Série 01 Les équations non linéaires

Exercice 01:

- 01)- Séparer les racines réelles des équations
- a)- $f(x) = x^4 + 4x + 2 = 0$, $k(x) = x^3 9x^2 + 18x 1 = 0$
- b)- graphiquement $g(x) = x \sin(x) = 0$, $h(x) = x \ln(x) 1$.
- 02)- Déterminer le nombre de racines réelles de l'équation $f(x) = x + 2e^x = 0$
- 03)- Résoudre graphiquement l'équation $e^x \frac{1}{x} = 0$.

Exercice 02:

Soit l'équation $f(x) = x^4 - 5x - 7 = 0$

- a)- Trouver la racine négative par la méthode de DICHOTOMIE, trouver le nombre d'itération si la précision demandée est $\varepsilon = 0.05$.
- b)- Donner trois écritures possibles par la méthode du POINT FIXE en étudiant la convergence pour chaque écriture dans l'intervalle[-1,-2].

Exercice 03:

01)- Calculer la solution réelle de l'équation $e^x - \frac{1}{x} = 0$ sur l'intervalle [0.5, 0.75]

Par la méthode de DICHOTOMIE et la méthode de NEWTON, en effectuant quatre itérations (décompositions de l'intervalle).

- 02)- Comparer les résultats du deux méthodes.
- 03)- Calculer la solution réelle de l'équation $10^x 2\cos(x) = 0$ sur l'intervalle [0.2,0.3] par la méthode du POINT FIXE, en effectuant quatre itérations, en partant de $x_0 = 0.3$.

Exercice 04:

Soit la fonction $f(x) = 2x^3 - x - 2$

- 01)- Vérifier que la fonction f possède une racine réelle $\bar{x} \in [1, 2]$.
- 02)- Etudier la convergence des trois algorithmes suivants:

$$x_{n+1} = 2x_n^3 - 2$$
, $x_{n+1} = \frac{2}{2x_n^2 - 1}$, $x_{n+1} = \sqrt[3]{1 + \frac{x_n}{2}}$

03)-Si l'une des algorithme converge, l'utiliser pour déterminer \bar{x} à 10^{-3} prés ($x_0 = 1$).

Exercice 05:

On consider la fonction $f(x) = e^x + 3\sqrt{x} - 2sur$ l'intervalle [0, 1].

- 1. Montrer qu'il existe un zéro α pour la fonction f dans [0, 1].
- 2. On veut calculer le zéro α de la fonction f par une méthode de point fixe convenable. En particulier on se donne deux méthodes de point fixe $x = \phi_i$, i = 1,2, où les fonctions ϕ_1 et ϕ_2 sont définies comme :

$$\phi_1 = Log(2 - 3\sqrt{x}) et \phi_2 = \frac{(2 - e^x)^2}{9}$$

Laquelle de ces deux méthodes utiliseriez-vous pour calculer numériquement le zéro α de la fonction f? Justifiez votre réponse.

3. En utilisant la méthode de la bissection sur l'intervalle [0, 1], pour calculer le zéro α de la fonction f avec une tolérance $\varepsilon = 10^{-10}$.

Exercice 06:

On se propose de résoudre dans **R** l'équation:xch(x) = 1.

Pour cela, on introduit la fonction d'itération g définie sur **R** par: $g(x) = \frac{1}{ch(x)}$

et on définit la suite $(u_n)_n$ par: $u_0 = 0$ et $u_n = g(u_{n-1})$ pour $n \ge 1$.

- 1- Montrer que $g([0,1]) \subset [0,1]$. En déduire que g admet un point fixe dans [0,1].
- 2- Calculer g'.
- 3- i. Montrer que pour tout $u \in \mathbf{R}$ on $a \frac{u}{1+u^2} \le \frac{1}{2}$
- 3- ii. En déduire que $\forall x \in \mathbf{R} | g'(x) | \leq \frac{1}{3}$

(On rappelle que $ch^2(x) - sh^2(x) = 1$).

4- En déduire que $(u_n)_n$ est une suite convergente.

Exercice 07:

On considère pour $x \in R_+^*$ la fonction f définie par

$$f(x) = e^x \sqrt{x} - 1$$

Soit α l'unique solution de $f(x) = e^{x}\sqrt{x} - 1$

- 1- Vérifier que $\alpha \in I = \left[0, \frac{1}{2}\right]$
- 2- On considère quatre suites définies, pour $x_0 \in I$, par :

(s1)
$$x_{n+1} = e^{-2x_n}$$
 (s2) $x_{n+1} = e^{-\frac{x_n}{2}}$
(s3) $x_{n+1} = -\ln(\sqrt{x_n})$ (s4) $x_{n+1} = e^{-x_n^2}$

(s3)
$$x_{n+1} = -ln(\sqrt{x_n})$$
 (s4) $x_{n+1} = e^{-x_n^2}$

Seules deux de ces suites sont susceptibles de converger vers α . Lesquelles?

Avec le théorème du point fixe, montrer qu'une seule de ces deux suites converge vers , quel que soit $x_0 \in I = \left[0, \frac{1}{2}\right]$.

3- Pour évaluer, on préfère utiliser la méthode de Newton appliquée à l'équation $x = e^{-2x}$ (justifier)

Ecrire la méthode de Newton et pour $x_0 = 0.5$, calculer les trois itératifs premières.

Exercice 08:

Soit l'équation $f(x) = x^4 - 6x - 7 = 0$

- 1)- Trouver le nombre d'itérations si la précision demandée est $\varepsilon = 0.005$.
- 2)- Trouver la racine négative par la méthode de DICHOTOMIE sur l'intervalle [-1.5, 0].

Exercice 09:

Soient les deux fonctions suivantes :

$$f(x) = x$$
 et $g(x) = log(1 + 2x)$

On cherche à calculer numériquement l'aire comprise entre ces deux courbes. On note

$$h(x) = f(x) - g(x)$$

1- Etudier la fonction h. Montrer qu'il existe deux valeurs pour lesquelles h s'annule : une

valeur évidente (laquelle ?) et une valeur que l'on note α . Localiser α dans un intervalle I = [i, i+1] où i est un entier.

2- Pour approcher α , on définit la suite suivante :

$$\begin{cases} x_0 \in I \\ x_{n+1} = g(x_n) \end{cases}$$

Montrer que cette suite converge bien vers α .

3- Ecrire la méthode de Dichotomie qui permet de trouver une approximation de α , qui assure la convergence et calculer quatre itératifs dans [1, 2].

Exercice 10:

Le problème "résoudre l'équation $2 x^2 - x - 6 = 0$ " peut être formuler des différentes façons pour son traitement par la méthode des approximations successives. L'équation peut s'écrire entre autres:

a)
$$x = 2 x^2 - 6$$

$$b) x = \pm \sqrt{\frac{x+6}{2}}$$

c)
$$x = \frac{3}{x} + \frac{1}{2}$$

d)
$$x = x - \frac{2x^2 - x - 6}{3}$$

1- Lesquelles de ces expressions conduisent-elles, à coup sûr, à une convergence par la méthode des approximations successives pour la racine x = 2 et pour la racine x = -1.5? 2- Vérifier vos conclusions en faisant quelques itérations pour chacune des formules et chacune des deux racines en partant de x = 1.7 et x = -1.4, respectivement.