جامعة الجيلالي بونعامة بخميس مليانة

الفروع 1، 2، 3 (2017/16)

معهد العلوم الاقتصادية السنة الأولى LMD

2016-06-08

1 30 : C

الرياضيات 2

EXAMEN DE RATTRAPAGE

إ......تصحيح نموذجي

ضع إشارة (×) في الخانة التي تُعبر عن الإجابة الصحيحة، أو أكمل الفراغات بإجابات صحيحة.

 $A=\left\{\,(x\;,y\;,z\;)\in\mathbb{R}^3\;,\;\;3\;x=2\;y=z\;
ight\}\,$ نعتبر الفضاء الجزئي

1.5 \times . \vee .

3. الأشعة (2,2,1)، (2,0,1)، (2,0,0): مرتبطة خطيا]، مستقلة خطيا | x

$\begin{bmatrix} 4.5 \end{bmatrix}$ 2 تمرین

 $\mathcal{B} = \{e_1, e_2, e_3\}$ الفضاء الشعاعي \mathbb{R}^3 مزود بالأساس القانوني

 $f\left(e_{1}\right)$ = (-2,3,1) , $f\left(e_{2}\right)$ = (1,-3,2) , $f\left(e_{3}\right)$ = (-3,-2,1) : \mathbb{R}^{3} في \mathbb{R}^{3} من خطى من $f\left(e_{1}\right)$

الصورة f(x,y,z) تُعطى بالعبارة:

 $\times \left[(-2x+y-z, -3z, 3x-3y-2z, x+2y+z), \right] (2x+3y+z, x-3y+2z, -3x-2y+z)$

2. أساس الفضاء الشعاعي الجزئي Im_f ، هو:

 $\langle (-2,3,1), (1,-3,2) \rangle$ $\langle (-2,3,1), (1,-3,2), (-3,-2,1) \rangle$ $\langle (-3,-2,1) \rangle$

3. الفضاء الشعاعي الجزئي الشعاعي الجزئي ($\operatorname{Ker}(f)$ ، هو:

 $\times \{(0,0,0)\}$ $\langle (-3,1,2)\rangle$ $\langle (2,3,-2),(-3,1,2)\rangle$

تمرين 3 [4]

 $M = \begin{pmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{pmatrix}$ نعتبر في الأساس القانون لـ \mathbb{R}^3 المصفوفة

 $(\mathbb{N} \ni k) \qquad M^{n} = \begin{cases} M & , n = 2k \\ I_{3} & , n = 2k+1 \end{cases}, \quad M^{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : -1$

M . M عائن المصفوفة M قابلة للقلب، وتعيين مصفوفتها العكسية M^{-1} بدلالة M .

 $M^{-1}=M$ ومنه $M^{-1}=M\cdot M=I_3$ أي المصفوفة M قابلة للقلب: $M^{-1}=M$

$$x = -1$$
 , $y = 10$, $z = 9$: خد $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = M^{-1} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \Leftrightarrow M \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \\ 3 \end{pmatrix}$ نجد 3.

تمرین 4 [3]

g و g مصفوفتي التطبيقين الخطيين g و g المزودين بأسُسِهما القانونية، نعتبر g و g مصفوفتي التطبيقين الخطيين و

$$A = M(f) = \begin{pmatrix} 6 & 4 \\ -3 & 2 \\ 1 & -2 \end{pmatrix} , \quad B = M(g) = \begin{pmatrix} 2 & -1 & 5 \\ 3 & 4 & 2 \end{pmatrix}$$

1. التطبيقان f و g المرفقان بالمصفوفتين A و B، بالنسبة للأسس القانونية لفضاءات البدء والوصول، هما :

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3 \qquad g: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$

$$(x, y) \mapsto (6x + 4y, -3x + 2y, x - 2y) \qquad (x, y, z) \mapsto (2x - y + 5z, 3x + 4y + 2z)$$

: عطى مصفوفة التطبيق الخطى $g\circ f$ بالعلاقة : $B\cdot A$ عيث: $g\circ f$ عطى مصفوفة التطبيق الخطى عند على العلاقة : 2

$$C = B \cdot A = \begin{pmatrix} 2 & -1 & 5 \\ 3 & 4 & 2 \end{pmatrix} \cdot \begin{pmatrix} 6 & 4 \\ -3 & 2 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} 20 & -4 \\ 08 & 16 \end{pmatrix}$$

 $(g \circ f)(x, y) = (20x - 4y, 8x + 16y)$.3 معرف کما یلی: $g \circ f$ معرف کما یلی:

تمرین 5 [4]

:D و C و B و A نعتبر المصفوفات A

$$D = \begin{pmatrix} 1 & 2 & 1 & 2 & 0 \\ 2 & 0 & 2 & 1 & 1 \\ 3 & 1 & 1 & 0 & 1 \\ 1 & 0 & 2 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

$$C = \begin{pmatrix} -1 & 2 & -1 & 2 \\ 2 & 0 & 1 & 1 \\ 3 & 1 & 1 & 0 \\ 4 & 0 & 2 & 1 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & -1 & 1 \\ 3 & -2 & 1 \end{pmatrix}$$

$$A$$
 . A . A

.
$$\square$$
 222 ، \square 22 ، \square 22 ، \square 22 . \square 22 . \square 22 . \square 22 . \square 2.