توزيعات المعاينة: Sampling Distributions

نفرض أننا أخذنا عينه حجمها n من مجتمع ما، ثم سحبنا منها بعض المقاييس الإحصائية مثل المتوسط الحسابي، التباين،... فإن كل مقياس من هذه المقاييس يعتبر متغير عشوائي في ذاته يختلف من عينه إلى أخرى — هذا المتغير العشوائي يخضع لتوزيع معين — هذا التوزيع يسمى بتوزيع العينة. فمثلاً نقول أن توزيع المعاينة للمتوسط الحسابي وهوعبارة عن توزيع جميع المتوسطات الحسابية للعينات المأخوذة من نفس هذا المجتمع ذات الحجم n وكذلك فإن توزيع المعاينة للتباين هوتوزيع جميع التباينات المحسوبة من عينات لها نفس الحجم n ومأخوذة من نفس المجتمع، وهكذا....

توزيعات المعاينة للأوساط: Sampling Distributions of Means

 $(\mu_{\overline{x}}$ متوسط X: (متوسط توزیع المعاینة للمتوسطات X

نظرية:

إذا كانت X متغيرة عشوائية تمثل مجتمع ما و \overline{X} متغيرة عشوائية تمثل متوسط عينة مسحوبة $E\left(\overline{X}\right) = \mu_{\overline{X}} = \mu_{X}$: من هذا المجتمع بالإرجاع أو بدون إرجاع فإن $E\left(\overline{X}\right) = E\left(\frac{1}{n}\sum_{i=1}^{n}(X_{i})\right) = \frac{1}{n}\sum_{i=1}^{n}E\left(X_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}\mu_{X} = \frac{1}{n}n\mu_{X} = \mu_{X}$: حيث : $E\left(\overline{X}\right) = E\left(\frac{1}{n}\sum_{i=1}^{n}(X_{i})\right) = \frac{1}{n}\sum_{i=1}^{n}E\left(X_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}\mu_{X} = \frac{1}{n}n\mu_{X} = \mu_{X}$

ملاحظة:

- إذا سحبنا جميع العينات من الحجم n من مجتمع ما حجمه N فإنه وبالضرورة سنجد أن متوسط المجتمع يكون مساويا لمتوسط متوسطات العينات المسحوبة منه بإرجاع أو بدون إرجاع.
- الختمع، لذلك يستخدم متوسط العينة لتقدير متوسط المجتمع إذا كان هذا الأخير مجهولا، ونكتب: $\hat{\mu}_x = \bar{X}$ ونكتب:

مثال: إذا كان لدينا مجتمع يتكون من المفردات التالية: 1.2.3.4.5 وسحبنا جميع العينات العشوائية البسيطة من الحجم 2 التي يمكن سحبها من هذا المجتمع في الحالتين مع أو بدون إرجاع.

- أوجد توزيع المعاينة للوسط الحسابي وأحسبه في الحالتين مع أو بدون إرجاع.

الحل:

$$\mu_x = \frac{\sum X_i}{N} = \frac{1+2+3+4+5}{5} = 3$$
 : legislating is the second of the second o

الحالة الأولى: توزيع المعاينة للوسط الحسابي وحسابه في حالة السحب مع الارجاع

$$N^n = 5^2 = 25$$

عدد العينات الممكنة سحبها إذا كان السحب بإرجاع هي :

نوجد أولاً جميع العينات الممكنة في هذه الحالة، ثم نحسب الوسط الحسابي لكل عينة كما يلي:

العينة	\overline{X}								
(1.1)	1	(2.1)	1.5	(3.1)	2	(4.1)	2.5	(5.1)	3
(1.2)	1.5	(2.2)	2	(3.2)	2.5	(4.2)	3	(5.2)	3.5
(1.3)	2	(2.3)	2.5	(3.3)	3	(4.3)	3.5	(5.3)	4
(1.4)	2.5	(2.4)	3	(3.4)	3.5	(4.4)	4	(5.4)	4.5
(1.5)	3	(2.5)	3.5	(3.5)	4	(4.5)	4.5	(5.5)	5

توزيع المعاينة للوسط الحسابي للعينات \overline{X} هو:

\bar{X}	1	1.5	2	2.5	3	3.5	4	4.5	5
$f(\bar{x})$	1/25	2/25	3/25	4/25	5/25	4/25	3/25	2/25	1/25

 $: \overline{X}$ متوسط التوزيع العيني ل

$$\mu_{\bar{X}} = \sum \bar{x} f(\bar{x}) = (1 * \frac{1}{25}) + (1.5 * \frac{2}{25}) + \dots + (4.5 * \frac{2}{25}) + (5 * \frac{1}{25}) = 3 = \mu_x$$

وهو يساوي نفس قيمة μ_x كما يجب أن يكون.

الحالة الثانية: توزيع المعاينة للوسط الحسابي وحسابه في حالة السحب بدون الارجاع عدد العينات الممكنة سحبها إذا كان السحب بإرجاع هي:

$$C_{N}^{n} = \frac{N!}{n!(N-n)!} = \frac{5!}{2!(5-2)!} = \frac{20}{2} = 10$$

نوجد أولاً جميع العينات الممكنة في هذه الحالة، ثم نحسب الوسط الحسابي لكل عينة كما

يلي:

العينة	\overline{X}	العينة	\overline{X}	العينة	\overline{X}	العينة	\overline{X}	العينة	\bar{X}
(1.2)	1.5	(1.4)	2.5	(2.3)	2.5	(2.5)	3.5	(3.5)	4
(1.3)	2	(1.5)	3	(2.4)	3	(3.4)	3.5	(4.5)	4.5

توزيع المعاينة للوسط الحسابي للعينات \overline{X} هو:

\overline{X}	1.5	2	2.5	3	3.5	4	4.5
$f(\bar{x})$	1/10	1/10	2/10	2/10	2/10	1/10	1/10

 $: \overline{X}$ متوسط التوزيع العيني ل

$$\mu_{\bar{x}} = \sum \bar{x}f(\bar{x}) = (1.5 * \frac{1}{10}) + (2 * \frac{1}{10}) + (2.5 * \frac{2}{10}) + (3 * \frac{2}{10}) + (3.5 * \frac{2}{10}) + (4 * \frac{1}{10}) + (4.5 * \frac{1}{10}) = \frac{30}{10} = 3 = \mu_x$$

 $(\delta_{\overline{x}}^2$ تباین توزیع المعاینة للمتوسطات): \overline{X} تباین توزیع المعاینة المتوسطات

ظرية:

إذا كانت X متغيرة عشوائية تمثل مجتمع ما حجمه N و X متغيرة عشوائية تمثل متوسط عينة X حجمها X مسحوبة من هذا المجتمع فإن تباين X أي X يكتب كما يلى:

$$\mathcal{S}_{ar{X}}^2 = rac{\mathcal{S}_X^2}{n}$$
 : في حالة السحب مع الإرجاع فإن $-$

$$\delta_{\overline{X}}^2 = \frac{\delta_X^2}{n} \left(\frac{N-n}{N-1} \right)$$
 : يَ حالة السحب بدون إرجاع فإن -

ملاحظة:

في حالة السحب مع الارجاع فإن $\delta_{\overline{x}}^2$ يتأثر طرديا بتباين المجتمع وعكسيا بحجم العينة كبيرا والمجتمع أكثر تجانسا كان التقدير أدق.

- في حالة السحب بدون إرجاع فإن المقدار $\left(\frac{N-n}{N-1}\right)$ والذي يسمى بمعامل الإرجاع يصبح مهملا إذا كان يقترب من الواحد أي إذا كان حجم العينة صغير جدا $\left(\frac{n}{N} \prec 0.05\right) \Rightarrow \left(\frac{N-n}{N-1}\right) \approx 1$ بالمقارنة مع حجم المجتمع $1 \approx \left(\frac{N-n}{N-1}\right)$

تباين توزيع المعاينة للمتوسطات $\frac{\mathcal{S}_{\overline{x}}^2}{\mathcal{S}_{\overline{x}}}$ في حالة المعاينة بدون إرجاع أقل منه في حالة \mathcal{H}_X السحب مع الإرجاع أي أنه المعاينة بدون إرجاع تعطي تقديرا أكثر دقة لمعلمة المجتمع $n \succ 1 \Rightarrow \left(\frac{N-n}{N-1}\right) \prec 1 \Rightarrow \left(\left(\frac{\mathcal{S}_{\overline{x}}^2}{n}\left(\frac{N-n}{N-1}\right)\right) \leq \left(\frac{\mathcal{S}_{\overline{x}}^2}{n}\right)\right)$

مثال: (نفس المثال السابق) إذا كان لدينا مجتمع يتكون من المفردات التالية:

1.2.3.4.5 وسحبنا جميع العينات العشوائية البسيطة من الحجم 2 التي يمكن سحبها من هذا المجتمع في الحالتين مع أو بدون إرجاع.

- أحسب تباين توزيع المعاينة للوسط الحسابي في الحالتين مع أو بدون إرجاع مع التحقق.

الحل:

تباين المجتمع يحسب كما يلي:

$$\delta_X^2 = \frac{1}{N} \sum_{i=1}^N (X_i - \bar{X})^2 = \frac{1}{5} \Big((1-3)^2 + (2-3)^2 + (3-3)^2 + (4-3)^2 + (5-3)^2 \Big) = \frac{10}{5} = 2$$

$$\mathbf{1} \frac{1}{N} \sum_{i=1}^N (X_i - \bar{X})^2 = \frac{1}{5} \Big((1-3)^2 + (2-3)^2 + (3-3)^2 + (4-3)^2 + (5-3)^2 \Big) = \frac{10}{5} = 2$$

$$\mathbf{1} \frac{1}{N} \sum_{i=1}^N (X_i - \bar{X})^2 = \frac{1}{5} \Big((1-3)^2 + (2-3)^2 + (3-3)^2 + (4-3)^2 + (5-3)^2 \Big) = \frac{10}{5} = 2$$

$$\mathbf{1} \frac{1}{N} \sum_{i=1}^N (X_i - \bar{X})^2 = \frac{1}{5} \Big((1-3)^2 + (2-3)^2 + (3-3)^2 + (4-3)^2 + (5-3)^2 \Big) = \frac{10}{5} = 2$$

$$\mathbf{1} \frac{1}{N} \sum_{i=1}^N (X_i - \bar{X})^2 = \frac{1}{5} \Big((1-3)^2 + (2-3)^2 + (3-3)^2 + (4-3)^2 + (5-3)^2 \Big) = \frac{10}{5} = 2$$

$$\mathbf{1} \frac{1}{N} \sum_{i=1}^N (X_i - \bar{X})^2 = \frac{1}{5} \Big((1-3)^2 + (2-3)^2 + (3-3)^2 + (4-3)^2 + (5-3)^2 \Big) = \frac{10}{5} = 2$$

$$\mathbf{1} \frac{1}{N} \sum_{i=1}^N (X_i - \bar{X})^2 = \frac{1}{5} \Big((1-3)^2 + (2-3)^2 + (3-3)^2 + (4-3)^2 + (5-3)^2 \Big) = \frac{10}{5} = 2$$

$$\mathbf{1} \frac{1}{N} \sum_{i=1}^N (X_i - \bar{X})^2 = \frac{1}{5} \Big((1-3)^2 + (2-3)^2 + (3-3)^2 + (3-3)^2 + (3-3)^2 \Big) = \frac{10}{5} = 2$$

$$\mathbf{1} \frac{1}{N} \sum_{i=1}^N (X_i - \bar{X})^2 = \frac{1}{5} \Big((1-3)^2 + (2-3)^2 + (3-3)^2 + (3-3)^2 + (3-3)^2 \Big) = \frac{10}{5} = 2$$

$$\mathbf{1} \frac{1}{N} \sum_{i=1}^N (X_i - \bar{X})^2 = \frac{1}{5} \Big((1-3)^2 + (2-3)^2 + (3-3)^2 + (3-3)^2 + (3-3)^2 \Big) = \frac{10}{5} = 2$$

$$\mathbf{1} \frac{1}{N} \sum_{i=1}^N (X_i - \bar{X})^2 = \frac{1}{5} \Big((1-3)^2 + (2-3)^2 + (3-3)^2 + (3-3)^2 + (3-3)^2 \Big) = \frac{10}{5} = 2$$

$$\mathbf{1} \frac{1}{N} \sum_{i=1}^N (X_i - \bar{X})^2 = \frac{1}{5} \Big((1-3)^2 + (2-3)^2 + (3-3)^2 + (3-3)^2 + (3-3)^2 \Big) = \frac{10}{5} = 2$$

$$\mathbf{1} \frac{1}{N} \sum_{i=1}^N (X_i - \bar{X})^2 = \frac{1}{5} \Big((1-3)^2 + (3-3)^2 + (3-3)^2 + (3-3)^2 + (3-3)^2 \Big) = \frac{10}{5} = 2$$

$$\mathbf{1} \frac{1}{N} \sum_{i=1}^N (X_i - \bar{X})^2 = \frac{1}{5} \Big((1-3)^2 + (3-3)^2 + (3-3)^2 + (3-3)^2 + (3-3)^2 \Big) = \frac{10}{5} = 2$$

$$\mathbf{1} \frac{1}{N} \sum_{i=1}^N (X_i - \bar{X})^2 = \frac{1}{5} \Big((1-3)^2 + (3-3)^2 + (3-3)^2 + (3-3)^2 + (3-3)^2 \Big) = \frac{10}{5} = 2$$

$$\mathbf{1} \frac{1}{N} \sum_{i=1}^N (X_i - \bar{X})^2 = \frac{1}{5} \Big((1-3)^2 + (3-3)^2 + (3-3)^2 + (3-3)^2 + (3-3)^2 \Big) = \frac{10}{5} = 2$$

$$\mathbf{1} \frac{1}{N} \sum_{i=1}^N (X_i - \bar{X})^2 = \frac{1}{N} \sum_{i=1}^N (X_i - \bar{X})^2 + (3-3)^2 + (3-3)^2 + (3-3)^2 + (3-3)^2 + (3-3)^2 + (3-3)^2 + (3$$

	$\left(ar{X} - \mu_{ar{X}} ight)^2$			\overline{X}	$\left(\overline{X}-\mu_{\overline{X}}\right)^2$	\overline{X}	$\left(\overline{X}-\mu_{\overline{X}}\right)^2$	\overline{X}	$\left(ar{X} - \mu_{ar{X}} ight)^2$
1	$(1-3)^2 = 4$	1.5	2.25	2	1	2.5	0.25	3	0
1.5	2.25	2	1	2.5	0.25	3	0	3.5	0.25
2	1	2.5	0.25	3	0	3.5	0.25	4	1
2.5	0.25	3	0	3.5	0.25	4	1	4.5	2.25
3	0	3.5	0.25	4	1	4.5	2.25	5	4

توزيع المعاينة لتباين الوسط الحسابي للعينات:
--

\overline{X}	1	1.5	2	2.5	3	3.5	4	4.5	5
$f(\bar{x})$	1/25	2/25	3/2 5	4/2 5	5/2 5	4/2 5	3/2 5	2/25	1/2 5
$\left(ar{X}-\mu_{ar{X}} ight)^2$	$(1-3)^2 = 4$	2.25	1	0.2 5	0	0.2 5	1	2.25	4
$f(\overline{X})(\overline{X}-\mu_{\overline{X}})^2$	4/25	4.5/2 5	3/2 5	1/2 5	0	1/2 5	3/2 5	4.5/2 5	4/2 5

 \overline{X} : تباين التوزيع العيني ل

$$\delta_{\bar{X}}^2 = \sum (\bar{X} - \mu_{\bar{X}})^2 f(\bar{X}) = (1 - 3)^2 * (\frac{1}{25}) + (1.5 - 3)^2 * (\frac{2}{25}) + \dots + (5 - 3)^2 * (\frac{1}{25}) = \frac{25}{25} = 1$$

$$\frac{\delta_X^2}{n}$$
 وهي تساوي

$$\delta_{\overline{X}}^2 = \frac{\delta_X^2}{n} = \frac{2}{2} = 1$$
 لتحقق: من خلال النظرية

الحالة الثانية: تباين الوسط الحسابي للعينات في حالة السحب بدون إرجاع

جدول توزيع المعاينة لتباين الوسط الحسابي للعينات:

\overline{X}	1.5	2	2.5	3	3.5	4	4.5
$\left(ar{X}-\mu_{ar{X}} ight)^2$	$(1.5 - 3)^2 = 2.25$	1	0.25	0	0.25	1	2.25
$f(\bar{x})$	1/10	1/1 0	2/10	2/1 0	2/10	1/1 0	1/10
$f(\bar{X})(\bar{X}-\mu_{\bar{X}})^2$	2.25/10	1/1 0	0.25/1	0	0.25/1	1/1 0	2.25/1

 \overline{X} : \overline{X} تباين التوزيع العيني ل

$$\delta^{2}_{\bar{X}} = \sum (\bar{X} - \mu_{\bar{X}})^{2} f(\bar{X}) = (1.5 - 3)^{2} * (\frac{1}{10}) + (2 - 3)^{2} * (\frac{1}{10}) + \dots + (4.5 - 3)^{2} * (\frac{1}{10}) = \frac{7.5}{10} = 0.75$$

$$\frac{\delta_X^2}{n} \left(\frac{N-n}{N-1} \right)$$
 وهي تساوي

$$\delta_{\bar{X}}^2 = \frac{\delta_X^2}{n} \left(\frac{N-n}{N-1} \right) = \frac{2}{2} \left(\frac{5-2}{5-1} \right) = \frac{3}{4} = 0.75$$
 للتحقق: من خلال النظرية

 \overline{X} ثالثا: طبیعة توزیع

نظرية:

وتباين δ_X^2 فإن متوسط العينة المسحوبة من $\delta_{ar{X}}^2$ فإن متوسط العينة المسحوبة من $\delta_{ar{X}}^2$ فإن المجتمع موزع طبيعيا بمتوسط التوزيع الطبيعي بمتوسط $\mu_{ar{x}}=\mu_x$ وتباين $\mu_{ar{X}}=\mu_x$ هـذا المجتمع عشوائيا يتبع أيضا التوزيع الطبيعي بمتوسط $X\sim N\left(\mu_X\,,\delta_X^2\,
ight) \Longrightarrow \overline{X}\sim N\left(\mu_{ar{X}}\,,\delta_{ar{X}}^2\,
ight) \Longrightarrow Z=\left(\dfrac{\overline{X}-\mu_{ar{X}}}{\delta_{ar{X}}}\right) \sim N\left(0,1\right)$

حسب نظرية النهاية المركزية فإنه إذا كان المجتمع غير طبيعي أو مجهول التوزيع بمتوسط X وتباين X فإن متوسط العينة المسحوبة من هذا المجتمع عشوائيا X لا تخضع للتوزيع الطبيعي ولكنها تتوزع توزيع يكون قريباً من التوزيع الطبيعي أي يؤول إلى التوزيع الطبيعي متوسط μ_x وتباين σ_X^2 إذا كان حجم العينة كبيرا σ_X^2 وتباين σ_X^2 إذا كان حجم العينة كبيرا

$$X \sim ?(\mu_X, \sigma_X^2) \text{ and } (n \ge 30) \Rightarrow \overline{X} \sim N(\mu_{\overline{X}}, \sigma_{\overline{X}}^2) \Rightarrow Z = \left(\frac{\overline{X} - \mu_{\overline{X}}}{\sigma_{\overline{X}}}\right) \sim N(0, 1)$$

ملاحظة:

- وتعتبر النتيجة السابقة هامة جداً في الإحصاء وخاصة في التطبيقات العلمية وتسمى نظرية النهاية المركزية Central Limit Theorem

$$\sigma_{\overline{X}}^2 = \frac{\sigma_X^2}{n}$$
 : في حالة السحب مع الإرجاع فإن -

$$\sigma_{\overline{X}}^2 = \frac{\sigma_X^2}{n} \left(\frac{N-n}{N-1} \right)$$
 : في حالة السحب بدون إرجاع فإن -

$$\sigma_{ar{X}}^2 = rac{\sigma_X^2}{n}$$
 : في حالة السحب بدون إرجاع و $\left(rac{n}{N} \prec 0.05
ight)$ و السحب بدون إرجاع و

 S^2 رابعا: توزيع المعاينة لتباين العينات

نظرية:

المتعبرة عشوائية تمثل مجتمع ما حجمه N و S^2 متغيرة عشوائية تمثل عبتمع ما حجمه N و $E\left(S^2\right)$ متغيرة عشوائية تمثل المجتمع فإن القيمة المتوقعة لتباين العينة $E\left(S^2\right)$ مسحوبة من هذا المجتمع فإن القيمة المتوقعة لتباين العينة تكتب كما يلى:

$$E\left(S^{2}\right)=\sigma_{X}^{2}\left(\frac{n-1}{n}\right)$$
 : في حالة السحب مع الإرجاع فإن

$$E\left(S^2\right) = \sigma_X^2 \left(\frac{n-1}{n}\right) \left(\frac{N}{N-1}\right)$$
 : في حالة السحب بدون إرجاع فإن

- إذا كان S^2 تباين عينة عشوائية حجمها n مأخوذة من مجتمع طبيعي فإن:

$$\frac{nS^2}{\sigma_X^2} = \frac{(n-1)\hat{S}^2}{\sigma_X^2} \sim \chi_{n-1}^2$$

 σ_2^2 و σ_1^2 ليكن لدينا مجتمعان طبيعيان تباينهما -

ليكن لدينا مجتمعان طبيعيان A و B ، متوسطهما الحسابي μ_A و بباينهما a تباينهما a عينة عشوائية a عينة عشوائية بحيث نسحب عينة عشوائية a حجمها a من المجتمع a فإن: a عينة ثانية a حجمها a من المجتمع a فإن:

$$F = \frac{\left[S_a^2 \frac{n_a}{n_a - 1}\right] \frac{1}{\sigma_A^2}}{\left[S_b^2 \frac{n_b}{n_b - 1}\right] \frac{1}{\sigma_B^2}} = \frac{\frac{\hat{S}_a^2}{\sigma_A^2}}{\frac{\hat{S}_b^2}{\sigma_B^2}} \sim F_{(n_a - 1, n_b - 1)}$$

ملاحظة:

$$(N/N-1)\sim 1$$
 عندما یکون N کبیرا جدا أو مجتمع غیر محدود فإن N

$$E(S^2) = \sigma_X^2$$
 : فإن $30 \le n$ عندما يكون

عن النظرية
$$E\left(S^{2}\right)=\sigma_{X}^{2}\left(\frac{n-1}{n}\right)\Rightarrow E\left(S^{2}\frac{n}{n-1}\right)=\sigma_{X}^{2}$$
 من النظرية - σ_{X}^{2}

:غير متحيز ل
$$S^2$$
 ونرمز له ب S^2 حيث أنه مقدر غير متحيز ل S^2 حيث أنه مقدر

$$\hat{S}^{2} = \left(\frac{n}{n-1}S^{2}\right) = \left(\left(\frac{n}{n-1}\right)\left(\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}\right)\right) = \frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}$$

$$V\left(\hat{S}^{2}\right)=rac{\mu_{4}}{n}+rac{3-n}{n\left(n-1
ight)}\sigma^{4}$$
 عيث: \hat{S}^{2} هو \hat{S}^{2} عيث $\mu_{4}=E\left(\left\lceil \left(X-\mu
ight)^{4}
ight
ceil$

مثال: (نفس المثال السابق) إذا كان لدينا مجتمع يتكون من المفردات التالية:

1.2.3.4.5 وسحبنا جميع العينات العشوائية البسيطة من الحجم 2 التي يمكن سحبها من هذا المجتمع في الحالتين مع أو بدون إرجاع.

- أحسب القيمة المتوقعة لتباين العينة من خلال متوسط تباينات العينات في الحالتين مع أو بدون إرجاع، ثم قارن بينه وبين تباين المجتمع.

الحل: الحالة الأولى: حساب متوسط تباينات العينات $E(S^2)$ في حالة السحب مع الارجاع نوجد أولاً جميع العينات الممكنة في هذه الحالة، ثم نحسب التباين لكل عينة كما يلى:

العين ة	(1.1)	(1.2)	(1.3)	(1.4)	(1.5)	(2.1)	(2.2)	(2.3)	(2.4)
\overline{X}	1	1.5	2	2.5	3	1.5	2	2.5	3
S^2	0	0.25	1	2.25	4	0.25	0	0.25	1
العين ة	(2.5)	(3.1)	(3.2)	(3.3)	(3.4)	(3.5)	(4.1)	(4.2)	(4.3)
\overline{X}	3.5	2	2.5	3	3.5	4	2.5	3	3.5
S^2	2.25	1	0.25	0	0.25	1	2.25	1	0.25
العيد ة	(4.4)	(4.5)	(5.1)	(5.2)	(5.3)	(5.4)	(5.5)	Σ	المتوسط
\overline{X}	4	4.5	3	3.5	4	4.5	5	75	75/25=3
S ²	0	0.25	4	2.25	1	0.25	0	25	25/25=1

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = \frac{1}{2} ((1.5 - 1)^{2} + (1.5 - 2)^{2}) = \frac{0.25 + 0.25}{2} = 0.25$$

توزیع المعاینة لتباین العینات S^2 هو:

S^{2}	0	0.25	1	2.25	4

متوسط التوزيع العيني له S^2 :

$$E\left(S^{2}\right) = \sum S^{2}f\left(s^{2}\right) = \left(0*\frac{5}{25}\right) + \left(0.25*\frac{8}{25}\right) + \left(1*\frac{6}{25}\right) + \left(2.25*\frac{4}{25}\right) + \left(4*\frac{2}{25}\right) = \frac{25}{25} = 1$$

$$E\left(S^2\right) = \sigma_X^2 \left(\frac{n-1}{n}\right) = 2\left(\frac{1}{2}\right) = 1$$
 للتحقق: من خلال النظرية

الحالة الثانية: حساب متوسط تباينات العينات $E\left(S^{\,2}\right)$ في حالة السحب بدون إرجاع

نوجد أولاً جميع العينات الممكنة في هذه الحالة، ثم نحسب التباين لكل عينة كما يلي:

العينة	(1.2)	(1.3)	(1.4)	(1.5)	(2.3)	(2.4)	(2.5)	(3.4)	(3.5)	(4.5)
\overline{X}	1.5	2	2.5	3	2.5	3	3.5	3.5	4	4.5
S^2	0.25	1	2.25	4	0.25	1	2.25	0.25	1	0.25

توزیع المعاینة لتباین العینات S^2 هو:

S^2	0.25	1	2.25	4	Σ
$f(S^2)$	4/10	3/10	2/10	1/10	1

د متوسط التوزيع العيني له S^2 :

$$E\left(S^{2}\right) = \sum S^{2}f\left(s^{2}\right) = \left(0.25 * \frac{4}{10}\right) + \left(1 * \frac{3}{10}\right) + \left(2.25 * \frac{2}{10}\right) + \left(4 * \frac{1}{10}\right) = \frac{12.5}{10} = 1.25$$

عقق: من خلال النظرية

$$E(S^2) = \sigma_X^2 \left(\frac{n-1}{n}\right) \left(\frac{N}{N-1}\right) = 2\left(\frac{1}{2}\right) \left(\frac{5}{4}\right) = \frac{10}{8} = 1.25$$

خامسا: توزيع المعاينة للفروق والمجاميع للمتوسط والتباين

نظرية:

في حالة $(30 \le n_b^{}, n_a^{})$ يقترب توزيع المتغيرة المعيارية للفرق بين متوسطين من

 $\mu_{a-b} \sim N\left(0,1
ight)$ التوزيع الطبيعي المعياري ونكتب:

مثال:

b: 2.4.6 و a: 1.3.5.7 اليكن المجتمعان A و B سحبنا منهما العينتين

$$\sigma_{a\pm b}^2=\sigma_a^2+\sigma_b^2$$
 عُقق أن $\mu_{a\pm b}=\mu_a\pm\mu_b$ خُقق أن

حالة المجموع

$$\mu_a = \frac{1+3+5+7}{4} = 4$$

$$\mu_b = \frac{2+4+6}{3} = 4$$

$$\mu_{a+b} = \frac{3+5+7+\dots+9+11+13}{12} = \frac{96}{12} = 8$$

حالة المجموع		a العينـة				
μ_{a+b}		1	3	5	7	
العينـــة <i>b</i>	2	3	5	7	9	
	4	5	7	9	11	
	6	7	9	11	13	

حالة الفرق

$$\mu_{a} = \frac{1+3+5+7}{4} = 4$$

$$\mu_{b} = \frac{2+4+6}{3} = 4$$

$$\mu_{a-b} = \frac{2+4+6}{3} = 4$$

$$\mu_{a-b} = \frac{2+1}{3} = 4$$

$$\mu_{a-b} = \frac{$$