Sommaire

Chapitre 1 : Classification des réactions et des réacteurs chimiques	01
1.1. Généralité	01
1.2. Caractéristique des réacteurs chimiques	02
1.3. Les principaux facteurs gouvernant le fonctionnement d'un réacteur	02
1.4. Principales caractéristiques d'une transformation chimique	03
1.5. Classification des réactions et des réacteurs chimiques	04
1.5.1. Classification des réactions chimique	04
1.5.2. Classification des réacteurs chimiques	05
A. Le réacteur discontinu (fermé ou batch)	06
B. Le réacteur semi-continu (semi-fermé ou semi-batch)	07
C. Réacteur ouvert ou continu	08
C.1. Le réacteur continu à cuve agité	09
C.2. Le réacteur tubulaire	09
D. Réacteur parfaitement agité	11
E. Réacteur adiabatique	11
F. Fonctionnement en régime transitoire	11
G. Fonctionnement en régime transitoire	12
H. Fonctionnement en régime stationnaire ou permanent	12
I. Réacteur selon le mode de circulation des phases	12
J. Réacteurs polyphasiques (ou hétérogènes)	12
K. Réacteurs spéciaux	13
1.6. Les critères de choix du type de réacteur	14
1.7. Construction et dimensionnement des réacteurs chimiques	16
1.7.1. Les buts du dimensionnement des réacteurs	17
1.7.2. Différents systèmes de refroidissement-chauffage des réacteurs	18
1.8. Emballement thermique dans les réacteurs chimique	19
1.9. Problème général du calcul d'un réacteur	20
Chapitre 2 : Rappel de cinétique chimique; Stœchiométrie et	21
2.1. Définitions	21
2.2. Aspects énergétiques d'une réaction chimique	22
2.3. Le mode d'activation des réactions chimiques	24
2.4. Les relations stechiométriques (la Stechiométrie)	25
2.5. La vitesse et l'ordre de la réaction	26
2.6. Paramètres d'avancement d'une réaction chimique à stœchiométrie unique	28
2.6.1. Variable chimique (ou degré d'avancement) ξ	28
2.6.2. Avancement normalisé X	29
2.6.3. Avancement limite X_L	30
2.6.4. Conversion fractionnaire <i>f</i>	31
2.6.5. Taux de conversion x_i	31
2.7. Avancement d'une réaction chimique à stœchiométrie multiple	31
2.8. Volume réactionnel. Débit volumique.	32
2.8.1. Phase gazeuse fermée	32
2.8.2. Phase gazeuse en écoulement permanent	34
2.8.3. Phase liquide ou phase condensée	34

Chapitre 3 : Bilan de matière dans les réacteurs idéaux	35
3.1 Généralité	35
3.1.1. Réacteurs idéaux	35
3.1.2. Notion de système	36
3.2. Notion et écriture des bilans	37
3.2.1. Bilans globaux	37
3.2.2. Les termes du bilan de matière	38
3.2.3. Résolution d'un bilan	38
3.2.4. Bilan à un nœud	39
3.3. Application du bilan matière aux différents types de réacteurs idéaux	40
3.3.1. Bilan massique pour un réacteur fermé agité (Batch Reactor)	40
3.3.2. Bilan massique pour un réacteur semi Continu	42
3.3.3. Bilan de matière dans un réacteur ouvert (ou continu) parfaitement Agité	43
3.3.4. Bilan de matière dans un réacteur Piston	46
3.3.5. Récapitulation des résultats de Bilans	48
Chapitre 4 : Mise en œuvre optimale d'une réaction à stœchiométrie unique - cascade de réacteurs agités- réacteurs à recyclage	49
4.1. Etude comparative des réacteurs idéaux	49
4.1.1. Comparaison des performances des réacteurs idéaux	49
4.1.2. Influence de l'ordre de la réaction	50
4.2. Association des réacteurs continus	52
4.2.1 Réacteurs agités continus en série (Cascade de réacteurs)	52
4.2.2 - Association de réacteurs piston en série	57
4.2.3 Réacteurs en parallèle	57
4.3. Réacteur piston à recyclage	58
Chapitre 5 : Réaction à stœchiométrie multiples- sélectivité- Distribution optimale des produits	60
5.1. Généralités	60
5.2. Rendement et Sélectivité	
5.2.1. Le rendement	61
a. Rendement opératoire global (Taux de produit <i>P</i>)	62
b. Le rendement relatif global (ou intégral)	62
c. Le rendement relatif différentiel	62
5.2.2. La sélectivité	63
5.2.3. Illustration par un exemple	63
5.3. Distribution optimale des produits de réactions compétitives	64
5.4. Distribution optimale des produits de réactions consécutives	66
5.4.1 Évolution isotherme en réacteur fermé ou piston	67
5.4.2. Évolution isotherme en réacteur agité continu	68
5.5. Conclusion générale sur l'optimisation de la sélectivité	68

Chapitre 6 : Notion de bilan énergétique	70
6.1. Généralité	71
6.2.1. Description du système	71
6.2.2. Formulation des équations de bilan	72
6.2.3. Bilan énergétique du milieu réactionnel	72
6.3. Application de l'équation de bilan énergétique	74
Bibliographie	80