

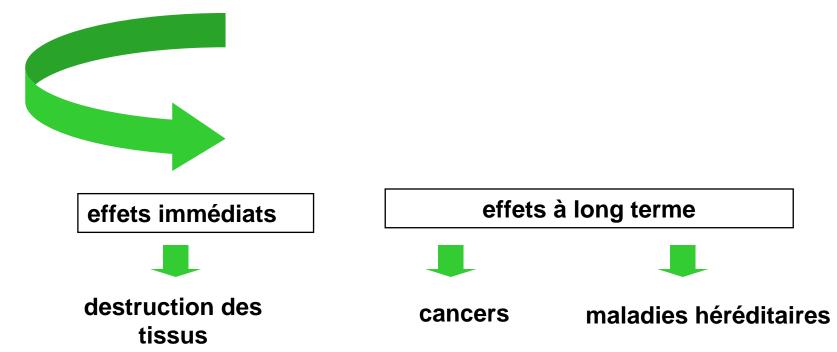
ROSSI H.H. - The role of microdosimetry in radiobiology. Radiat. Environ. Biophys., 1979, 17, 29-40.

α, β, γ, X, n : rayonnements ionisants créent dans les cellules traversées des ions+ et des ions- (radicaux libres très nocifs) en y perdant une partie de leur énergie

E perdue par RI dans matière : KeV, MeV

À comparer à l'énergie qui lie une cellule vivante :
≈100 eV quand la radiation est reçue lors de la division de la cellule

Atomes matière vivante : C H N O avec E_{liaisons} H-H, O=O, N≡N ≈5-10 eV


En particulier : les cellules indifférenciées (cellules du sang) ou en division rapide (cellules germinales ou tumorales) sont très sensibles aux rayons

Caractéristique utilisée en radiothérapie, pour détruire les cellules cancéreuses

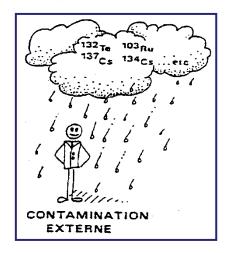
Ionisation d'atomes ou molécules

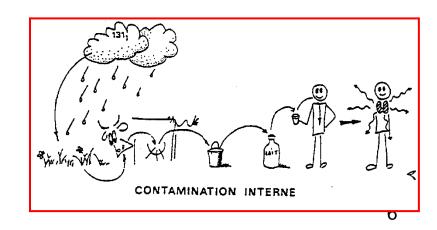
Effets déterministes

- Fortes doses
- Délai d'apparition court
- Effets à seuil
- Gravité ↑ avec la dose

Effets aléatoires

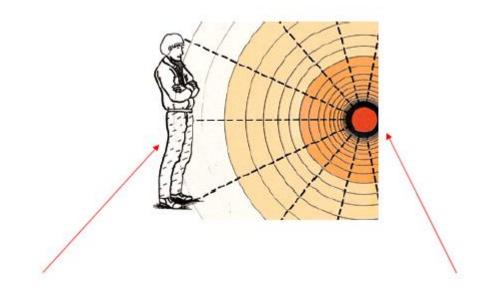
(stochastiques)


- Faibles doses
- Délai d'apparition long
- Pas de seuil
- Chez les individus atteints : effets identiques quelle que soit la dose
- Probabilité d'apparition ↑
 avec la dose


dès que l'organisme est susceptible d'entrer en contact direct avec une substance radioactive, on parle d'Irradiation ou contamination radioactive

Voies respiratoires, digestives, transcutanées, voies directes par blessure

Contamination externe ou interne


Dépôt sur peau, cheveux

Calcul de dose absorbée - Dosimétrie

Définition des unités

La cible

La source

Calcul de dose absorbée – Dosimétrie

Dose absorbée

tenir compte des effets dans la matière

$$D = \frac{dE}{dm}$$

$$1 Gy = 1 Gray = 1 J/kg$$

Vieille unité: rad = Roentgen Absorbed Dose

1 Gy = 100 rad

Calcul de dose absorbée – Dosimétrie Dose équivalente ou Equivalent Dose

tenir compte de la nature du rayonnement

Pour une même dose absorbée, effet biologique des $R\alpha$ est 20 fois plus important que celui des $R\gamma$

Dose équivalente : $H = W_R D$

 $1 \text{ Sv} = 1 \text{ Sievert} = W_R \times 1 \text{Gy}$

<u>Vieille unité</u>: REM = Roentgen Equivalent Man

1 Sv = 100 rem

 W_R : poids du rayonnement (weight en anglais) ou facteur de pondération radiologique

Calcul de dose absorbée – Dosimétrie Dose équivalente ou Equivalent Dose

facteurs de pondération radiologique (W_R)

RBE Relative Biological Efficiency QF facteur de qualité

Nature	Energie	W_R
Photons	toutes	1
Electrons	toutes	1
Neutrons	<100 keV	10
	100 keV-2 MeV	20
Particules alpha		20

Débit de dose

Tenir compte du temps d'irradiation

• Débit de dose : dose reçue après un certain temps

10 μ Sv/h = 1 mrem/h

Dose efficace

Tenir compte de la radio-sensibilité du tissu / organe touché

• Dose efficace $\mathbf{E} = \Sigma (\mathbf{H}_T \times \mathbf{W}_T)$

 W_T : facteur de pondération tissulaire

Sievert

Dose efficace

facteurs de pondération tissulaire (W_T)

Organe	W_T
Gonades	0,20
Seins	0,05
Moelle osseuse	0,12
Colon	0,12
Poumons	0,12
Estomac	0,12
Vessie	0,05
Foie	0,05
Œsophage	0,05
Thyroïde	0,05
Os	0,01
Peau	0,01
Reste de l'organisme	0,05
Total	1,00

- En Europe, la dose reçue est d'environ de 2 à 6 mSv /an. Elle dépend essentiellement de la composition géologique du sous-sol et de l'altitude.
- Probable que cette dose provoque un certain nombre d'effets génétiques (mutations). Cependant ce nombre est beaucoup plus petit que celui provoqué par d'autres agents, tels alcool, médicaments, et il n'est pas mesurable.
- Exposition de courte durée (heures, jour) beaucoup plus dangereuse / longue période (années). Pour D reçues sur courte période: aucun effet si D < 0,15 Sv. Les premiers symptômes de maladies (fatigue, maux de tête, vomissements) apparaissent avec D \geq 0,5 Sv , tandis qu'une dose D > 6 Sv est mortelle dans tous les cas.
- Certains organes beaucoup plus sensibles que d'autres. On peut tolérer 0.75 Sv/an sur les mains, peu sensibles & pour personnes exposés professionnellement à des rayonnements.