Université Ibn Khaldoun Tiaret Faculté de Science Applique Département des Sciences et de la Technologie

Année Universitaire 2015-2016

1ère année LMD ST Unité : Mathd1

Fiche de TD $N^0/02$

Exercice 1.

Soit la fonction f définie de \mathbb{R} dans \mathbb{R} par $f(x) = 2x^2 - 1$ et soit A = [-1, 3]Déterminer les images directe et réciproque de A par f.

Exercice 2.

Soit $f: E \longrightarrow Fune$ application. $A \subset E$ et $B, B' \subset F$

- 1. Montrer que $f(A \cap f^{-1}(B)) = f(A) \cap B$
- 2. Comparer $f^{-1}(B \triangle B')$ et $f^{-1}(B) \triangle f^{-1}(B')$

Exercice 3.

- On considère la fonction f définie de $\mathbb R$ dans $\mathbb R$ par $f(x)=-x^3-3x+2$
 - 1. Calculer f(0), f(1) et f(-1)
 - 2. Montrer que f est dijective.
 - 3. Déterminer les images suivantes $f^{-1}(-2), f^{-1}([2, +\infty[)$
- Montrer que la fonction $f:]1, +\infty[\longrightarrow]0, +\infty[$ définie par $f(x) = \frac{1}{x-1}$ est bijective calculer sa bijection réciproque.

Exercice 4.

Soit f une application bijective de $\mathbb R$ dans $\mathbb R$

 $1.\ Montrer\ que\ l'application$

$$g: \mathbb{R} \longrightarrow \mathbb{R}$$
 $x \longmapsto \frac{f(x)}{\sqrt{1 + (f(x))^2}}$

est injective

2. Montrer que g n'est pas surjective

Exercice 5.

- 1. Déterminer, si elle existe, $\lim_{x\longrightarrow 0} \frac{\sqrt{1+x}-\sqrt{1+x^2}}{x}$ et $\lim_{x\longrightarrow 2} \frac{x^2-4}{x^2-3x+2}$
- 2. En utilisant la définition de la limite, montrer que $\lim_{x\longrightarrow 2} (3x+1) = 7$

Exercice 6.

Exercice 6. On considère la fonction réelle f donnée par $f(x) = \begin{cases} \frac{1+\sqrt{x}-\sqrt{1+x}}{\sqrt{x}} & pou \ x>0\\ -1+\sin x & sinon \end{cases}$

- 1. Déterminer l'ensemble de définition D_f de f, puis y étudier la continuité de f
- 2. Etudier la dérivabilité de f sur D_f. puis donner l'expression de sa dérivieé en tout x ou elle a lieu.
- 3. Soit g la fonction polynomiale défine par $g(x) = x^3 + x^2 + x + a$ où a est un réel donné.

Montrer que l'équation g(x) = 0 admet nécessairement une racine réelle.

Exercice 7.

On considère la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par

$$f(x) = x \arctan \frac{1}{x} - \arg \sinh x$$

- 1. Déterminer le domaine de défintion D de f
- 2. Montrer que f est prolongeable par continuité rn 0 Déterminer ce prolongement que l'on notera g.
- 3. calculer q'(x) pour tout $x \in D$

Exercice 8.

Réoudre les équations suivantes

- $-\arcsin x = \arcsin \frac{4}{5} + \arcsin \frac{5}{13}$
- $-5\cosh x 4\sinh x = 3$
- $\operatorname{arg} \tanh x = \operatorname{arg} \cosh \frac{1}{x}$