GOTO 360
SKR(I,K)=-SKR(I,K)/aM
360 NEXT I

FOR I=1 TO NKR

FOR J=1 TO NKR

IF I=K THEN GOTO 420
IF J=K THEN GOTO 420
SKR(I,J)=SKR(I,J)+SKR(I,K) *SKR(K, J)
420 NEXT J:NEXT I

FOR J=1 TO NKR

IF J=K THEN GOTO 460
SKR (K, J) =SKR (K, J) /AM

460 NEXT J

SKR (K, K)=1/AM

NEXT K

FOR L=1 TO NKR
=NKR-L+1
J=IK(K)

IF J<=K THEN GOTO 570
FOR I=1 TO NKR
ST=SKR(I,K)
SKR(I,K)=-SKR(I,J)
SKR(I,J)=ST:NEXT I
570 I= JK(K)

IF I<=K THEN GOTO 630
FOR J=1 TO NKR
ST=SKR (K, J)

SKR (K, J)=-SKR (I, J)
SKR(I,J)=ST:NEXT J
630 NEXT L

RETURN

Routine 2:
Assume that the stiffness matrix is stored in half-bandwidth form as shown in
section 7.1.

Let DOF = number of degrees of freedom per node.

We first construct a one-dimensional array of boundary constraints. Call this array
BCOND(I)

KSUM = 0
FOR I = 1 TO NN ’loop on number of nodes
KSUM = KSUM + 1

BCOND (KSUM) = KXRES(I)
KSUM = KSUM + 1
BCOND (KSUM) = KYRES(I)
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’Continue until all restraints have been accounted for.
'For example, the 2-D frame will have KXRES(I),KYRES(I),
’ and KZRES(I) for each node.

NEXT I

Assume that DU(I) (the global displacement matrix) contains all zeros except for
specified non-zero support movements.

We duplicate the nodal force matrix F(I) in an array FD(I) in order to save the
actual applied loads since F(I) will be modified during the solution for displacements.

For non-zero boundary conditions we modify the main diagonal term of the stiffness
matrix and the force matrix as described in section 7.1.

N = DOF*NN

FOR I=1 TO N

FD(I) = F(I)

IF BCOND(I) = 0 THEN 10
SK(I,1)=SK(I,1)*1E9
F(I)=DU(I)*SK(I,1)

10 NEXT I

We now begin the solution routine.

FOR I=1] TO N

IF SK(I,1)=0 THEN 40
FOR J=2 TO BW ’'BW = half-bandwidth (calculated previously)
IF SK(I,J)=0 THEN 30
L=I+J-1

RATIO = SK(I,J)/SK(I,1)
JJ=0

FOR K=J TO BW

JJI=JJ+1

IF L>N THEN 20
SK(L,JJ)=SK(L, JJ) -RATIO*SK(I,K)
20 NEXT K
SK(I,J)=RATIO

30 NEXT J

40 NEXT I

FOR I=1 TO N

IF SK(I,1)=0 THEN 60
FOR J=2 TO BW

IF SK(I,J)=0 THEN 50
L=I+J-1

IF L>N THEN 50
F(L)=F (L) -SK(I,J)*F(I)
50 NEXT J
F(I)=F(I)/SK(I,1)

60 NEXT I
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DU (N) =F (N)

FOR LL=2 TO N

I=N-LL+1

FOR J=2 TO BW

IF SK(I,J)=0 THEN 70
K=I+J-1

IF K>N THEN 80
F(I)=F(I)-SK(I,J)*DU(K)
70 NEXT J

DU(I)=F(I) ’'DU contains the final displacements
80 NEXT LL

We can now restore the original forces into the F(I) matrix.
FOR I=1 TO N

F(I)=FD(I)
NEXT I
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Consider a simply supported beam ab subjected to end moments M,, and M,,, applied
loads p(x), and a support movement A. All forces and displacements, including end
rotations 6, and 6, are shown in their positive directions in Figure APPC-1.

p(x)
M ab Mba
( —

A
0a r

Figure APPC-1 Positive forces and
8o displacements.

Note that positive moments and rotations are clockwise, and A is positive when it
causes a clockwise rotation of the chord of the beam.

We shall write expressions for the total rotations at the ends of the member owing
to the effects of all loads and support movements.

0, = OMab 4 gMba  gloads 4 g4 (APPC.1)

O = 6/ + 6, + 6174 + o (APPC.2)

Assume that £/ = constant. Many techniques can be used to find the displacements
in equations (APPC.1) and (APPC.2). These include moment area, virtual work, double
integration, and conjugate beam.

Solving for the rotation angles 6, and 6, due to the applied moments M,;, and M;,
we find,

oMb — Myl /3E] oMb = Ml /6E]T
OMbs = _Myl/6EI 6} = My,l/3E]

For the support movement A, if we assume small displacements, tan 8 ~ 6 and
we have

A=A/l 6= Al
Equations (APPC.1) and (APPC.2) become

= _ Zhal | gloads 4 = APPC.3

“=35r “6er "° 17 ¢ )
Mal Myl 0o A

= by Tha | gloads | = APPC.4

%=-%er T3Er T T ¢ )
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Solving equations (APPC.3) and (APPC4) for M,, and M,, we find

2EI 3A] 2EI

Moy = —~ [29,, +6, — T] - [26/0245 + gj02%) (APPC.5)
2EI 3A] 2EI

My = =~ [o,, + 26, — T] - [26}°%75 + gj0ads] (APPC.6)

Equations (APPC.5) and (APPC.6) are the general form of the slope-deflection
equations.
Consider the case when 6, = 6, = A = 0. Then,

2EI

Mab = __l__ [29;0‘“” + Otl’oads] (APPC.7)
2EI
My, = — ; [zetl’oads +9‘:oads] (APPC.8)

Now the support conditions we have specified are those of a fixed-ended beam. Thus,
the moments in equations (APPC.7) and (APPC.8) are called the fixed end moments.
Note that these moments can be found by computing the rotations at the ends of a simply
supported beam due to the loads applied to the beam.

The slope-deflection equations can now be written

2EI 3A ;

May = —— [29,, +6, — T] + Mf (APPC.9)
2EI 3A ;

Mos = — [29b +6, — T] + M/ (APPC.10)

Keep in mind that the fixed end moments will be positive when acting clockwise on the
beam.

We can write these equations in even a more compact form. If the loads are zero
and 6, and 6, are also zero, we have

Mg, = —6EIA/I? My, = —6EIA/I?

The above expressions are the fixed end moments due to support movements. Thus,

2E1 ;

May = —— (26, + 6] + Mmjxe (APPC.11)
2E1 ;

Myo = = (26, + 6] + Mz (APPC.12)

where the fixed end moments in equations (APPC.11) and (APPC.12) include the effects
of loads and support movements, positive clockwise at the ends of the member.

The slope-deflection equations used in concert with joint equilibrium equations can
be used to solve many structural problems involving beams and frames. The number
of simultaneous equations that must be solved will be equal to the number of kinematic
degrees of freedom. Thus, the method is a displacement method of analysis.
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Example
Consider the beam shown in Figure APPC-2.
EI = constant

w k/ft

a b © d
‘_7 ! + ! 4§__1 _4{
Figure APPC-2

The fixed end moments for a beam with a uniformly distributed load applied are given
by +wi?/12. Thus,

M = —wi/12 and ML = wi?/12
Writing the slope-deflection equations for each member we have
Member ab:
Map = QEI/D[28, + 6] — wi*/12 = QEI/1)6p — wi?/12
Mpa = QEI/D[28p + 6,] + wi*/12 = (AE1 /)6y + wi?/12
Member bc:
Mpc = QE1/D[26p + 6c]
Mcp = QEI/D[26c + 6p)
Member cd:
Mcqg = QEI/D[26c + 641 = (AE1 /D)6,
Mg. = QEI/1)[264 + 6:) = QEI /16,
Figure APPC-3 shows free-body diagrams of joints b and c.

M M Mu Ma
(m) (m)
Figure APPC-3 Free-body diagrams
joint b joint ¢ of joints.
Thus,
Mpa + Mpc =0
Mop+Mq=0

Substituting the slope-deflection equations into the above equilibrium equations yields

@EI/1)8y + wi%/12 4+ (2EI/1)[26p + 6. = 0
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or
ﬂflob + ﬂf_’oc - _“1’_’22 (APPC.13)
and
QEI/D(26, + 6] + BEI/1)8; = 0
or
311319,, + goc =0 (APPC.14)

Solving equations (APPC.13) and (APPC.14) for the rotations 6 and 6, we find

wi? wi3

% = —S0E1 <= 360E1

(APPC.15)

Back-substituting the rotation angles into the slope-deflection equations for each mem-
ber yields the final moments at the ends of the members.

Mgy = —.1055 wi?

My, = 0389 wi> = —Mp,
Mep = —0111 wi* = My
Mgc = 0055 wi?

The end shears and reactions can now be found by drawing free-body diagrams of
the members and joints and writing equilibrium equations. These free-body diagrams are
shown in Figure APPC-4.

C ) ( —) ( s—
Ra Vba Vbe Vb Ved R4
Vi
"‘I - V“’I -
T Vbe T Ved
Rb RC

Figure APPC-4
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Chapter 1
1.1. (a), (b) EA/20 —EA/20 0 0
(K] = | ~EA/20 EA/15+EA/20 —EA/15 0
= 0 —EA/15 EA/15+ EA/10 —EA/10
0 0 —EA/10 EA/10

(©) u; =0, uy = 4.48 x 10~3in, u3 = 5.26 x 10~3in, uy = 6.64 x 10 3in.
13. u; =0, up = .01333 in, u3 = .01521 in.
Member 1: P; = —50,000#, P, = 30,0004 Member 2: P, = —30,000#, P; = —15,000#
15. (a) R, =Fb/L, Ry = Fa/L (b) Ry =kL%/6, Ry = kL%/3
(¢ Ri=Ry=L/n (d) Ry =kL3/12, Ry = kL?/4
() Ry =kL*/20, Ry =kL*/5 (f) Ry =wL/3+wyL/6, Ry = w L/6+wyL/3
19, exact = (2000/60 x 10%)[20x — x2/2)
4-element model: u; = 0, up = .002916”, u3z = .005”, us = .00625”, us = .00666"”
L11. u; = .00187", u3 = —.00089", F| = F, = 8000#

113. (a) S=1,K =38
(b) S=0,K=4
(c) S =3, K =0 (neglect axial)
dS=7,K=11

Chapter 2

2.1. (a) .8333 0 —.8333 0 0 0
0 0 0 0 0 0

_ 4 —.8333 0 2.0273 5970 —1.1940 -.5970

(K] =29x10 0 0 5970 2985  —.5970 —.2985

0 0 -1.1940 -.5970 1.1940 5970

0

0 —.5970 —.2985 .5970 .2985

20273 5970
_ 4
(b) [K1g =29 x 10 [ 5970 .2985]

(¢) u3z = .0828”, ug = —.2812” Member 1: P; = 20,000# Member 2: P3 = 22,351#
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2.3.

2.5.

2.7.

2.9.

2.11.

2.13.

2.15.

3.1.

7071 0 O:|

[K]R=39—’5r12%6—(—21[ 0 17071 0

0 0 2
uz = .1170", us = —.0364”, u7 = 0.
Member forces: P; = 19497#, P, = 0, P3 = —17574#, P4 = —-37071#, Ps = 0.
(a) Reduced equation:
5000# 49690.41 0 —24845.2 uy
0 = 0 337650.5 —49690.41 u
0 —248452 —4969041 24845.2 375
uy = 2881", up = 0552”, uz = 375"

(b) X _[49690.41 0 ] _[ul}
PP = 0 3376505 “P =y

t#r) = {°%°}
Member forces: Py = 9783#, P, = —7666.6#, P3 = —1304.4#
Equivalent nodal load at node 3 = 71201.7#
u3 = —.1564", ug = —.0408", us = —.1972", ug = —.0408”
Member 1: P = —16433# Member 5: P = 23268#

Uy =uy =uo =0, u3 = .1170", ug = .0621”, us = .1791”, ug = —.0621”, u7 = 3032",
ug = —.7164"”, ug = —.0621”

Member forces: Py = P, = —P3 = 10000#, P, = —Ps = 14142.1#, P; = 20000#,
Py = —282843#

Uy = uy = ug = 0, us = —.6114", uy = —0368", us = —.0663", u; = —0331”,
ug = —.0029”
Py = —66214#, P, = —5460#, P3 = —16020#, P4 = —6552#, Ps = 45589#, Pg = —5460#

Components of equivalent nodal forces are 1011597 (x) and 20231.94 (y)
Uy =uy = ug =0, uz = —.0063", ug = 0990”, us = —.0126”, u7 = —.0063”, ug = .0611”

P = Ps = —4096#, P, = Pg = 6107#, P3 = —3053#, P4 = 7328#
u3 = us = .3224”, uy = .0368", u7; = .1939”
Py = —Py = 13333#, P = P7 = —P3 = —Pg = —42164#

Chapter 3

232000 -3867 77333 0
[Klr = | —3867 12889 —3867 Fp=1{-10*
77333 —3867 154667
us = —00776 rad., us = —.7759”, ug = —.01552 rad.
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3.3.

3.

3.7.

3.9.

3.13.

Answers to Selected Problems

Member 1: Member 2:
P —7.5% P 10.0%
P | ) —-300"* Py | _ ) 600" *
P 7.5% P~ ] -10.0¢
Py —600"* P4 0

[K]r = [150155.6] Equivalent nodal force = 990" ¥(CCW)
ug = .006593 rad.

Member 1: Member 2:
P 2.06 P 2.06F
P _ ) 2475+ Py | ) 4957k
P ) —2.06 P~ ) -206
Py 495.0" % Py 247.5"k

Add fixed end forces.

—212.66"* I _ [141778 42533] [u4|
119.63"~% | = | 42533 191400 ] | ue

ug = —.001808 rad, ug = .001027 rad.
Selected forces:

Member 1: P; = —.85%, P, = —51.27"%, P, = —102.53"~*
Member 2: P; = —.83%, P, = —110.13"7%, P, = 10.45"~*

Member 3: P; = 1.71%, P, = 109.18"~%, P, = 54.59"—*
Add fixed end forces.

0 1613.6 0 302.17 ( ug
—36k = 0 12100 295.4 | { us
—2160"—k 302.1  295.4 119222 ug

ug = .003382"”, us = —.025343", ug = —.018063 rad.

Selected forces:
Member 1: P; = 30.62%, P; = —435.5"~k pPs = 5.45*

Member 2: P, = —5.38%, P3 = —1288"% P = —647.7"*
Add fixed end forces to member 2.

—165.88"% I _ [212667 53167] [u4 I
[ 0 ~ L 53167 106333 lue

us = —.000891 rad, ug = .000446 rad.
Member 1: P; = —1.48%, Py = —47.39"k P, = —94.79"—*

Member 2: P; = —.74%, Py = —71.09"7%, P, = 0.
Add fixed end forces to member 1.

—106.66"—* 116000 58000 O uy
—186.67"F } = | 58000 203000 43500 | { us

400"+ 0 43500 87000 ] | us
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uz = .000175 rad, us = —.002189 rad, ug = .005692 rad.
Member 1: P; = —1.95%, P, = —106.66" %, P4 = —243.81"*%

Member 2: P, = 1.90%, P, = 57.14"*, Py = 400"
Add fixed end forces.

3.15. us —.018684”
us —.001221”
ug | _ J —.001136 rad
u7 [~ ] —.018828”
ug —.002917"
ug .001761 rad

Selected member forces:
Member 1: P; = 5.90%, P; = —61.99"% P = —105.92"*
Member 2: P, = 1.58%, P; = —45.28"% Pg = 234.79"k

Member 3: P; = 14.1%, P3 = 118.0177%, Py = 49.9"k
Add fixed end forces.

3.17. u3 = —.026294 rad, us = .005137”, ug = —.005137", ujp = —.04913 rad.
Selected member forces:
Member 1: P = —12.41%, Ps = —4.83k, Pg = 1158.5"¢
Member 2: P; = 15.17%, P3 = —1158.5"7%, Pg = —1820.8" %
Member 3: P; = 1820.8"%, Ps = —15.17%
3.19. u4 = .000344”, ug = —.001382 rad, ug = —.004138"

Selected member forces:
Member 1: P, = —1.66%, P3 = —66.36""k, Ps = —133.14"~*
Member 2: P; = —66.78"~%, Ps = 66.78"~%

Member 3: P, = 10X, P3 = 133.14"~*
Add fixed end forces to member 2.

Chapter 4

4.1 0 132299 0 0 u)
0 = 0 235126.5 2448.9 us
—10% 0 2448.9 34.01 u3

uy =0, up = .012224 rad, u3 = —1.1755 in.
Member forces:

Member 1: P;

—34"7% Py = 25"k Py = —5k Ps = 899.75"k
Member 2: P = 34"k, P3 = —5k, P5 = 899.75"—k
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4.5. Selected displacements:

u; = —.000116, us = .002728, ujo = .001544, u;7 = —.001364
Selected member forces:

Member 2: P = 128.28"%, Py = —128.28"%, Pg = —10¢
Member 5: P| = —2049"k p, = 720"k pg = -3k
Member 6: P, = 107.79"%, Ps = —107.79"*

4.7. Selected displacements:

uz = .00163 rad, u;; = .001406 rad, u;g = —.13283", uz¢ = —.00163 rad.
Selected member forces:

Member 5: P =7.69" —k, Ps = —21731"7%, pg = —1.87*

Member 9: P, = 15.38"%, Py = 1.25F, Ps = —165.4"—*%

Member 11: P, = —7.69"~%, Py = 1.87%, Ps = —217.3"
4.9. Selected displacements:

ug = —001136 rad, ug = —.03423", u;5 = —.12524"
Selected member forces:

Member 2: P, = 1125"%, Py = —1.88K, p, = .15"*
Member 9: P3 = 125, Ps = —149.7" %, pg = —1.25*

Chapter 5

20 2121 0 0 uy
ot=| o 1213 1100 | { u2
0 0 -11.00 36976 |  u3

uy = .94267", up =u3 =0
Axial forces: Py = P3 =0, P, = —Py =22.5¢

5.1.

5.3. Selected displacements:
u7 = .00274", ug = —.00943", u;; = —.00943"
Member forces:
Py = P, =2.207%, P3 = Py = 1.122%, Ps = 1.023%, Pg = P; = —5.918%

5.7. Selected displacements:
u13 = .01166", uzo = .00528”, uzq = —.1347", uzs = —.0410”
Selected member forces:

Ps = —9.89, P; = 7.67%, Pig'= —12.6%, Py; = 8.91%
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Chapter 6

6.1. Selected displacements:
uy = —.00164", u3 = —.00123 rad, ug = .0122 rad.
Selected member forces:

Member 1: P; = 2.07%, Py = —44.56%, Pj, = 99.22"—k
Member 3: P| = 2.76%, Ps = 265.6"k, Pjg = —33.43F

6.5. Selected displacements:
u7 = —.00387", uy2 = .00237 rad, uzg = —.0193”
Selected member forces:

Member 2: P; = 202.86%, Ps = 326053"*, Pjo =0
Member 4: P; = 25208#, Py = 3028#, P = —9737#

6.7. Selected displacements:
ug = —.0046 rad., ug = —.0053", u;7 = —.0015 rad.
Selected member forces:

Member1: P, =14.35" Ps;= 48.63" P, = -80" *
Member4: P, =10.61% Ps=37.02" % P,y = 65.72"

Chapter 7

7.1. maxdiff =3 bw =38
73. maxdiff =3 bw =38
75. maxdiff =2 bw =9
7.7. maxdiff =2 bw =9

7.9. As numbered, maxdiff =4 bw =15
Exchange 1 and 4, maxdiff =3 bw = 12
Renumber 1 t0 3,3t04,4to 1, maxdiff =2 bw =9

7.11. As numbered, maxdiff =4 bw =15

7.13. As numbered, maxdiff =4 bw = 30
Exchange 1 and 3, maxdiff =2 bw = 18

7.15. As numbered, maxdiff =3 bw = 24

7.17. For the truss members, 4, 5, 7, and 8 will contribute to Kg.

59294 85.44 1450 —483.33 0 0
- 592.94 1450 0 —-24.17 1450
(Klg = - 232000 0 —1450 58000
sym. 59294 -85.44 1450
- - — - 59294 —1450 |

- - - - - 232000
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7.19. 1 0 O 0
n_ |0 1 o0 0
)= 0 0 .866 -.5
0 0 .5 .866
185611.2 —123740.8 —98868.9  199965.1
565827.3  65912.6 —133310.1
nT N _
B (KA = sym. 294316.6 —246036.9
- - - 295984.6
Remove row and column 4. With {F} = {5 0 0},
{us us ds)={.0374 .00690 .01102)
Member forces: 1: 3.33F  2: 3.06f 3: —6.01%
7.21. (a) [2436.80 0 1208.33 7
[K1r = 0 2421.69 0
| 1208.33 0 96666.66 _
(b) [2421.69 0 0
(Klgr = 0 2436.80  1208.33

L O 1208.33  96666.66

7.23. Sub 1 consists of left 4 members; sub 2 as right 4 members.
For sub 1, relabel nodes: 2to4,1to 3,4to 1, 3 to 2.
For sub 2, relabel nodes: 4to 1,3t02,6to 3,5 to 4.

For sub 1:
654.22 170.88 0 0
654.22 0 —483.33
_ _ — 483.33
For sub 2:
0 0 0 O
00 0O
Kle=19 0 0 0
00 0O

{F}e={10 -10 —10 0}
{uy uy w3z ug)={.0414 —.0999 —.0207 —.0999) in
{us) = {.0414 —2412 —.0414 —2412}in

7.25. (@) up =92 x1077P
) up =34x10""P, u3 =92 x10""P

Chapter 8
8.1. (a) Ny =1—(sin x/sin L) N =sin x/sin L

(b) Ny =1 —sin(mx/2L) N; =sin(wx/2L)
8.3. Use equations (8.37) and (8.55).
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8.9. Fl, =M Ni(a) = M(2a3/L3 = 3a%/L? + 1)

Fae = M Ny(@a) = M(@®/L? - a?/L)
8.11. u(x) = —(5F/E)In(1 — x/10)
8.13. y(L/2) = PL3/(48.7EI)

Chapter 9

9.3. us = .1064 in, ug =0 ox =0, 0, =0, 7,y = 8000 psi.

95. {us us us ug}=1{.01593 .00250 .01463 .00010} in
Element 1: o, = 39808 psi.
Element 2: o, = 40187 psi.
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Admissibility, 163 Combining elements, 129-31
Approximate: Combining elemental stiffnesses, 9-11
displacement fields, 168, 172-73, 182, See also Assembly of elemental stiffnesses.
191-92 Compatibility, 1, 3
methods, 135, 141, 146, 181-83 Computer formulation:
Assembly of elemental matrices, 8-13, 38, 64, bar element, 22-25
66, 130, 197 grid element, 95
Axes. See Coordinate systems. two-dimensional truss, 50-52
Axial deformation: two-dimensional frame, 76-79

three-dimensional truss, 106
three-dimensional frame, 120-21
Constituative matrix, 190-91
Constraint equations, 14546
Coordinate systems, 32, 35, 46, 62,87-88, 90,
101
. Coordinate transformation:
Bandwidth, 126-28 two-dimensional truss, 33-34

Bars: i el 1 two-dimensional frame, 62-63
one-dimensional, grid, 90

tapered, 150
three node, 173
Beam element:

neglect of, 4

in frames, 144
Axial force diagram, 18, 20
Axial force element. See Bars, Trusses.
Axial strain, 19

three-dimensional truss, 100—-102
three-dimensional frame, 111-113

hinges, 136-42 Degrees of freedom, 4, 17

non-uniform cross-section, 151-52 Direction cosines, 100—-102

stiffness by virtual work, 172 Displacemen[:

stiffness matrix, 61 approximate. See Approximate displacement
Bending moment diagrams, 65, 71 fields.
Boundary conditions, 3, 24 global, 10, 33
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local, 33

method, 1

nodal, 18

specified, 15

support, 15-17, 4145, 76
unit, 4-6

vector, 33-34

virtual, 158

Elastic constants, 190-91
Elastic supports, 131-2
Elemental forces, 11-13, 38-39, 65, 92, 104,
113
Elemental stiffness:
bar, 8
beam, 61
by virtual work, 167-73
combination of, 9-10
frame, two-dimensional, 61
frame, three-dimensional, 111
grid, 89
three-node bar element, 173
truss, two-dimensional, 33
truss, three-dimensional, 100-101
Equilibrium equations, 1, 9, 41, 45
Equivalent nodal forces. See Forces.
External virtual work, 162-63

Fabrication error, 47-49
Finite element method, 189
Fixed-end forces. See Forces, fixed-end.
Flexibility method, 1
Force-displacement relationship, 7, 176
Force method, 1
Force potential, 178-79
for plate element, 194-95
Forces:
elemental. See Elemental forces.
equivalent nodal, 17-19, 68, 93, 105,
174-76
by virtual work, 174-75
fixed-end, 17-18, 20-21, 68-69, 213
member, 12-13, 38-39, 64, 71, 88, 110, 120
non-nodal, 17, 68, 91
Frame element:
two-dimensional
hinges, 13641
stiffness matrix, 61
transformation matrix, 62
three-dimensional
coordinate transformation, 111-13
stiffness matrix, 111

227

Free-body diagrams, 12-13, 20, 22, 71, 93,
215

Global coordinate system, 32
Global stiffness matrix:
frame, two-dimensional, 63
grid, 90
truss, two-dimensional, 35-36
truss, three-dimensional, 101
Grid element, 87-95
stiffness matrix, 89
transformation matrix, 90

Hinges in beam and frame elements, 136-41

Inclined supports, 133-36
Indeterminacy
kinematic, 34
static, 2-3
Interface nodes, 147-8
Internal virtual work, 164-65
axial force member, 164
beam, 165

Joints, 3
K-node, 112-13

Loads:
equivalent, 17-19
non-nodal, 17, 68, 91, 121

Matrices:
addition, 203
inversion, 203-204
inversion, computer routines, 207-210
multiplication, 121, 203
subtraction, 203
transpose, 121, 202
Matrix:
adjoint, 204
cofactor, 204
column, 202
diagonal, 202
row, 202
square, 202
symmetric, 202
unit, 202
Minimum potential energy, 180-81
for plate element, 195
Moment-curvature relationship, 172
Moment distribution, 3

Nodal equilibrium, 7
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Nodes, 34
K-node, 112-13

Non-nodal forces. See Loads, non-nodal.

Non-uniform members, 150

Partitioning, 13-15, 45
Plane strain, 190-91
Plane stress, 190-91
Potential energy, 178-80

Reactions, 2, 12, 14, 160
Reduced force matrix, 24-25

Reduced structural stiffness, 24, 40, 49, 130

Redundants, 3

References, 216

Restraints, 4, 17-18

Rigid body motion, 4, 7, 162-63

Shape functions, 167-68
for bar, 168
for beam, 171
for plate element, 192-93
Shearing force diagram, 65, 71
Sign convention:
bar element, 5, 8, 12, 20
beam, 58
frame, two-dimensional, 58, 61
frame, three-dimensional, 110
grid element, 88
truss, 33
Simultaneous equations, 3
Singularity, 6
Slope-deflection, 3, 59-61, 211-15
Specified displacements, 15-17
Static condensation, 140-142
Stepped bar, 151
Stiffness:
definition, 5
method, 1
Stiffness matrix:
bar, 8
bar, three-node, 173
beam, 61
frame, two-dimensional, 61
frame, three-dimensional, 111
grid, 89
plate, 195

Index

truss, two-dimensional, 33, 36

truss, three-dimensional, 101
Strain-displacement relationships, 193
Strain-energy, 176-78

for plate element, 194
Stress-strain relationships. See Constituative

matrix.

Structural stiffness matrix, 10-11

reduced, 13, 39, 49, 130

by minimum potential energy, 18485
Submatrix, 14
Substructuring, 147-49
Super-element, 152
Superposition, 3, 6-7, 18, 21, 32, 58
Support displacements, 15-17, 41-46, 76-77
Supports:

elastic, 131-33

inclined,133-36

Tapered:
bar, 150
beam, 152
Temperature effects:
bar, 21
beams and frames, 74-77
equivalent thermal forces, 21
truss, two-dimensional, 46-50
truss, three-dimensional, 105-6
Thermal. See Temperature effects.
Torsion:
cross-sectional constants, 89
warping, 89
Transformation of coordinates. See Coordinate
transformation.
Triangular plate element, 189, 191-92
Tributary:
length, 17
width, 58
Trusses:
two-dimensional, 32-50
three-dimensional, 99-106

Virtual work, 158
external, 162-63
for rigid bodies, 159-60
for deformable bodies, 162-64
internal, 164-65



