Calcul matriciel – Matrices

Cours

- **CHAPITRE 1**: Généralités sur les matrices
 - 1) Notion de matrice
 - 2) Matrices particulières
- **CHAPITRE 2 :** Egalité de deux matrices
- **CHAPITRE 3**: Opérations sur les matrices
 - 1) Transposition de matrice
 - 2) Somme de matrices
 - 3) Soustraction de matrices
 - 4) Produit d'une matrice par un réel
 - 5) Produit d'un vecteur-ligne par un vecteur-colonne
 - 6) Produit d'une matrice par un vecteur-colonne
 - 7) Produit de deux matrices
- CHAPITRE 4 : Ecriture matricielle d'un système linéaire d'équations et résolution d'un tel système
 - 1) Matrice inverse
 - 2) Matrice inverse et déterminant
 - 3) Recherche de l'inverse d'une matrice
 - 4) Ecriture matricielle d'un système lineaire d'équations et résolution du système

CHAPITRE 1 : Généralités sur les matrices

1) NOTION DE MATRICE

Définition : On appelle MATRICE de dimension $n \times p$ un tableau de nombres comportant n lignes et p colonnes. Ces nombres sont appelés COEFFICIENTS de la matrice.

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{np} \end{pmatrix} \leftarrow ligne \ 2$$

$$\uparrow \qquad \qquad \uparrow$$

$$colonne \ 2 \qquad colonne \ p$$

Notations:

- Toute matrice A s'écrit sous la forme $\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{np} \end{pmatrix}$ où a_{11}, \dots, a_{np} désignent les coefficients de la matrice.
- Le coefficient de la $i^{\text{ème}}$ ligne et de la $j^{\text{ème}}$ colonne est noté a_{ij} .
- La matrice A se note aussi $(a_{ij})_{1 \le i \le n}$. Autrement dit, A est la matrice des coefficients a_{ij} . $1 \le j \le p$

Exemple: Si $A = \begin{pmatrix} -1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$, alors a_{12} designe le coefficient de la 1^{ère} ligne et de la 2^e colonne avec $a_{12} = 4$ et

 a_{21} désigne le coefficient de la 2^{ère} ligne et de la 1^{ère} colonne avec $a_{21} = 2$. A se compose de 2 lignes et de 3 colonnes donc A est une matrice de dimension 2×3 .

2) MATRICAS PARTICULIÈRES

- Une matrice comportant une seule ligne s'appelle un **VECTEUR-LIGNE**. Un vecteur-ligne a donc pour dimension $1 \times p$. Dans ce cas, n = 1.
- Une matrice comportant une seule colonne s'appelle un **VECTEUR-COLONNE**. Un vecteur-colonne a donc pour dimension $n \times 1$. Dans ce cas, p = 1.

- Une matrice comportant autant de lignes que de colonnes s'appelle une MATRICE CARRÉE. Une matrice carrée a donc pour dimension $n \times n$. Dans ce cas, n = p.
- On appelle MATRICE DIAGONALE une matrice carrée dont tous les coefficients sont nuls, exceptés ceux de la diagonale issue du coin en haut à gauche. Autrement dit, A est une matrice diagonale si : $a_{ij} = k \ (k \in \mathbb{R})$ si i = j et $a_{ij} = 0$ si $i \neq j$.
- On appelle MATRICE IDENTITÉ (ou matrice unité) une matrice carrée dont tous les coefficients de la diagonale issue du coin en haut à gauche sont égaux à 1, et dont tous les autres coefficients sont nuls. Autrement dit, A est une matrice identité si : a_{ij} = 1 si i = j et a_{ij} = 0 si i ≠ j. On note I_n la matrice identité d'ordre n.
- On appelle MATRICE NULLE toute matrice dont les coefficients sont tous nuls. Dans ce cas, $a_{ij} = 0$.

Exemples:

- $\binom{2}{7}$ est un vecteur-colonne de dimension 2×1
- $(2 \ 4 \ -1)$ est un vecteur-ligne de dimension 1×3
- $\begin{pmatrix} 1 & 4 \\ -2 & 3 \end{pmatrix}$ est une matrice carrée de dimension 2×2 (ou d'ordre 2)
- $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ est une matrice diagonale
- $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ est la matrice identité d'ordre 4, que l'on note I_4
- $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ est une matrice nulle.

Définition : Deux matrices sont égales si elles ont même dimension et si les coefficients situés à la même place sont égaux. Autrement dit, deux matrices A et B sont égales si A et B ont toutes deux pour dimension $n \times p$ et si $a_{ij} = b_{ij}$ (pour toute ligne i et toute colonne j).

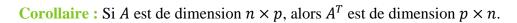
Exemples:

- Exemple 1: Les matrices $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$ ne sont pas égales phisqu'elles n'ont pas même dimension. En effet, la matrice A est de dimension 2×3 et la matrice B de dimension 3×2 .
- Exemple 2: Les matrices $A = \begin{pmatrix} 1 & -2 \ -3 & 4 \end{pmatrix}$ et $B = \begin{pmatrix} a & b \ c & d \end{pmatrix}$ sont deux matrices carrées de même dimension 2×2 ; elles ne sont égales que si le système suivant est vérifié : $\begin{cases} a = 1 \\ b = -2 \\ c = -3 \\ d = 4 \end{cases}$

CHAPITRE 3 : Opérations sur les matrices

1) TRANSPOSITION DE MATRICE

Définition : On appelle **MATRICE TRANSPOSÉE** de la matrice A la matrice obtenue en permutant les lignes et les colonnes de A. Ainsi, à tout coefficient a_{ij} de la matrice A correspond le coefficient a_{ji} de la matrice transposée A^T .



Exemple: La matrice
$$A = \begin{pmatrix} -1 & 4 \\ 2 & 5 \\ 3 & -6 \end{pmatrix}$$
 a pour matrice transposée la matrice $A^T = \begin{pmatrix} -1 & 2 & 3 \\ 5 & -6 \end{pmatrix}$

2) SOMME DE MATRICES

Définition : On appelle **SOMME** de deux matrices (de même dimension $n \times p$) la matrice obtenue en additionnant les coefficients qui ont la même position.

Autrement dit,
$$(a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}} + (b_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}} = (a_{ij} + b_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$$
.

$$\operatorname{Ainsi}, \begin{pmatrix} a_{11} & \cdots & a_{1p} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{np} \end{pmatrix} + \begin{pmatrix} b_{11} & \cdots & b_{1p} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{np} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & \cdots & a_{1p} + b_{1p} \\ \vdots & \ddots & \vdots \\ a_{n1} + b_{n1} & \cdots & a_{np} + b_{np} \end{pmatrix}.$$

Remarque important on ne peut pas additionner deux matrices de dimensions différentes.

Proposition Les propriétés habituelles de l'addition valent pour la somme de matrices :

L'associativité:
$$(A+B)+C=A+(B+C)=A+B+C$$

La commutativité :
$$A + B = B + A$$

Exemple: Soient
$$A = \begin{pmatrix} -1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$. $A + B = \begin{pmatrix} -1 + 1 & 4 + 2 \\ 2 + 3 & 5 + 4 \\ 3 + 5 & 6 + 6 \end{pmatrix} = \begin{pmatrix} 0 & 6 \\ 5 & 9 \\ 8 & 12 \end{pmatrix}$.

Matrices et calcul matriciel – Cours

Remarque: Si la somme de matrices est commutative, en revanche nous verrons plus loin que la soustraction et le produit de matrices ne le sont pas.

3) SOUSTRACTION DE MATRICES

Remarque: La soustraction de matrices est un corollaire de l'addition de deux matrices.

Soient les matrices
$$A = \begin{pmatrix} a_{11} & \cdots & a_{1p} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{np} \end{pmatrix}$$
 et $B = \begin{pmatrix} b_{11} & \cdots & b_{1p} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{np} \end{pmatrix}$ de dimension $n \times p$.

$$A - B = \begin{pmatrix} a_{11} & \cdots & a_{1p} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{np} \end{pmatrix} - \begin{pmatrix} b_{11} & \cdots & b_{1p} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{np} \end{pmatrix} = \begin{pmatrix} a_{11} - b_{11} & \cdots & a_{1p} - b_{1p} \\ \vdots & \ddots & \vdots \\ a_{n1} - b_{n1} & \cdots & a_{np} - b_{np} \end{pmatrix}$$

Autrement dit,
$$(a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}} - (b_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}} = (a_{ij} - b_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$$

Remarque importante : On ne peut pas soustraire deux matrices de dimensions différentes.

4) PRODUIT D'UNE MATRICETAR UN RÉEL

Définition : On appelle **PRODUIT** d'une matrice A par un réel k la matrice obtenue en multipliant tous les coefficients de A par k. Cette matrice est notée $k \times A$ ou kA.

Autrement dit,
$$k \times (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}} (ka_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$$

Autrement dit,
$$k \times (a_{ij})_{1 \le i \le n} = (ka_{ij})_{1 \le i \le n}$$
.
$$1 \le j \le p$$
Ainsi, $k \times \begin{pmatrix} a_{11} & \cdots & a_{1p} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{np} \end{pmatrix} = \begin{pmatrix} k \times a_{11} & \cdots & k \times a_{1p} \\ \vdots & \ddots & \vdots \\ k \times a_{n1} & \cdots & k \times a_{np} \end{pmatrix}$.

Exemple Si
$$A = \begin{pmatrix} 1 & 4 \\ -2 & 5 \\ 3 & -6 \end{pmatrix}$$
 alors $-2A = \begin{pmatrix} -2 \times 1 & -2 \times 4 \\ -2 \times (-2) & -2 \times 5 \\ -2 \times 3 & -2 \times (-6) \end{pmatrix} = \begin{pmatrix} -2 & -8 \\ 4 & -10 \\ -6 & 12 \end{pmatrix}$.

Remarques:

- On positionne toujours le réel avant la matrice et on écrit donc kA ou $k \times A$ et non $A \times k$.
- Les propriétés habituelles de la multiplication valent pour le produit d'une matrice par un réel.
- La matrice $(-1) \times A = -A$ est appelée la MATRICE OPPOSÉE de A. Cette relation permet de définir la soustraction de deux matrices : $A - B = A + (-B) = A + (-1) \times B$.

Proposition : Pour tous réels α et β et pour toutes matrices A et B, les propriétés de linéarité suivantes sont respectées :

- $(\alpha + \beta)A = \alpha A + \beta A$
- $(\alpha\beta)A = \alpha(\beta A)$
- $\alpha(A+B) = \alpha A + \alpha B$

5) PRODUIT D'UN VECTEUR-LIGNE PAR UN VECTEUR-COLONNE

Définition : Soit A un vecteur-ligne de dimension $1 \times p$ et B un vecteur-colonne de dimension $p \times 1$. On appelle **PRODUIT** des matrices $A \times B$ la somme des produits du premier élément de A par le premier élément de B, du deuxième élément de A par le deuxième élément de B, ..., du $p^{\text{ème}}$ élément de B.

Autrement dit, le produit $A \times B = (a_{1i})_{1 \le i \le p} \times (b_{i1})_{1 \le i \le p}$ correspond à la somme des produits $a_{1i} \times b_{i1}$, c'està-dire à la somme des produits du $i^{\text{ème}}$ élément de A par $i^{\text{ème}}$ le élément de B. (i variant de 1 à p)

Ainsi:
$$(a_1 \quad a_2 \quad \dots \quad a_p) \times \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_p \end{pmatrix} = a_1b_1 + a_2b_2 + \dots + a_pb_p$$

Remarques importantes:

- La matrice A doit avoir autant de colonnes que B de lignes.
- Le produit $A \times B$ de deux matrices A et B est un nombre réel.

Exemple:
$$(2 \ 3) - 1) \times \begin{pmatrix} 4 \\ -5 \\ 6 \end{pmatrix} = 2 \times 4 + 3 \times (-5) + (-1) \times 6 = -13$$

6) PRODUIT D'UNE MATRICE PAR UN VECTEUR-COLONNE

Définition : Soit *A* une matrice de dimension $n \times p$ et soit *B* un vecteur-colonne de dimension $p \times 1$. On appelle le produit $A \times B$ le vecteur-colonne de dimension $n \times 1$ obtenu en multipliant chaque ligne de *A* par le vecteur-colonne *B*.

Exemples:

- Exemple 1: $\begin{pmatrix} 1 & 2 \\ -3 & 4 \end{pmatrix} \times \begin{pmatrix} 5 \\ -6 \end{pmatrix} = \begin{pmatrix} 1 \times 5 + 2 \times (-6) \\ -3 \times 5 + 4 \times (-6) \end{pmatrix} = \begin{pmatrix} -7 \\ -39 \end{pmatrix}$
- Exemple 2: $\begin{pmatrix} -1 & 4 & 7 \\ 2 & -5 & -8 \\ 3 & 6 & 9 \end{pmatrix} \times \begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix} = \begin{pmatrix} -1 \times 2 + 4 \times (-4) + 7 \times 6 \\ 2 \times 2 + (-5) \times (-4) + (-8) \times 6 \\ 3 \times 2 + 6 \times (-4) + 9 \times 6 \end{pmatrix} = \begin{pmatrix} 24 \\ -24 \\ 36 \end{pmatrix}$
- Exemple 3: $\begin{pmatrix} -1 & 2 & 3 \\ 4 & -5 & -6 \end{pmatrix} \times \begin{pmatrix} 7 \\ -8 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \times 7 + 2 \times (-8) + 3 \times 9 \\ 4 \times 7 + (-5) \times (-8) + (-6) \times 9 \end{pmatrix} = \begin{pmatrix} 4 \\ 14 \end{pmatrix}$

Remarque importante : Il faut que A ait autant de colonnes que B de lignes pour que le produit $A \times B$ soit possible.

7) PRODUIT DE DEUX MATRICES

Définition: Soit A une matrice de dimension $n \times p$ et soit B une matrice de dimension $p \times m$. On appelle le **PRODUIT** $A \times B$ la matrice X de dimension $n \times m$ où chaque coefficient x_{ij} est le produit de la $i^{\text{ème}}$ ligne de A par la $j^{\text{ème}}$ colonne de B.

Autrement dit : Si on pose
$$A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$$
 et $B = (b_{ij})_{\substack{1 \le i \le p \\ 1 \le j \le m}}$ $A \times B = (x_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le m}}$ avec $x_{ij} = \sum_{k=1}^p a_{ik} b_{kj}$.

Remarque importante : La matrice $A \times B$ n est définie que si le nombre de colonnes de A est égal au nombre de lignes de B.

Exemples:

• Exemple 1:

$$\begin{pmatrix} 1 & 2 & -3 \\ 4 & -5 & 6 \end{pmatrix} \times \begin{pmatrix} 7 \\ 9 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \times 7 + 2 \times 9 + (-3) \times 3 & 1 \times 8 + 2 \times (-1) + (-3) \times 5 \\ 4 \times 7 + (-5) \times 9 + 6 \times 3 & 4 \times 8 + (-5) \times (-1) + 6 \times 5 \end{pmatrix} = \begin{pmatrix} 16 & -9 \\ 1 & 67 \end{pmatrix}$$

• Exemple 1:

$$\begin{pmatrix}
1 & 2 & -3 \\
4 & -5 & 6
\end{pmatrix} \times \begin{pmatrix}
7 \\
9 \\
3 & 5
\end{pmatrix} = \begin{pmatrix}
1 \times 7 + 2 \times 9 + (-3) \times 3 & 1 \times 8 + 2 \times (-1) + (-3) \times 5 \\
4 \times 7 + (-5) \times 9 + 6 \times 3 & 4 \times 8 + (-5) \times (-1) + 6 \times 5
\end{pmatrix} = \begin{pmatrix}
16 & -9 \\
1 & 67
\end{pmatrix}$$
• Exemple 2:

$$\begin{pmatrix}
1 & 2 & -3 \\
4 & 7 + (-5) \times 9 + 6 \times 3 & 4 \times 8 + (-5) \times (-1) + 6 \times 5
\end{pmatrix} = \begin{pmatrix}
16 & -9 \\
1 & 67
\end{pmatrix}$$
• Exemple 2:

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
3 & 4 & 4 & 4 & 4 & 4 \\
3 & 2 & -1
\end{pmatrix} = \begin{pmatrix}
1 \times (-6) + (-2) \times 3 & 1 \times 5 + (-2) \times 2 & 1 \times 4 + (-2) \times (-1) \\
3 \times (-6) + 4 \times 3 & 3 \times 5 + 4 \times 2 & 3 \times 4 + 4 \times (-1) \\
(-5) \times (-6) + 6 \times 3 & (-5) \times 5 + 6 \times 2 & (-5) \times 4 + 6 \times (-1)
\end{pmatrix}$$

Remarque: Disposition pratique des matrices pour les calculs souvent adoptée:

Matrices et calcul matriciel – Cours

Propriétés :

- La multiplication de matrices n'est **pas commutative** : $A \times B \neq B \times A$.
- La multiplication de matrices est **associative** : $(A \times B) \times C = A \times (B \times C) = A \times B \times C$.
- La multiplication des matrices est **distributive** par rapport à l'addition :

$$A \times (B + C) = A \times B + A \times C$$

CHAPITRE 4 : Ecriture matricielle d'un système linéaire d'équations et résolution d'un tel système

1) MATRICE INVERSE

Rappel : L'inverse d'un nombre réel non nul α est le nombre $\frac{1}{\alpha}$; il est défini par la relation $\alpha \times \frac{1}{\alpha} = 1$ où 1 est l'élément neutre de la multiplication.

Définition : Soit A une matrice carrée d'ordre n. La **MATRICE INVERSE** de A, notée A^{-1} , est définie, quand elle existe, par $A \times A^{-1} = I_n$. Si une telle matrice existe, on dit alors que A est **INVERSE**.

Remarque : Certaines matrices n'admettent pas de matrice inverse. Exemple $\begin{pmatrix} 2 & 3 \\ 4 & 6 \end{pmatrix}$ n'est pas inversible.

Propriété : On démontre que $A \times A^{-1} = A^{-1} \times A = I_n$.

2) MATRICE INVERSE ET DÉTERMINANT

Définition : Soit A la matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. On appelle **DÉTERMINANT** de la matrice, noté $\det(A)$, le réel ad-bc.

Théorème : Soit une matrice $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Si $\det(A) \neq 0$, alors A admet une matrice inverse unique A^{-1} définie par $A^{-1} = \underbrace{\frac{1}{\det(A)}} \times \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

RECHERCHE DE L'INVERSE D'UNE MATRICE

Point-méthode : Pour déterminer l'inverse d'une matrice carrée A d'ordre n, on recherche une matrice B dont les coefficients sont des inconnues, telle que $A \times B = I_n$, ce qui revient à résoudre un **SYSTÈME DE** n **ÉQUATIONS À n INCONNUES**. Si ce système n'admet pas de solution, A n'est pas inversible.

Exemples:

• Exemple 1 : Soit la matrice $A = \begin{pmatrix} 1 & -2 \\ 2 & -4 \end{pmatrix}$. Déterminons la matrice inverse de A, si elle existe.

$$\det(A) = 1 \times (-4) - 2 \times (-2) = -4 + 4 = 0$$

det(A) = 0 donc la matrice A n'est pas inversible.

Remarque: Une matrice non inversible est également appelée MATRICE SINGULIÈRE.

• Exemple 2: Soit $A = \begin{pmatrix} 5 & 6 & 8 \\ 4 & 1 & 7 \\ 2 & 0 & 3 \end{pmatrix}$. Déterminons la matrice inverse de A, si elle existe; cherchons la $\begin{pmatrix} a & b & c \end{pmatrix}$

matrice $B = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$ telle que $A \times B = I_3$.

$$\begin{pmatrix}
5 & 6 & 8 \\
4 & 1 & 7 \\
2 & 0 & 3
\end{pmatrix} \times \begin{pmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix}
5a + 6d + 8g & 5b + 6e + 8h & 5c + 6f + 8i \\
4a + 1d + 7g & 4b + 1e + 7h & 4c + 1f + 7i \\
2a + 0d + 3g & 2b + 0e + 3h & 2c + 0f + 3i
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

Donc, résoudre $A \times B = I_3$ revient à résoudre les 3 systèmes suivants:

$$(S_1) \begin{cases} 5a + 6d + 8g = 1 \\ 4a + 1d + 7g = 0 \\ 2a + 0d + 3g = 0 \end{cases} \qquad (S_2) \begin{cases} 5b + 6e + 8h = 0 \\ 4b + 1e + 7h = 1 \\ 2b + 0e + 3h \neq 0 \end{cases} \qquad (S_3) \begin{cases} 5c + 6f + 8i = 0 \\ 4c + 1f + 7i = 0 \\ 2c + 0f + 3i = 1 \end{cases}$$

En résolvant ces systèmes, on obtient : (S_1) $\begin{cases} a = 3/11 \\ d = 2/11 \end{cases}$ (S_2) $\begin{cases} b = -18/11 \\ e = -1/11 \end{cases}$ (S_3) $\begin{cases} c = 34/11 \\ f = -3/11 \\ i = -19/11 \end{cases}$

De ce fait, on conclut que $A^{-1} = \begin{pmatrix} \frac{3}{11} & \frac{-18}{11} & \frac{34}{11} \\ \frac{2}{11} & \frac{-1}{11} & \frac{-3}{11} \\ \frac{-2}{11} & \frac{12}{11} & \frac{-19}{11} \end{pmatrix} = \frac{1}{11} \begin{pmatrix} 3 & -18 & 34 \\ 2 & -1 & -3 \\ -2 & 12 & -19 \end{pmatrix}.$

4) EGRITURE MATRICIELLE D'UN SYSTEME LINEAIRE D'EQUATIONS ET RESOLUTION

Propriété: Tout système de n équations à n inconnues peut s'écrire sous la forme d'une égalité entre matrices.

Exemple: Soit le système (S) $\begin{cases} x + 2y - 3z = 4 \\ 2x - y + 3z = 5 \\ -x + 3y - 2z = 6 \end{cases}$. Posons $A = \begin{pmatrix} 1 & 2 & -3 \\ 2 & -1 & 3 \\ -1 & 3 & -2 \end{pmatrix}$, $B = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $C = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$.

Alors le système (S) peut s'écrire $A \times B = C$.

Point-méthode: Résoudre un système de n équations à n inconnues revient à rechercher l'inverse d'une matrice carrée d'ordre n. Si la matrice n'est pas inversible, le système n'a pas de solution.

Démonstration : Si A est inversible : $A \times B = C \Leftrightarrow A^{-1} \times A \times B = A^{-1} \times C \Leftrightarrow I_n \times B = A^{-1} \times C$ $\Leftrightarrow B = A^{-1} \times C$.

(S) peut s'écrire sous la forme de l'égalité matricielle suivante :
$$\begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} \times \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

Remarquons tout d'abord que (S) $\begin{cases} 2x + y = 3 \\ x - y = 2 \end{cases}$ peut aussi s'écrire (S) $\begin{cases} 2x + 1y = 3 \\ 1x + (-1)y = 2 \end{cases}$ (S) peut s'écrire sous la forme de l'égalité matricielle suivante : $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \times \begin{pmatrix} x \\ 1 & 1 \end{pmatrix}$. det $\begin{pmatrix} A \\ 1 & 1 \end{pmatrix}$. det $\begin{pmatrix} A \\ 1 & 1 \end{pmatrix}$. $A^{-1} = \frac{1}{-3} \times \begin{pmatrix} -1 & -1 \\ -1 & 2 \end{pmatrix}$, c'est-à-dire $A^{-1} = \begin{pmatrix} 1/3 & 1/3 \\ 1/3 & -2/3 \end{pmatrix}$.

Donc:
$$\binom{x}{y} = \binom{1/3}{1/3} \quad \binom{1/3}{-2/3} \times \binom{3}{2} = \binom{1/3 \times 3 + 1/3 \times 2}{1/3 \times 3 - 2/3 \times 2} \neq \binom{5/3}{-1/3}.$$

Le couple $\left\{\frac{5}{3}; \frac{-1}{3}\right\}$ est l'unique solution du système (S). du

