UDB-KM- Faculté des Sciences et de la technologie- Département de la technologie M1 Electrotechnique industrielle- 2019/2020 Entraînements Electriques

Série N°2

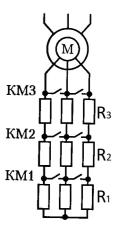
Exercice N°1

Tracer la caractéristique mécanique d'un moteur asynchrone (quadrant 1) dont le couple de démarrage est 5Nm, le couple maximal est 10Nm à un glissement de 10%. Dans le même graphe, tracer la caractéristique mécanique d'une vis d'Archimède entrainée par ce moteur. Leur point de fonctionnement est 6Nm à un glissement du moteur de 5%. Pensez vous que le moteur puisse démarrer ce type de charge? Expliquer.

Exercice N°2

Un moteur asynchrone triphasé à rotor bobiné 15kW; 2p=8; g=5%; a pour résistance rotorique r_2 =0,37 Ω et pour rapports de couples λ = T_{max}/T_n =3; λ '= T_d/T_n =2,1 (T_n - couple nominal; T_{max} - couple maximal; T_d - couple de démarrage)

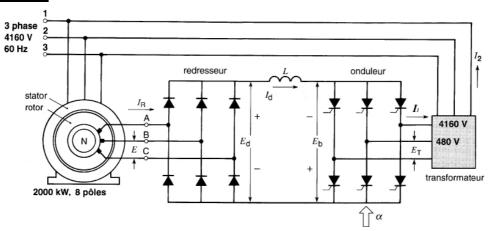
- 1. Calculer sa vitesse nominale (tr/min) et son couple de démarrage $T_{\rm d}$
- 2. On assemble le rotor du moteur à un rhéostat de démarrage à 3 crans
 - 2.1. Calculer les résistances R_1 , R_2 et R_3 connaissant les rapports $r_2/R_3=(\lambda'-1)$ et $R_2/R_3=R_1/R_2=\lambda'$
 - 2.2. Donner les valeurs des résistances rotoriques des 4 temps de fonctionnement du rhéostat qui changent à chaque fois que le couple nominal est atteint
 - 2.3. Illustrer les allures des caractéristiques mécaniques de ce démarrage


Exercice N°3

On met un rhéostat en série avec un stator de moteur asynchrone triphasé à cage 2,2kW/ 220V/ η =80%/ $\cos\phi$ =0,8. On donne aussi les rapports I_{1d}/I_{1n} =6.5; T_d/T_n =2,1 et $\cos\phi_{CC}$ =0,86.

- 1. Calculer la valeur nominale du courant de phase du moteur
- 2. Calculer le courant de démarrage
- 3. Calculer l'impédance complexe du moteur lors du démarrage
- 4. Définir la résistance du rhéostat si l'on veut diminuer de 2 fois le courant d'appel lors du démarrage
- 5. Calculer la puissance dissipé par le rhéostat lors du démarrage
- 6. Calculer la tension aux bornes du moteur au démarrage
- 7. Quel est alors le couple démarrage?

Un moteur asynchrone triphasé à rotor bobiné de 110 kW, 1760 tr/min, 2,3 kV, 60 Hz, entraine un convoyeur. Le rotor est raccordé en étoile et la tension entre les bagues à circuit ouvert est 530V. Déterminer:



QS2

UDB-KM- Faculté des Sciences et de la technologie- Département de la technologie M1 Electrotechnique industrielle- 2019/2020 Entraînements Electriques

- 1. La résistance à placer en série avec le rotor (par phase) pour que le moteur développe une puissance de 20kW à une vitesse de 450tr/min lorsque la tension aux bornes du stator est de 2,4kV.
- 2. La puissance dissipée dans les résistances.

Exercice N°5

Un moteur asynchrone à rotor bobiné entraîne une pompe centrifuge à vitesse variable (figure). Lorsque le moteur est raccordé au réseau la tension entre les bagues à circuit ouvert (rotor bloqué) est de 1800V. Le moteur doit développer 800kW à une vitesse de 700tr/min. Les pertes rotoriques sont négligées.

Calculer:

- a) la puissance électromagnétique du moteur
- b) la puissance débitée par le rotor
- c) la tension E_d dans le circuit intermédiaire à courant continu
- d) la valeur efficace du courant dans le rotor
- e) l'angle de retard à l'amorçage de l'onduleur, en supposant que E_d=-E_b
- f) le courant efficace au secondaire du transformateur